Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yıl 2021, Cilt 11, Sayı 1, 113 - 125, 30.06.2021
https://doi.org/10.37094/adyujsci.838918

Öz

Kaynakça

  • Auerbach, W., & Auerbach, R., Angiogenesis inhibition: a review, Pharmacology & therapeutics, 63(3), 265-311, 1994.
  • Otrock, Z. K., Mahfouz, R. A., Makarem, J. A., & Shamseddine, A. I., Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells, Molecules, and Diseases, 39(2), 212-220, 2007.
  • Weidner, N., Tumor angiogenesis: review of current applications in tumor prognostication. In Seminars in diagnostic pathology, Vol. 10, No. 4, 302, 1993.
  • Shahi, P. K., & Pineda, I. F., Tumoral angiogenesis: review of the literature, Cancer investigation, 26(1), 104-108, 2008
  • Ferrara, N., Vascular endothelial growth factor and the regulation of angiogenesis, Recent progress in hormone research, 55, 15, 2000.
  • Chung, A. S., & Ferrara, N., Developmental and pathological angiogenesis, Annual review of cell and developmental biology, 27, 563-584, 2011.
  • Matulonis, U. A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., & Lee, H., Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer, Journal of clinical oncology, 27(33), 5601, 2009
  • Parr, C., Watkins, G., Boulton, M., Cai, J., & Jiang, W. G., Placenta growth factor is over-expressed and has prognostic value in human breast cancer, European Journal of Cancer, 41(18), 2819-2827, 2005.
  • Strumberg, D., Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment, Drugs Today (Barc), 41(12), 773-784, 2005
  • Zhang, P. C., Liu, X., Li, M. M., Ma, Y. Y., Sun, H. T., Tian, X. Y., ... & Chen, H. Y., AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo, Biochemical Pharmacology, 172, 113771, 2020.
  • Sana, S., Reddy, V. G., Bhandari, S., Reddy, T. S., Tokala, R., Sakla, A. P., ... & Shankaraiah, N., Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect, European Journal of Medicinal Chemistry, 112457, 2020.
  • Abdel-Mohsen, H. T., Abdullaziz, M. A., Kerdawy, A. M. E., Ragab, F. A., Flanagan, K. J., Mahmoud, A. E., ... & Senge, M. O., Targeting Receptor Tyrosine Kinase VEGFR-2 in Hepatocellular Cancer: Rational Design, Synthesis and Biological Evaluation of 1, 2-Disubstituted Benzimidazoles, Molecules, 25(4), 770, 2020.
  • El‐Adl, K., El‐Helby, A. G. A., Sakr, H., Ayyad, R. R., Mahdy, H. A., Nasser, M.& El‐Hddad, S. S., Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5‐[(4‐chloro/2, 4‐dichloro) benzylidene] thiazolidine‐2, 4‐dione derivatives as VEGFR‐2 inhibitors. Archiv der Pharmazie, e2000279, 2020.
  • El‐Adl, K., Sakr, H., Nasser, M., Alswah, M., & Shoman, F. M., 5‐(4‐Methoxybenzylidene) thiazolidine‐2, 4‐dione‐derived VEGFR‐2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations, Archiv der Pharmazie, e2000079, 2020.
  • Michalak, E. M., Burr, M. L., Bannister, A. J., & Dawson, M. A., The roles of DNA, RNA and histone methylation in ageing and cancer, Nature Reviews Molecular Cell Biology, 1, 2019.
  • Zhang, J., Yang, C., Wu, C., Cui, W., & Wang, L., DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy, Cancers, 12(8), 2123, 2020.
  • Alhmoud, J. F., Woolley, J. F., Moustafa, A. E. A., & Malki, M. I., DNA Damage/Repair Management in Cancers, Cancers, 12(4), 1050, 2020.
  • Goessl, C., Müller, M., Straub, B., & Miller, K., DNA alterations in body fluids as molecular tumor markers for urological malignancies, European urology, 41(6), 668-676, 2002.
  • Öfele, K., 1, 3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer Übergangsmetall-carben-komplex, Journal of Organometallic Chemistry, 12(3), 42-43, 1968.
  • Wanzlick, H. W., & Schönherr, H. J., Direct synthesis of a mercury salt‐carbene complex, Angewandte Chemie International Edition in English, 7(2), 141-142, 1968.
  • Diez-Gonzalez, S., Marion, N., & Nolan, S. P., N-heterocyclic carbenes in late transition metal catalysis, Chemical Reviews, 109(8), 3612-3676, 2009.
  • Feller, D., Borden, W. T., & Davidson, E. R., Dependence of the singlet-triplet splitting in heterosubstituted carbenes on the heteroatom electronegativity and conformation, Chemical Physics Letters, 71(1), 22-26, 1980.
  • Sarı, Y., Gürses, C., Celepci, D. B., Keleştemur, Ü., Aktaş, A., Yüksel, Ş., ... & Gök, Y., 4-Vinylbenzyl and 2-morpholinoethyl substituted ruthenium (II) complexes: Design, synthesis, and biological evaluation, Journal of Molecular Structure, 1202, 127355, 2020.
  • Simpson, P. V., Schmidt, C., Ott, I., Bruhn, H., & Schatzschneider, U., Synthesis, Cellular Uptake and Biological Activity Against Pathogenic Microorganisms and Cancer Cells of Rhodium and Iridium N‐Heterocyclic Carbene Complexes Bearing Charged Substituents, European Journal of Inorganic Chemistry, 2013(32), 5547-5554, 2013.
  • Şahin, N., Şahin-Bölükbaşı, S., Tahir, M. N., Arıcı, C., Cevik, E., Gürbüz, N., & Cummings, B. S., Synthesis, characterization and anticancer activity of allyl substituted N-Heterocyclic carbene silver(I) complexes, Journal of Molecular Structure, 1179, 92-99, 2019.
  • Rehm, T., Rothemund, M., Muenzner, J. K., Noor, A., Kempe, R., & Schobert, R., Novel cis-[(NHC)1 (NHC)2(L)Cl]platinum (II) complexes–synthesis, structures, and anticancer activities, Dalton Transactions, 45(39), 15390-15398, 2016.
  • Hackenberg, F., Müller-Bunz, H., Smith, R., Streciwilk, W., Zhu, X., & Tacke, M., Novel ruthenium (II) and gold (I) NHC complexes: Synthesis, characterization, and evaluation of their anticancer properties, Organometallics, 32(19), 5551-5560, 2013.
  • Düşünceli, S. D., Ayaz, D., Üstün, E., Günal, S., Özdemir, N., Dinçer, M., & Özdemir, İ., Synthesis, antimicrobial properties, and theoretical analysis of benzimidazole-2-ylidene silver(I) complexes, Journal of Coordination Chemistry, 73(13), 1967-1986, 2020
  • Hosseini, F. S., & Amanlou, M., Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study, Life sciences, 258, 118205, 2020.
  • Radwan, M. A., Alshubramy, M. A., Abdel-Motaal, M., Hemdan, B. A., & El-Kady, D. S., Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives, Bioorganic Chemistry, 96, 103516, 2020.
  • Çevik-Yıldız, E., Şahin, N., Şahin-Bölükbaşı, S., Synthesis, characterization, and investigation of antiproliferative activity of novel Ag(I)-N-Heterocyclic Carbene (NHC) compounds, Journal of Molecular Structure, 1199, 126987, 2020.
  • Neese, F., A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry, JBIC Journal of Biological Inorganic Chemistry, 11(6), 702-711, 2006.
  • Neese, F., Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling, Coordination Chemistry Reviews, 253(5-6), 526-563, 2009.
  • https://www.rcsb.org/ Protein Data Bank (PDB)
  • Islam, M. A., & Pillay, T. S., Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies, Journal of Biomolecular Structure and Dynamics, 38(6), 1798-1809, 2020.
  • Sivakumar, K. C., Haixiao, J., Naman, C. B., & Sajeevan, T. P., Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process, Drug Development Research, 81(6), 685-699, 2020.
  • Vidhya, V., Austine, A., & Arivazhagan, M., Experimental approach, theoretical investigation and molecular docking of 2-chloro-5-fluoro phenol antibacterial compound, Heliyon, 6(11), e05464, 2020.
  • Qiu, Y., Li, X., He, X., Pu, J., Zhang, J., & Lu, S., Computational methods-guided design of modulators targeting protein-protein interactions (PPIs), European Journal of Medicinal Chemistry, 207, 112764, 2020.
  • Dana, H., Chalbatani, G. M., Gharagouzloo, E., Miri, S. R., Memari, F., Rasoolzadeh, R., Marmari, V., In silico Analysis, Molecular Docking, Molecular Dynamic, Cloning, Expression and Purification of Chimeric Protein in Colorectal Cancer Treatment, Drug Design, Development and Therapy, 14, 309, 2020.
  • Acharya, R., Chacko, S., Bose, P., Lapenna, A., Pattanayak, S. P., Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer, Scientific reports, 9(1), 1-13, 2019.
  • Hashim, D., Carioli, G., Malvezzi, M., Bertuccio, P., Waxman, S., Negri, E., Boffetta, P., Cancer mortality in the oldest old: a global overview, Aging (Albany NY), 12(17), 16744, 2020.
  • Meng, X., Ye, L., Yang, Z., Xiang, R., & Wang, J., Adsorption behavior of melphalan anti-ovarian cancer drug onto boron nitride nanostructures, Studying MTT assay: in vitro cellular toxicity and viability, Chemical Papers, 1-6, 2020.
  • Vetrivel, P., Kim, S. M., Ha, S. E., Kim, H. H., Bhosale, P. B., Senthil, K., & Kim, G. S., Compound Prunetin Induces Cell Death in Gastric Cancer Cell with Potent Anti-Proliferative Properties: In Vitro Assay, Molecular Docking, Dynamics, and ADMET Studies, Biomolecules, 10(7), 1086, 2020.
  • Ahmed, E. Y., Latif, N. A. A., El-Mansy, M. F., Elserwy, W. S., & Abdelhafez, O. M., VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents, Bioorganic & Medicinal Chemistry, 28(5), 115328, 2020.
  • Cheng, K., Liu, C. F., & Rao, G. W., Anti-angiogenic Agents: A Review on Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) Inhibitors, Current medicinal chemistry, 2020.
  • Jackson, S. P., The DNA-damage response: new molecular insights and new approaches to cancer therapy, Biochemical Society Transactions, 37(3), 483-494, 2009.
  • Gupta, R. K., Sharma, G., Pandey, R., Kumar, A., Koch, B., Li, P. Z., Pandey, D. S., DNA/protein binding, molecular docking, and in vitro anticancer activity of some thioether-dipyrrinato complexes, Inorganic chemistry, 52(24), 13984-13996, 2013.

Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study

Yıl 2021, Cilt 11, Sayı 1, 113 - 125, 30.06.2021
https://doi.org/10.37094/adyujsci.838918

Öz

Molecular docking is an important tool in drug research. Thanks to these calculations, the type and magnitude of interactions of the molecules with target molecules are evaluated. It is also possible to perform more detailed analyzes than known experimental methods in an easy and economical way by using the results obtained with current scientific developments and examine interactions with different target molecules depending on bioactivity type. Cancer researches show that vascular endothelial growth factor is effective in the growth and proliferation of cancer cells. Inhibition of the receptor that regulates the release of this factor may be an efficient method for designing an anticancer agent. One of these receptors is VEGFR-2. This receptor can be used as a target molecule in cancer research. In addition, the interaction of molecules with DNA is important in terms of getting insight for future studies. In this study, the interaction of 1-allyl-3-benzylbenzimidazolium, 1-allyl-3-(naphthylmethyl)benzimidazolium, 1-allyl-3-(anthracen-9-yl-methyl)benzimidazolium,chloro[1-allyl-3-benzylbenzimidazolium-2-ylidene]silver(I), chloro[1-allyl-3-(naphthylmethyl)benzimidazolium-2-ylidene]silver(I), chloro[1-allyl-3-(anthracen-9-yl-methyl)benzimidazolium-2-ylidene]silver(I) with VEGFR-2 and DNA were analyzed by molecular docking methods.

Kaynakça

  • Auerbach, W., & Auerbach, R., Angiogenesis inhibition: a review, Pharmacology & therapeutics, 63(3), 265-311, 1994.
  • Otrock, Z. K., Mahfouz, R. A., Makarem, J. A., & Shamseddine, A. I., Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells, Molecules, and Diseases, 39(2), 212-220, 2007.
  • Weidner, N., Tumor angiogenesis: review of current applications in tumor prognostication. In Seminars in diagnostic pathology, Vol. 10, No. 4, 302, 1993.
  • Shahi, P. K., & Pineda, I. F., Tumoral angiogenesis: review of the literature, Cancer investigation, 26(1), 104-108, 2008
  • Ferrara, N., Vascular endothelial growth factor and the regulation of angiogenesis, Recent progress in hormone research, 55, 15, 2000.
  • Chung, A. S., & Ferrara, N., Developmental and pathological angiogenesis, Annual review of cell and developmental biology, 27, 563-584, 2011.
  • Matulonis, U. A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., & Lee, H., Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer, Journal of clinical oncology, 27(33), 5601, 2009
  • Parr, C., Watkins, G., Boulton, M., Cai, J., & Jiang, W. G., Placenta growth factor is over-expressed and has prognostic value in human breast cancer, European Journal of Cancer, 41(18), 2819-2827, 2005.
  • Strumberg, D., Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment, Drugs Today (Barc), 41(12), 773-784, 2005
  • Zhang, P. C., Liu, X., Li, M. M., Ma, Y. Y., Sun, H. T., Tian, X. Y., ... & Chen, H. Y., AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo, Biochemical Pharmacology, 172, 113771, 2020.
  • Sana, S., Reddy, V. G., Bhandari, S., Reddy, T. S., Tokala, R., Sakla, A. P., ... & Shankaraiah, N., Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect, European Journal of Medicinal Chemistry, 112457, 2020.
  • Abdel-Mohsen, H. T., Abdullaziz, M. A., Kerdawy, A. M. E., Ragab, F. A., Flanagan, K. J., Mahmoud, A. E., ... & Senge, M. O., Targeting Receptor Tyrosine Kinase VEGFR-2 in Hepatocellular Cancer: Rational Design, Synthesis and Biological Evaluation of 1, 2-Disubstituted Benzimidazoles, Molecules, 25(4), 770, 2020.
  • El‐Adl, K., El‐Helby, A. G. A., Sakr, H., Ayyad, R. R., Mahdy, H. A., Nasser, M.& El‐Hddad, S. S., Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5‐[(4‐chloro/2, 4‐dichloro) benzylidene] thiazolidine‐2, 4‐dione derivatives as VEGFR‐2 inhibitors. Archiv der Pharmazie, e2000279, 2020.
  • El‐Adl, K., Sakr, H., Nasser, M., Alswah, M., & Shoman, F. M., 5‐(4‐Methoxybenzylidene) thiazolidine‐2, 4‐dione‐derived VEGFR‐2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations, Archiv der Pharmazie, e2000079, 2020.
  • Michalak, E. M., Burr, M. L., Bannister, A. J., & Dawson, M. A., The roles of DNA, RNA and histone methylation in ageing and cancer, Nature Reviews Molecular Cell Biology, 1, 2019.
  • Zhang, J., Yang, C., Wu, C., Cui, W., & Wang, L., DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy, Cancers, 12(8), 2123, 2020.
  • Alhmoud, J. F., Woolley, J. F., Moustafa, A. E. A., & Malki, M. I., DNA Damage/Repair Management in Cancers, Cancers, 12(4), 1050, 2020.
  • Goessl, C., Müller, M., Straub, B., & Miller, K., DNA alterations in body fluids as molecular tumor markers for urological malignancies, European urology, 41(6), 668-676, 2002.
  • Öfele, K., 1, 3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer Übergangsmetall-carben-komplex, Journal of Organometallic Chemistry, 12(3), 42-43, 1968.
  • Wanzlick, H. W., & Schönherr, H. J., Direct synthesis of a mercury salt‐carbene complex, Angewandte Chemie International Edition in English, 7(2), 141-142, 1968.
  • Diez-Gonzalez, S., Marion, N., & Nolan, S. P., N-heterocyclic carbenes in late transition metal catalysis, Chemical Reviews, 109(8), 3612-3676, 2009.
  • Feller, D., Borden, W. T., & Davidson, E. R., Dependence of the singlet-triplet splitting in heterosubstituted carbenes on the heteroatom electronegativity and conformation, Chemical Physics Letters, 71(1), 22-26, 1980.
  • Sarı, Y., Gürses, C., Celepci, D. B., Keleştemur, Ü., Aktaş, A., Yüksel, Ş., ... & Gök, Y., 4-Vinylbenzyl and 2-morpholinoethyl substituted ruthenium (II) complexes: Design, synthesis, and biological evaluation, Journal of Molecular Structure, 1202, 127355, 2020.
  • Simpson, P. V., Schmidt, C., Ott, I., Bruhn, H., & Schatzschneider, U., Synthesis, Cellular Uptake and Biological Activity Against Pathogenic Microorganisms and Cancer Cells of Rhodium and Iridium N‐Heterocyclic Carbene Complexes Bearing Charged Substituents, European Journal of Inorganic Chemistry, 2013(32), 5547-5554, 2013.
  • Şahin, N., Şahin-Bölükbaşı, S., Tahir, M. N., Arıcı, C., Cevik, E., Gürbüz, N., & Cummings, B. S., Synthesis, characterization and anticancer activity of allyl substituted N-Heterocyclic carbene silver(I) complexes, Journal of Molecular Structure, 1179, 92-99, 2019.
  • Rehm, T., Rothemund, M., Muenzner, J. K., Noor, A., Kempe, R., & Schobert, R., Novel cis-[(NHC)1 (NHC)2(L)Cl]platinum (II) complexes–synthesis, structures, and anticancer activities, Dalton Transactions, 45(39), 15390-15398, 2016.
  • Hackenberg, F., Müller-Bunz, H., Smith, R., Streciwilk, W., Zhu, X., & Tacke, M., Novel ruthenium (II) and gold (I) NHC complexes: Synthesis, characterization, and evaluation of their anticancer properties, Organometallics, 32(19), 5551-5560, 2013.
  • Düşünceli, S. D., Ayaz, D., Üstün, E., Günal, S., Özdemir, N., Dinçer, M., & Özdemir, İ., Synthesis, antimicrobial properties, and theoretical analysis of benzimidazole-2-ylidene silver(I) complexes, Journal of Coordination Chemistry, 73(13), 1967-1986, 2020
  • Hosseini, F. S., & Amanlou, M., Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study, Life sciences, 258, 118205, 2020.
  • Radwan, M. A., Alshubramy, M. A., Abdel-Motaal, M., Hemdan, B. A., & El-Kady, D. S., Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives, Bioorganic Chemistry, 96, 103516, 2020.
  • Çevik-Yıldız, E., Şahin, N., Şahin-Bölükbaşı, S., Synthesis, characterization, and investigation of antiproliferative activity of novel Ag(I)-N-Heterocyclic Carbene (NHC) compounds, Journal of Molecular Structure, 1199, 126987, 2020.
  • Neese, F., A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry, JBIC Journal of Biological Inorganic Chemistry, 11(6), 702-711, 2006.
  • Neese, F., Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling, Coordination Chemistry Reviews, 253(5-6), 526-563, 2009.
  • https://www.rcsb.org/ Protein Data Bank (PDB)
  • Islam, M. A., & Pillay, T. S., Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies, Journal of Biomolecular Structure and Dynamics, 38(6), 1798-1809, 2020.
  • Sivakumar, K. C., Haixiao, J., Naman, C. B., & Sajeevan, T. P., Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process, Drug Development Research, 81(6), 685-699, 2020.
  • Vidhya, V., Austine, A., & Arivazhagan, M., Experimental approach, theoretical investigation and molecular docking of 2-chloro-5-fluoro phenol antibacterial compound, Heliyon, 6(11), e05464, 2020.
  • Qiu, Y., Li, X., He, X., Pu, J., Zhang, J., & Lu, S., Computational methods-guided design of modulators targeting protein-protein interactions (PPIs), European Journal of Medicinal Chemistry, 207, 112764, 2020.
  • Dana, H., Chalbatani, G. M., Gharagouzloo, E., Miri, S. R., Memari, F., Rasoolzadeh, R., Marmari, V., In silico Analysis, Molecular Docking, Molecular Dynamic, Cloning, Expression and Purification of Chimeric Protein in Colorectal Cancer Treatment, Drug Design, Development and Therapy, 14, 309, 2020.
  • Acharya, R., Chacko, S., Bose, P., Lapenna, A., Pattanayak, S. P., Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer, Scientific reports, 9(1), 1-13, 2019.
  • Hashim, D., Carioli, G., Malvezzi, M., Bertuccio, P., Waxman, S., Negri, E., Boffetta, P., Cancer mortality in the oldest old: a global overview, Aging (Albany NY), 12(17), 16744, 2020.
  • Meng, X., Ye, L., Yang, Z., Xiang, R., & Wang, J., Adsorption behavior of melphalan anti-ovarian cancer drug onto boron nitride nanostructures, Studying MTT assay: in vitro cellular toxicity and viability, Chemical Papers, 1-6, 2020.
  • Vetrivel, P., Kim, S. M., Ha, S. E., Kim, H. H., Bhosale, P. B., Senthil, K., & Kim, G. S., Compound Prunetin Induces Cell Death in Gastric Cancer Cell with Potent Anti-Proliferative Properties: In Vitro Assay, Molecular Docking, Dynamics, and ADMET Studies, Biomolecules, 10(7), 1086, 2020.
  • Ahmed, E. Y., Latif, N. A. A., El-Mansy, M. F., Elserwy, W. S., & Abdelhafez, O. M., VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents, Bioorganic & Medicinal Chemistry, 28(5), 115328, 2020.
  • Cheng, K., Liu, C. F., & Rao, G. W., Anti-angiogenic Agents: A Review on Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) Inhibitors, Current medicinal chemistry, 2020.
  • Jackson, S. P., The DNA-damage response: new molecular insights and new approaches to cancer therapy, Biochemical Society Transactions, 37(3), 483-494, 2009.
  • Gupta, R. K., Sharma, G., Pandey, R., Kumar, A., Koch, B., Li, P. Z., Pandey, D. S., DNA/protein binding, molecular docking, and in vitro anticancer activity of some thioether-dipyrrinato complexes, Inorganic chemistry, 52(24), 13984-13996, 2013.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya, İnorganik ve Nükleer
Yayınlanma Tarihi June 2021
Bölüm Kimya
Yazarlar

Elvan ÜSTÜN
ORDU FEN-EDEBİYAT FAKÜLTESİ
0000-0002-0587-7261
Türkiye


Neslihan ŞAHİN (Sorumlu Yazar)
Cumhuriyet Üniversitesi
0000-0001-5847-6288
Türkiye

Destekleyen Kurum Technological and Scientific Research Council of Turkey (TÜBİTAK)
Proje Numarası 118R045
Teşekkür The authors would like to thank the Technological and Scientific Research Council of Turkey (TÜBİTAK-3001, Project Number: 118R045).
Yayımlanma Tarihi 30 Haziran 2021
Başvuru Tarihi 13 Aralık 2020
Kabul Tarihi 12 Mayıs 2021
Yayınlandığı Sayı Yıl 2021, Cilt 11, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { adyujsci838918, journal = {Adıyaman University Journal of Science}, issn = {2147-1630}, eissn = {2146-586X}, address = {}, publisher = {Adıyaman Üniversitesi}, year = {2021}, volume = {11}, pages = {113 - 125}, doi = {10.37094/adyujsci.838918}, title = {Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study}, key = {cite}, author = {Üstün, Elvan and Şahin, Neslihan} }
APA Üstün, E. & Şahin, N. (2021). Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study . Adıyaman University Journal of Science , 11 (1) , 113-125 . DOI: 10.37094/adyujsci.838918
MLA Üstün, E. , Şahin, N. "Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study" . Adıyaman University Journal of Science 11 (2021 ): 113-125 <https://dergipark.org.tr/tr/pub/adyujsci/issue/63014/838918>
Chicago Üstün, E. , Şahin, N. "Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study". Adıyaman University Journal of Science 11 (2021 ): 113-125
RIS TY - JOUR T1 - Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study AU - Elvan Üstün , Neslihan Şahin Y1 - 2021 PY - 2021 N1 - doi: 10.37094/adyujsci.838918 DO - 10.37094/adyujsci.838918 T2 - Adıyaman University Journal of Science JF - Journal JO - JOR SP - 113 EP - 125 VL - 11 IS - 1 SN - 2147-1630-2146-586X M3 - doi: 10.37094/adyujsci.838918 UR - https://doi.org/10.37094/adyujsci.838918 Y2 - 2021 ER -
EndNote %0 Adıyaman Üniversitesi Fen Bilimleri Dergisi Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study %A Elvan Üstün , Neslihan Şahin %T Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study %D 2021 %J Adıyaman University Journal of Science %P 2147-1630-2146-586X %V 11 %N 1 %R doi: 10.37094/adyujsci.838918 %U 10.37094/adyujsci.838918
ISNAD Üstün, Elvan , Şahin, Neslihan . "Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study". Adıyaman University Journal of Science 11 / 1 (Haziran 2021): 113-125 . https://doi.org/10.37094/adyujsci.838918
AMA Üstün E. , Şahin N. Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study. ADYU J SCI. 2021; 11(1): 113-125.
Vancouver Üstün E. , Şahin N. Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study. Adıyaman University Journal of Science. 2021; 11(1): 113-125.
IEEE E. Üstün ve N. Şahin , "Analysis of Interactions of NHC Type Molecules and NHC-Ag Complexes with VEGFR-2 and DNA: A Molecular Docking Study", Adıyaman University Journal of Science, c. 11, sayı. 1, ss. 113-125, Haz. 2021, doi:10.37094/adyujsci.838918

...