Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 571 - 580, 31.12.2022
https://doi.org/10.54365/adyumbd.1145590

Öz

Kaynakça

  • Yadav H, Gautam, S, Rana, A, Bhardwaj, J, Tyagi, N. Various Types of Cybercrime and Its Affected Area. In: Tavares, J.M.R.S. Chakrabarti, S., Bhattacharya, A., Ghatak, S. (eds) Emerging Technologies in Data Mining and Information Security. Lecture Notes in Networks and Systems, 2021; vol 164. Springer, Singapore. https://doi.org/10.1007/978-981-15-9774-9_30
  • Yakut S. Random Number Generator Based on Discrete Cosine Transform Based Lossy Picture Compression. NATURENGS, 2021; 2 (2): 76-85. DOI: 10.46572/naturengs.1009013
  • Koç Ç. Cryptographic Engineering. Springer, New York 2009.
  • Menezes AJ, van Oorschot PC, Vanstone SA. Handbook of Applied Cryptography, 1st edn. CRC Press, Boca Raton. 1996.
  • Paar C, Pelzl J. Understanding cryptography: a textbook for students and practitioners, Universitat Bochum, Bochum, Germany, Springer Publishing Company, 2009.
  • Garipcan AM. Gerçek rasgele sayı üreteçlerinin performansını iyileştirmek için yer değiştirme kutularını temel alan yeni bir yaklaşım, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü. 2021.
  • Yakut S. Gerçek Rasgele Sayı Üreteçlerinin Tasarlanması ve Analizi, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü. 2019.
  • Datcu O, Macovei C, Hobincu R. Chaos Based Cryptographic Pseudo-Random Number Generator Template with Dynamic State Change. Applied Sciences. 2020; 10, 451. https://doi.org/10.3390/app10020451
  • Al-Roithy BO, Gutub A Remodeling randomness prioritization to boost-up security of RGB image encryption. Multimed Tools Applications. 2021; 80, 28521–28581. https://doi.org/10.1007/s11042-021-11051-3
  • Aljohani M, Ahmad I, Basheri M, Alassafi MO. Performance Analysis of Cryptographic Pseudorandom Number Generators. IEEE Access. 2019; 7: 39794–39805.
  • Kopparthi VR, Kali A, Sabat SL, Anumandla KK, Peesapati R, Fouda JAE. Hardware architecture of a digital piecewise linear chaotic map with perturbation for pseudorandom number generation. AEU-International Journal of Electronics and Communications, 2022; 147, 154138.
  • Parisot A, Bento LMS, Machado RCS. Testing and selecting lightweight pseudo-random number generators for IoT devices. 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). 2021; pp. 715-720, doi: 10.1109/MetroInd4.0IoT51437.2021.9488454.
  • Yakut S, Tuncer T, Özer AB. A New Secure and Efficient Approach for TRNG and Its Post-Processing Algorithms. Journal of Circuits, Systems and Computers. 2020.
  • Avaroğlu E, Tuncer T. A novel S-box-based postprocessing method for true random number generation. Turkish Journual of Electrical Engineering and Compputer Sciences. 2020; 28: 288–301.
  • Garipcan AM, Erdem E. A GRSÜ using chaotic entropy pool as a post-processing technique: analysis, design and FPGA implementation. Analog Integrated Circuits and Signal Processing. 2020; 103(3): 391-410.
  • Łoza Sz, Matuszewski Ł, Jessa M, A Random Number Generator Using Ring Oscillators and SHA-256 as Post-Processing. International Journal of Electronics and Telecommunications. 2015; 61(2): 199-204.
  • Garipcan AM, Erdem E. A gigabit TRNG with novel lightweight post-processing method for cryptographic applications. European Physical Journal Plus 137. 2022. 493: https://doi.org/10.1140/epjp/s13360-022-02679-7
  • Patel R, Lad K, Patel M. A Robust Video Steganography Over DCT Components of Motion Region in Compressed Domain. Soft Computing and Signal Processing. Advances in Intelligent Systems and Computing. 2021; 1325. Springer, Singapore. https://doi.org/10.1007/978-981-33-6912-2_33
  • Fuad M, Ernawan F. Video steganography based on DCT psychovisual and object motion. Bulletin of Electrical Engineering and Informatics. 2020; 9(3): 1015~1023, ISSN: 2302-9285, doi: 10.11591/eei.v9i3.1859
  • Roman S. Hybrid Adaptive Lossless Image Compression Based on Discrete Wavelet Transform. Entropy (Basel, Switzerland). 2020; 22(7): 751, doi:10.3390/e22070751
  • Patel R, Lad K, Patel M. Study and investigation of video steganography over uncompressed and compressed domain: a comprehensive review. Multimedia Systems 2021; 27: 985–1024. https://doi.org/10.1007/s00530-021-00763-z
  • Hudson G, Yasuda H, Sebestyen I. The international standardization of a still picture compression technique. in IEEE Globecom Conf., Proc. of the Global Telecommunication Conf.. 1988; 1015 –1021. https://doi.org/10.1109/GLOCOM.1988.25989
  • Wedaj FT, Kim S, Kim H J, et al. Improved reversible data hiding in JPEG images based on new coefficient selection strategy[J]. Eurasip Journal on Image & Video Processing. 2017; 2017(1):63.
  • Ajmera A, Divecha M, Ghosh SS, Raval I, Chaturvedi R. Video Steganography: Using Scrambling- AES Encryption and DCT, DST Steganography. 2019 IEEE Pune Section International Conference (PuneCon). 2019; 1-7, doi: 10.1109/PuneCon46936.2019.9105666.
  • Mao BH, Wang ZC, Zhang XP. Asymmetric JPEG Steganography Based on Correlation in DCT Domain. Computer Science. 2019; 46(01): 203-207.
  • Nasir A, Natarajan T, Rao KR. "Discrete Cosine Transform", IEEE Transactions on Computers, ; C-23 (1): 90–93, doi:10.1109/T-C.1974.223784
  • Al-Roithy BO, Gutub A. Remodeling randomness prioritization to boost-up security of RGB image encryption. Multimed Tools Applications. 2021; 80: 28521–28581. https://doi.org/10.1007/s11042-021-11051-3
  • Dang Q. Secure Hash Standard (SHS), Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards and Technology, Gaithersburg, MD 2012; [online], https://doi.org/10.6028/NIST.FIPS.180-4 (Accessed June 30, 2022)
  • Sumagita M, Riadi I, Soepomo JP, Warungboto U. Analysis of secure hash algorithm (SHA) 512 for encryption process on web based application. Int J Cyber-Secur Digital for (IJCSDF). 2018; 7(4): 373–381
  • FIPS PUB 180-4, Secure Hash Standard (SHS), Federal Informatıon Processıng Standards Publıcatıon, 2015.
  • Rukhin A, Soto J, Nechvatal J, Smid M, Banks DA. statistical test suite for random and pseudorandom number generators for statistical applications. NIST Special Publication in Computer Security. 2001.

KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ

Yıl 2022, , 571 - 580, 31.12.2022
https://doi.org/10.54365/adyumbd.1145590

Öz

Dijitalleşen dünyada veri güvenliği önemli bir problemdir. Veri güvenliğini sağlamak için çeşitli kriptoğrafik sistemler kullanılır. Rastgele sayılar ise bu sistemlerin önemli bir parçasıdır. Bu makalede resim sıkıştırma algoritmalarının temeli olan ayrık kosinüs dönüşümü kullanan bir rastgele sayı üreteci önerildi. Bu üreteçte öncelikle sıkıştırılacak olan resim, ayrık kosinüs dönüşümü ile frekans düzlemine aktarılır. Frekans uzayında insan görme duyusu dikkate alınarak resmi ifade eden belirli katsayılar dikkate alınıp diğerleri ihmal edildiğinden veri kaybı olur. Frakans uzayındaki veri ters ayrık kosinüs dönüşümüyle yeniden uzay düzlemine aktarılır. Bu dönüşüm esnasında hesaplanan küsuratlı değerler resmi ifade etmek için yuvarlanır. Yuvarlama esnasında bu veriler geriye döndürülemeyecek şekilde kaybedilir. Bu kayıp entropi kaynağı olarak kullanılarak ham rastgele sayılar üretildi. Bu sayılardaki olası zayıflıklar kriptografik özet fonksiyonu kullanılarak giderildi. Kriptografik özet fonksiyonu olarak SHA1 algoritması kullanıldı. Önerilen üreteç herhangi bir dijital veri kaynağını rastgele sayı üreteci olarak kullanabilir. Önerilen üretecin güvenliği yapılan testlerle ve analizlerle gösterildi.

Kaynakça

  • Yadav H, Gautam, S, Rana, A, Bhardwaj, J, Tyagi, N. Various Types of Cybercrime and Its Affected Area. In: Tavares, J.M.R.S. Chakrabarti, S., Bhattacharya, A., Ghatak, S. (eds) Emerging Technologies in Data Mining and Information Security. Lecture Notes in Networks and Systems, 2021; vol 164. Springer, Singapore. https://doi.org/10.1007/978-981-15-9774-9_30
  • Yakut S. Random Number Generator Based on Discrete Cosine Transform Based Lossy Picture Compression. NATURENGS, 2021; 2 (2): 76-85. DOI: 10.46572/naturengs.1009013
  • Koç Ç. Cryptographic Engineering. Springer, New York 2009.
  • Menezes AJ, van Oorschot PC, Vanstone SA. Handbook of Applied Cryptography, 1st edn. CRC Press, Boca Raton. 1996.
  • Paar C, Pelzl J. Understanding cryptography: a textbook for students and practitioners, Universitat Bochum, Bochum, Germany, Springer Publishing Company, 2009.
  • Garipcan AM. Gerçek rasgele sayı üreteçlerinin performansını iyileştirmek için yer değiştirme kutularını temel alan yeni bir yaklaşım, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü. 2021.
  • Yakut S. Gerçek Rasgele Sayı Üreteçlerinin Tasarlanması ve Analizi, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü. 2019.
  • Datcu O, Macovei C, Hobincu R. Chaos Based Cryptographic Pseudo-Random Number Generator Template with Dynamic State Change. Applied Sciences. 2020; 10, 451. https://doi.org/10.3390/app10020451
  • Al-Roithy BO, Gutub A Remodeling randomness prioritization to boost-up security of RGB image encryption. Multimed Tools Applications. 2021; 80, 28521–28581. https://doi.org/10.1007/s11042-021-11051-3
  • Aljohani M, Ahmad I, Basheri M, Alassafi MO. Performance Analysis of Cryptographic Pseudorandom Number Generators. IEEE Access. 2019; 7: 39794–39805.
  • Kopparthi VR, Kali A, Sabat SL, Anumandla KK, Peesapati R, Fouda JAE. Hardware architecture of a digital piecewise linear chaotic map with perturbation for pseudorandom number generation. AEU-International Journal of Electronics and Communications, 2022; 147, 154138.
  • Parisot A, Bento LMS, Machado RCS. Testing and selecting lightweight pseudo-random number generators for IoT devices. 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). 2021; pp. 715-720, doi: 10.1109/MetroInd4.0IoT51437.2021.9488454.
  • Yakut S, Tuncer T, Özer AB. A New Secure and Efficient Approach for TRNG and Its Post-Processing Algorithms. Journal of Circuits, Systems and Computers. 2020.
  • Avaroğlu E, Tuncer T. A novel S-box-based postprocessing method for true random number generation. Turkish Journual of Electrical Engineering and Compputer Sciences. 2020; 28: 288–301.
  • Garipcan AM, Erdem E. A GRSÜ using chaotic entropy pool as a post-processing technique: analysis, design and FPGA implementation. Analog Integrated Circuits and Signal Processing. 2020; 103(3): 391-410.
  • Łoza Sz, Matuszewski Ł, Jessa M, A Random Number Generator Using Ring Oscillators and SHA-256 as Post-Processing. International Journal of Electronics and Telecommunications. 2015; 61(2): 199-204.
  • Garipcan AM, Erdem E. A gigabit TRNG with novel lightweight post-processing method for cryptographic applications. European Physical Journal Plus 137. 2022. 493: https://doi.org/10.1140/epjp/s13360-022-02679-7
  • Patel R, Lad K, Patel M. A Robust Video Steganography Over DCT Components of Motion Region in Compressed Domain. Soft Computing and Signal Processing. Advances in Intelligent Systems and Computing. 2021; 1325. Springer, Singapore. https://doi.org/10.1007/978-981-33-6912-2_33
  • Fuad M, Ernawan F. Video steganography based on DCT psychovisual and object motion. Bulletin of Electrical Engineering and Informatics. 2020; 9(3): 1015~1023, ISSN: 2302-9285, doi: 10.11591/eei.v9i3.1859
  • Roman S. Hybrid Adaptive Lossless Image Compression Based on Discrete Wavelet Transform. Entropy (Basel, Switzerland). 2020; 22(7): 751, doi:10.3390/e22070751
  • Patel R, Lad K, Patel M. Study and investigation of video steganography over uncompressed and compressed domain: a comprehensive review. Multimedia Systems 2021; 27: 985–1024. https://doi.org/10.1007/s00530-021-00763-z
  • Hudson G, Yasuda H, Sebestyen I. The international standardization of a still picture compression technique. in IEEE Globecom Conf., Proc. of the Global Telecommunication Conf.. 1988; 1015 –1021. https://doi.org/10.1109/GLOCOM.1988.25989
  • Wedaj FT, Kim S, Kim H J, et al. Improved reversible data hiding in JPEG images based on new coefficient selection strategy[J]. Eurasip Journal on Image & Video Processing. 2017; 2017(1):63.
  • Ajmera A, Divecha M, Ghosh SS, Raval I, Chaturvedi R. Video Steganography: Using Scrambling- AES Encryption and DCT, DST Steganography. 2019 IEEE Pune Section International Conference (PuneCon). 2019; 1-7, doi: 10.1109/PuneCon46936.2019.9105666.
  • Mao BH, Wang ZC, Zhang XP. Asymmetric JPEG Steganography Based on Correlation in DCT Domain. Computer Science. 2019; 46(01): 203-207.
  • Nasir A, Natarajan T, Rao KR. "Discrete Cosine Transform", IEEE Transactions on Computers, ; C-23 (1): 90–93, doi:10.1109/T-C.1974.223784
  • Al-Roithy BO, Gutub A. Remodeling randomness prioritization to boost-up security of RGB image encryption. Multimed Tools Applications. 2021; 80: 28521–28581. https://doi.org/10.1007/s11042-021-11051-3
  • Dang Q. Secure Hash Standard (SHS), Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards and Technology, Gaithersburg, MD 2012; [online], https://doi.org/10.6028/NIST.FIPS.180-4 (Accessed June 30, 2022)
  • Sumagita M, Riadi I, Soepomo JP, Warungboto U. Analysis of secure hash algorithm (SHA) 512 for encryption process on web based application. Int J Cyber-Secur Digital for (IJCSDF). 2018; 7(4): 373–381
  • FIPS PUB 180-4, Secure Hash Standard (SHS), Federal Informatıon Processıng Standards Publıcatıon, 2015.
  • Rukhin A, Soto J, Nechvatal J, Smid M, Banks DA. statistical test suite for random and pseudorandom number generators for statistical applications. NIST Special Publication in Computer Security. 2001.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Selman Yakut 0000-0002-0649-1993

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 19 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yakut, S. (2022). KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(18), 571-580. https://doi.org/10.54365/adyumbd.1145590
AMA Yakut S. KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2022;9(18):571-580. doi:10.54365/adyumbd.1145590
Chicago Yakut, Selman. “KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 18 (Aralık 2022): 571-80. https://doi.org/10.54365/adyumbd.1145590.
EndNote Yakut S (01 Aralık 2022) KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9 18 571–580.
IEEE S. Yakut, “KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 18, ss. 571–580, 2022, doi: 10.54365/adyumbd.1145590.
ISNAD Yakut, Selman. “KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9/18 (Aralık 2022), 571-580. https://doi.org/10.54365/adyumbd.1145590.
JAMA Yakut S. KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9:571–580.
MLA Yakut, Selman. “KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 18, 2022, ss. 571-80, doi:10.54365/adyumbd.1145590.
Vancouver Yakut S. KAYIPLI RESİM SIKIŞTIRMA ALGORİTMALARINI TEMEL ALAN RASTGELE SAYI ÜRETECİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9(18):571-80.