C/EBPα Mediated Transcriptional Regulation of Human ADAMTS-3 Gene and Collagen Expression in Osteosarcoma Cells
Yıl 2024,
Cilt: 14 Sayı: 2, 1 - 14, 31.12.2024
Meltem Alper
,
Tugsen Aydemir
,
Feray Köçkar
Öz
ADAMTS-3 is a procollagen amino proteinase mainly expressed in type II collagen-rich tissues and its primary function is to maturate amino ends of the type II collagen precursors. This maturation process allows correct fibril formation. ADAMTS-3 also has a tumor-suppressive function by regulating the fibronectin expression in the ECM.
C/EBPα is a transcription factor playing a pivotal role in the cell cycle regulation. Dysregulations in the C/EBPα expression have been reported in solid tumors. C/EBPα expression has been identified to be associated with the metabolism and prognosis of a malignant bone tumor, osteosarcoma (OS). High heterogeneity, metastasis capability, and recurrence lead to poor prognosis and survival rates in OS. Multiple genetic and epigenetic factors affect OS development. Alterations in the ECM elements are closely related to OS development and progression. According to the in-silico analyses, the ADAMTS-3 promoter includes multiple C/EBPα binding sites suggesting that C/EBPα could have a regulatory effect on ADAMTS-3 transcriptional regulation. In the present study, over-expression of the C/EBPα decreased ADAMTS-3 mRNA and protein levels in Saos-2 and MG-63 osteosarcoma models. Ectopic expression of the C/EBPα also led to alterations in some fibrillar collagen expression levels. Enhanced C/EBPα levels resulted in an increase in the type I and II collagen expression levels but didn’t change the type III collagen expression level in Saos-2 cells.
Etik Beyan
Bu çalışma için canlı materyal ile çalışılmadığından etik kurul onayına gerek yoktur.
Destekleyen Kurum
TÜBİTAK
Teşekkür
This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Project number; 114Z025
Kaynakça
- [1] Porter, S., Clark, I.M., Kevorkian, L., and Edwards, D.R., The ADAMTS metalloproteinases, Biochemistry Journal, 386, 15-27, 2005.
- [2] Jeltsch, M., Jha, S.K., Tvorogov, D., Anisimov, A., Leppänen, V.M., Holopainen, T., Kivelä, R., Ortega, S., Kärpanen, T., and Alitalo, K., CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation, Circulation, 129, 1962-1971, 2014.
- [3] Gibson, S.V., Madzharova, E., Tan, A.C., Allen, M.D., Keller, U.A.D., Louise Jones, J., Carter, E.P., and Grose, R.P., ADAMTS3 restricts cancer invasion in models of early breast cancer progression through enhanced fibronectin degradation, Matrix Biology, 121, 74-89, 2023.
- [4] Wang, W., Xia, X., Mao, L., and Wang, S., The CCAAT/Enhancer-Binding Protein Family: Its Roles in MDSC Expansion and Function, Frontiers in Immunology, 10, 1804, 2019.
- [5] Lourenço, A.R., Roukens, M.G., Seinstra, D., Frederiks, C.L., Pals, C.E., Vervoort, S.J., Margarido, A.S., van Rheenen, J., and Coffer, P.J., C/EBPɑ is crucial determinant of epithelial maintenance by preventing epithelial-to-mesenchymal transition, Nature Communications, 11, 785, 2020.
- [6] Miller, M., Shuman, J.D., Sebastian, T., Dauter, Z., and Johnson, P.F., Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein alpha, Journal of Biological Chemistry, 278, 15178-15184, 2003.
- [7] Ramji, D.P., and Foka, P., CCAAT/enhancer-binding proteins: structure, function and regulation, Biochemistry Journal, 365, 561-575, 2002.
- [8] Pabst, T., Mueller, B.U., Zhang, P., Radomska, H.S., Narravula, S., Schnittger, S., Behre, G., Hiddemann, W., and Tenen, D.G., Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia, Nature Genetics, 27, 263-270, 2001.
- [9] Leroy, H., Roumier, C., Huyghe, P., Biggio, V., Fenaux, P., and Preudhomme, C., CEBPA point mutations in hematological malignancies, Leukemia, 19, 329-334, 2005.
- [10] Nerlov, C., C/EBPalpha mutations in acute myeloid leukaemias, Nature Reviews Cancer, 4, 394-400, 2004.
- [11] Lourenço, A.R., and Coffer, P.J., A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood, Oncogene, 36, 5221-5230, 2017.
- [12] Liu, W., Xie, X., Qi, Y., and Wu, J., Exploration of Immune-Related Gene Expression in Osteosarcoma and Association With Outcomes, JAMA Network Open, 4, e2119132, 2021.
- [13] Wei, D., Li, C., Ye, J., Xiang, F., and Liu, J., Extracellular Collagen Mediates Osteosarcoma Progression Through an Integrin α2β1/JAK/STAT3 Signaling Pathway, Cancer Management and Research, 12, 12067-12075, 2020.
- [14] Cui, J., Dean, D., Hornicek, F.J., Chen, Z., and Duan, Z., The role of extracelluar matrix in osteosarcoma progression and metastasis, Journal of Experimental & Clinical Cancer Research, 39, 178, 2020.
- [15] Cortini, M., Macchi, F., Reggiani, F., Vitale, E., Lipreri, M.V., Perut, F., Ciarrocchi, A., Baldini, N., and Avnet, S., Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin, Cancers (Basel), 15, 2023.
- [16] Hu, J., Lazar, A.J., Ingram, D., Wang, W.-L., Zhang, W., Jia, Z., Ragoonanan, D., Wang, J., Xia, X., Mahadeo, K., et al., Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models, Journal for ImmunoTherapy of Cancer, 12, e006991, 2024.
- [17] Aydemir, A.T., Alper, M., and Kockar, F., SP1-mediated downregulation of ADAMTS3 gene expression in osteosarcoma models, Gene, 659, 1-10, 2018.
- [18] Kockar, F.T., Foka, P., Hughes, T.R., Kousteni, S., and Ramji, D.P., Analysis of the Xenopus laevis CCAAT-enhancer binding protein alpha gene promoter demonstrates species-specific differences in the mechanisms for both auto-activation and regulation by Sp1, Nucleic Acids Research, 29, 362-372, 2001.
- [19] Tokay, E., and Kockar, F., SP1 is a transcriptional regulator of URG-4/URGCP gene in hepatocytes, Molecular and Cellular Biochemistry, 423, 75-83, 2016.
- [20] Livak, K.J., and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, 402-408, 2001.
- [21] Alper, M., and Kockar, F., IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway, Molecular and Cellular Biochemistry, 393, 165-175, 2014.
- [22] Debelec-Butuner, B., Bostancı, A., Ozcan, F., Singin, O., Karamil, S., Aslan, M., Roggenbuck, D., and Korkmaz, K.S., Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer, Cancer Investigation, 37, 113-126, 2019.
- [23] Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9, 671-675, 2012.
- [24] Hellman, L.M., and Fried, M.G., Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions, Nature Protocols, 2, 1849-1861, 2007.
- [25] Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T., MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data, Nucleic Acids Research, 23, 4878-4884, 1995.
- [26] Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T., MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, 21, 2933-2942, 2005.
- [27] Pautke, C., Schieker, M., Tischer, T., Kolk, A., Neth, P., Mutschler, W., and Milz, S., Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts, Anticancer Research, 24, 3743-3748, 2004.
- [28] Alper, M., Aydemir, T., and Köçkar, F., USF1 Suppresses Expression of Fibrillar Type I, II, and III Collagen and pNP Adamts-3 in Osteosarcoma Cells, Molecular Biology, 55, 634-642, 2021.
- [29] Oller, J., Alfranca, A., Méndez-Barbero, N., Villahoz, S., Lozano-Vidal, N., Martín-Alonso, M., Arroyo, A.G., Escolano, A., Armesilla, A.L., Campanero, M.R., et al., C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling, Molecular and Cellular Biology, 35, 3409-3422, 2015.
- [30] Alper M, A.A., Köçkar F., Expression Pattern of ADAMTS-3 (A Disintegrin and Matrix Metalloproteinase Type,1 Motif 3) in Normal and Cancer Cell Lines, Suleyman Demirel University The Journal of Health Science, 13, 40-47, 2022.
- [31] Khanna-Gupta, A., Zibello, T., Sun, H., Gaines, P., and Berliner, N., Chromatin immunoprecipitation (ChIP) studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon (C/EBP alpha and C/EBP epsilon) and CDP/cut in myeloid maturation-induced lactoferrin gene expression, Blood, 101, 3460-3468, 2003.
Yıl 2024,
Cilt: 14 Sayı: 2, 1 - 14, 31.12.2024
Meltem Alper
,
Tugsen Aydemir
,
Feray Köçkar
Kaynakça
- [1] Porter, S., Clark, I.M., Kevorkian, L., and Edwards, D.R., The ADAMTS metalloproteinases, Biochemistry Journal, 386, 15-27, 2005.
- [2] Jeltsch, M., Jha, S.K., Tvorogov, D., Anisimov, A., Leppänen, V.M., Holopainen, T., Kivelä, R., Ortega, S., Kärpanen, T., and Alitalo, K., CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation, Circulation, 129, 1962-1971, 2014.
- [3] Gibson, S.V., Madzharova, E., Tan, A.C., Allen, M.D., Keller, U.A.D., Louise Jones, J., Carter, E.P., and Grose, R.P., ADAMTS3 restricts cancer invasion in models of early breast cancer progression through enhanced fibronectin degradation, Matrix Biology, 121, 74-89, 2023.
- [4] Wang, W., Xia, X., Mao, L., and Wang, S., The CCAAT/Enhancer-Binding Protein Family: Its Roles in MDSC Expansion and Function, Frontiers in Immunology, 10, 1804, 2019.
- [5] Lourenço, A.R., Roukens, M.G., Seinstra, D., Frederiks, C.L., Pals, C.E., Vervoort, S.J., Margarido, A.S., van Rheenen, J., and Coffer, P.J., C/EBPɑ is crucial determinant of epithelial maintenance by preventing epithelial-to-mesenchymal transition, Nature Communications, 11, 785, 2020.
- [6] Miller, M., Shuman, J.D., Sebastian, T., Dauter, Z., and Johnson, P.F., Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein alpha, Journal of Biological Chemistry, 278, 15178-15184, 2003.
- [7] Ramji, D.P., and Foka, P., CCAAT/enhancer-binding proteins: structure, function and regulation, Biochemistry Journal, 365, 561-575, 2002.
- [8] Pabst, T., Mueller, B.U., Zhang, P., Radomska, H.S., Narravula, S., Schnittger, S., Behre, G., Hiddemann, W., and Tenen, D.G., Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia, Nature Genetics, 27, 263-270, 2001.
- [9] Leroy, H., Roumier, C., Huyghe, P., Biggio, V., Fenaux, P., and Preudhomme, C., CEBPA point mutations in hematological malignancies, Leukemia, 19, 329-334, 2005.
- [10] Nerlov, C., C/EBPalpha mutations in acute myeloid leukaemias, Nature Reviews Cancer, 4, 394-400, 2004.
- [11] Lourenço, A.R., and Coffer, P.J., A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood, Oncogene, 36, 5221-5230, 2017.
- [12] Liu, W., Xie, X., Qi, Y., and Wu, J., Exploration of Immune-Related Gene Expression in Osteosarcoma and Association With Outcomes, JAMA Network Open, 4, e2119132, 2021.
- [13] Wei, D., Li, C., Ye, J., Xiang, F., and Liu, J., Extracellular Collagen Mediates Osteosarcoma Progression Through an Integrin α2β1/JAK/STAT3 Signaling Pathway, Cancer Management and Research, 12, 12067-12075, 2020.
- [14] Cui, J., Dean, D., Hornicek, F.J., Chen, Z., and Duan, Z., The role of extracelluar matrix in osteosarcoma progression and metastasis, Journal of Experimental & Clinical Cancer Research, 39, 178, 2020.
- [15] Cortini, M., Macchi, F., Reggiani, F., Vitale, E., Lipreri, M.V., Perut, F., Ciarrocchi, A., Baldini, N., and Avnet, S., Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin, Cancers (Basel), 15, 2023.
- [16] Hu, J., Lazar, A.J., Ingram, D., Wang, W.-L., Zhang, W., Jia, Z., Ragoonanan, D., Wang, J., Xia, X., Mahadeo, K., et al., Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models, Journal for ImmunoTherapy of Cancer, 12, e006991, 2024.
- [17] Aydemir, A.T., Alper, M., and Kockar, F., SP1-mediated downregulation of ADAMTS3 gene expression in osteosarcoma models, Gene, 659, 1-10, 2018.
- [18] Kockar, F.T., Foka, P., Hughes, T.R., Kousteni, S., and Ramji, D.P., Analysis of the Xenopus laevis CCAAT-enhancer binding protein alpha gene promoter demonstrates species-specific differences in the mechanisms for both auto-activation and regulation by Sp1, Nucleic Acids Research, 29, 362-372, 2001.
- [19] Tokay, E., and Kockar, F., SP1 is a transcriptional regulator of URG-4/URGCP gene in hepatocytes, Molecular and Cellular Biochemistry, 423, 75-83, 2016.
- [20] Livak, K.J., and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, 402-408, 2001.
- [21] Alper, M., and Kockar, F., IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway, Molecular and Cellular Biochemistry, 393, 165-175, 2014.
- [22] Debelec-Butuner, B., Bostancı, A., Ozcan, F., Singin, O., Karamil, S., Aslan, M., Roggenbuck, D., and Korkmaz, K.S., Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer, Cancer Investigation, 37, 113-126, 2019.
- [23] Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9, 671-675, 2012.
- [24] Hellman, L.M., and Fried, M.G., Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions, Nature Protocols, 2, 1849-1861, 2007.
- [25] Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T., MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data, Nucleic Acids Research, 23, 4878-4884, 1995.
- [26] Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T., MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, 21, 2933-2942, 2005.
- [27] Pautke, C., Schieker, M., Tischer, T., Kolk, A., Neth, P., Mutschler, W., and Milz, S., Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts, Anticancer Research, 24, 3743-3748, 2004.
- [28] Alper, M., Aydemir, T., and Köçkar, F., USF1 Suppresses Expression of Fibrillar Type I, II, and III Collagen and pNP Adamts-3 in Osteosarcoma Cells, Molecular Biology, 55, 634-642, 2021.
- [29] Oller, J., Alfranca, A., Méndez-Barbero, N., Villahoz, S., Lozano-Vidal, N., Martín-Alonso, M., Arroyo, A.G., Escolano, A., Armesilla, A.L., Campanero, M.R., et al., C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling, Molecular and Cellular Biology, 35, 3409-3422, 2015.
- [30] Alper M, A.A., Köçkar F., Expression Pattern of ADAMTS-3 (A Disintegrin and Matrix Metalloproteinase Type,1 Motif 3) in Normal and Cancer Cell Lines, Suleyman Demirel University The Journal of Health Science, 13, 40-47, 2022.
- [31] Khanna-Gupta, A., Zibello, T., Sun, H., Gaines, P., and Berliner, N., Chromatin immunoprecipitation (ChIP) studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon (C/EBP alpha and C/EBP epsilon) and CDP/cut in myeloid maturation-induced lactoferrin gene expression, Blood, 101, 3460-3468, 2003.