Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural, Surface And Electrical Properties Of Hydrothermally Carbon (HTC) Doped-PbS Thin Films Produced By Spray Method

Yıl 2025, Cilt: 12 Sayı: 27, 375 - 389, 24.12.2025
https://doi.org/10.54365/adyumbd.1713888

Öz

Nanostructured lead sulphide (PbS) has aroused significant research interest due to its tunable band gap ranging from 0.4 to 2.6 eV, making it suitable for applications in fiber optic communication, spectroscopy, imaging, security, and remote sensing, amongst others. Recently, various metals and heteroatoms have been incorporated into PbS nanostructures to enhance their physical, chemical, and optoelectronic properties for a variety of uses. In this study, hydrothermal carbon (HTC) infused PbS nanocomposite thin films were deposited on glass substrates that were maintained at a temperature of 100 °C through a spray technique. The grain sizes observed for films with 2 and 3 sprays were calculated as 31.32 nm and 28.74 nm, respectively, and it was observed that grain sizes decreased as the number of sprays increased. The four-point probe technique was used to determine the electrical resistivity values. For 2 and 3 spray numbers, electrical resistivity values were measured as 0.33 Ωcm and 0.76 Ωcm, respectively.

Proje Numarası

KBÜBAP-25-YL-020

Kaynakça

  • Dutta S, Indra A, Feng Y, Han H&Song T. Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Appl. Catal. B: Environ. 2019;241:521-527.
  • Guan J, Li C, Zhao J, Yang Y, Zhou W, Wang Y&Li GR. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl. Catal. B: Environ. 2020;269:118600.
  • Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, ... & Yamauchi Y. Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting. Adv. Mater. 2019;31(17):1807134.
  • Ahmed A, Al-Amin AQ, Ambrose AF & Saidur R. Hydrogen fuel and transport system: A sustainable and environmental future. Int. J. Hydrogen Energy 2016;41(3):1369-1380.
  • Luo J, Zhang S, Sun M, Yang L, Luo S & Crittenden JC. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano, 2019;13(9):9811-9840.
  • Fujishima A&Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nat. 1972;238(5358):37-38.
  • Su J, Feng X, Sloppy JD, Guo L & Grimes CA. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 2011;11(1):203-208.
  • Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X, ... & Sun XW. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnol. 2012;23(23):235401.
  • AlOtaibi B, Harati M, Fan S, Zhao S, Nguyen HPT, Kibria MG & Mi Z. High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode. Nanotechnol. 2013;24(17):175401.
  • Mageshwari K, Mali SS, Sathyamoorthy R&Patil PS. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 2013;249:456-462.
  • Ibrahim M, Zayed M, Ahmed AM, Ghanem MA, Shaban M, Abd Elkhalik S&Mohamed F. Synthesis and characterization of Mo-doped PbS thin films for enhancing the photocatalytic hydrogen production. Mater. Chem. Phys. 2024;315:128962.
  • Yücel Y&Beleli B. The role of high Mg level as a dopant on the PbS nanostructures grown by the CBD method. Mater. Res. Express. 2018;5(5):056408.
  • Castillo-Sanchez YB & Gonzalez LA. Chemically deposited PbS thin films by reaction media with glycine for use in photovoltaics. Mater. Sci. Semicon. Proc. 2021;121:105405.
  • Vidhya P, Shanmugasundaram K, Sasikala T, Akila T, Balasubramani V, Rajamanikam AT, ... & Khan A. Optimization of PN junction diode using crack-free PbS thin films: The role of Y³⁺ doping via jet nebulizer spray pyrolysis. Phys. B: Condens. Matter. 2025;699:416836.
  • Shaafi NF, Muzakir SK, Aziz SB, Kadir MFZ & Thanakodi S. The effect of activated carbon additives on lead sulphide thin film for solar cell applications. J. Alloys Compd. 2021;864:158117.
  • Yücel E&Yücel Y. Effect of doping concentration on the structural, morphological and optical properties of Ca-doped PbS thin films grown by CBD. Optik. 2017;142:82-89.
  • Vidhya P, Shanmugasundaram K, Thirunavukkarasu P, Govindaraj T, Balasubramani V, Yogeswari B & Karuppusamy M. Enhancement of optoelectronic properties of PbS thin films grown by Jet nebulizer spray pyrolysis technique for photodetector applications: an impact of substrate temperature. J. Mater. Sci.: Mater. Electron. 2023;34(12):1023.
  • Khan ZR & Shkir M. Improved opto-nonlinear and emission properties of spray pyrolysis grown Nd: PbS nanostructured thin films. Phys. B: Condens. Matter. 2022;627:413612.
  • Kumar SS, Valanarasu S, Isaac RR, Juliet AV, Ganesh V&Yahia IS. Enhanced photodetection properties of PbS thin films prepared via nebulizer spray pyrolysis (NSP) technique: Effect of coating temperature. J. Phys. Chem. Solids. 2025;206:112811.
  • Alghoraibi I. Influence of the DEA Concentration on Structural and Optical Properties of Nanodot PbS Thin Films Growth by Chemical Solution Deposition: Unveiling Dual Optical Absorption Edges. J. Nanomater. 2024;2024(1):9504522.
  • Hone FG & Dejene FB. Six complexing agents and their effects on optical, structural, morphological and photoluminescence properties of lead sulphide thin films prepared by chemical route. J. Lumin. 2018;201:321-328.
  • Mohamed WS, Ali HM, Adam AG & Shokr EK. Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications. Opt. Mater. 2024;148:114885.
  • Huang Z, Li R, Huan Z, Yu M, Lv Q, Osman SM, ... & Liu J. Effect of oxide layer state on the photoelectric properties of thermally sensitized PbS thin films. Opt. Mater. 2024;150:115289.
  • Kaur G, Beatriceveena TV, Jayaraman V, & Gnanasekar KI. Understanding of ammonia detection of PbS in inert ambient: Experimental and computational approach. Appl. Surf. Sci. 2019;495:143605.
  • Paulraj K, Ramaswamy S, Chidhambaram N, Algarni H, Shkir M, & AlFaify S. Investigation of samarium-doped PbS thin films fabricated using nebulizer spray technique for photosensing applications. Superlattice Microst. 2020;148:106723.
  • Hone FG, & Dejene FB. Chemosynthesis of nanostructures lead sulphide thin films from triethylamin (Et3N) complexing agent. Inorg. Chem. Commun. 2020;111:107583.
  • Heiba ZK, Mohamed MB, El-Naggar AM, Badawi A, & Elshimy H. Structural and the optical characteristics of PbSx thin films. J. Mater. Sci.: Mater. Electron. 2022;33(29):23270-23281.
  • Althagafi TM, Heiba ZK, Ahmed SI, Elshimy H, & Mohamed MB. Tailoring wide band gap PdS thin film doped with Cd ions using spin coating. Opt. Quantum Electron. 2023;55(8):735.
  • Devi SC, Balu AR, Devi BS, Suganya M, Sriramraj M, Devendran K, & Adityan S. Improved optoelectronic, electrochemical and nonlinear optical properties of PbS thin films doped with Sr2+ ions. Mater. Sci. Eng.: B. 2023;297:116797.
  • Yang YJ. A novel electrochemical preparation of PbS nanoparticles. Mater. Sci. Eng.: B. 2006;131(1-3):200-202.
  • RaviShankar S, Balu AR, Anbarasi M, & Nagarethinam VS. Influence of precursor molar concentration on the structural, morphological, optical and electrical properties of PbS thin films deposited by spray pyrolysis technique using perfume atomizer. Optik. 2015;126(20):2550-2555.
  • Ma C, Shi C, Lv K, Ying C, Fan S, & Yang Y. Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells. Nanoscale. 2019;11(17):8402-8407.
  • Gamit CL, Bhavsar VK, & Patel T. Investigation on Optical Properties of Silar-Grown Highly Oriented Lead Sulphide (PbS) Thin Films. In: ITM Web of Conferences: International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development, EDP Sci. 2024;65:04004.
  • Jang JW, Lee SM, & Cho YS. Effective two-step chemical deposition for homogeneous lead sulfide thin films on a flexible polymer substrate. Thin Solid Films, 2019;679:1-7.
  • Gaur J, Sharma HK, Tyagi S, Tyagi C, Vashishtha P, Sharma SK, & Singh BP. Enhancement of photosensitivity of thermally evaporated crystalline PbS thin films by low energy oxygen ions implantation. Nano Express. 2020;1(2):020044.
  • Aghassi A, Jafarian M, Danaee I, Gobal F, & Mahjani MG. AC impedance and cyclic voltammetry studies on PbS semiconducting film prepared by electrodeposition. J. Electroanal. Chem. 2011;661(1):265-269.
  • Mohamed HA. p-Type transparent conducting copper-strontium oxide thin films for optoelectronic devices. E.P.J. Appl. Phys. 2011;56(3):30301.
  • Balaji M, Chandrasekaran J, & Raja M. Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P-N junction diode application. Mater. Sci. Semicon. Proc. 2016;43:104-113.
  • Motlagh ZA, & Araghi MEA. Effect of annealing temperature on optical and electrical properties of lead sulfide thin films. Mater. Sci.Semicon. Proc. 2015;40:701-707.
  • Dhlamini MS, Terblans JJ, Ntwaeaborwa OM, Ngaruiya JM, Hillie KT, Botha JR, & Swart HC. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2. J. Lumin. 2008;128(12):1997-2003.
  • El madani A, Essajai R, Qachaou A, Raidou A, Fahoume M, & Lharch M. The temperature effect on the physical properties of PbS thin films produced by the chemical bath deposition (CBD) technique. Adv. Mater. Process. Tec. 2022;8(3): 3413-3424.
  • Önal M, Altıokka B. (2020). Chemical Bath Deposition of PbS Thin Films. MJST. 2020;6(2): 94-98.
  • Yıldırım AK. Kimyasal Banyo Depolama Yöntemi ile Üretilen PbS İnce Filmleri Üzerine Tavlamanın Etkileri. FÜMBD. 2020;32(2):415-423.
  • Yıldırım A K, Altıokka B. Farklı molaritede Pb(NO3)2 çözeltisi kullanılarak kimyasal banyo depolaması yöntemi ile elde edilen Pbs filmlerin bazı fiziksel özellikleri. DÜFED. 2018;7(1): 42-49.
  • Yıldızay H. Pinhole-Free PbS thin films obtained by chemical bath deposition method. BSEUFBD. 2021;8(2): 1017-1023.
  • Davar F, Mohammadikish M, Loghman-Estarki MR, Masteri-Farahani M. Synthesis of micro-and nanosized PbS with different morphologies by the hydrothermal process. Ceram. Int. 2014;40(6): 8143-8148.
  • Jin R, Chen G, Wang Q, Pei J, Wang G, Wang L. Flowerlike PbS microcrystals: citric acid assisted synthesis, shape evolution, and electrical conductivities. EurJIC. 2010;2010(36):5700-5708.
  • Zheng X, Gao F, Ji F, Wu H, Zhang J, Hu X, Xiang Y. Cu-doped PbS thin films with low resistivity prepared via chemical bath deposition. Mater. Lett. 2016;167(7):128-130.
  • Yücel E, Yücel Y. Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram. Int. 2017;43(1): 407-413.
  • Moreno OP, Pérez RG, Portillo MC, Lima LC, Téllez GH, Rosas ER. RETRACTED: Morphological, structural, optical and electrical properties of PbS nanocrystals doped with Fe2+ grown by chemical bath. Optik. 2017;127(22): 10273-10282
  • Kul M. Characterization of PbS film produced by chemical bath deposition at room temperature. ESTUBTDB. 2019;7(1): 46-58.
  • Yan S, Yang Q, Feng S, Shen J, Yang J, Tang L, ... & Zhou D. Effect of air atmosphere sensitization on formation of PbSe p–n junctions for high-performance photodetectors. J. Electron. Mater. 2020;49:4929-4935.
  • Zhu Y, Yu M, Lv Q, Hou H, Yang J, Liu G, ... & Qiao G. Effects of the high-temperature sensitization in argon atmosphere on the microstructure and properties of polycrystalline PbSe films. Mater. Sci. Semicon. Proc. 2023;162:107486.
  • Slater JC. Barrier theory of the photoconductivity of lead sulfide. Phys. Rev. 1956;103(6):1631-1644.
  • Harada RH, & Minden HT. Photosensitization of PbS films. Phys. Rev. 1956;102(5):1258-1262.
  • Chen J, Zhang Z, & Lu H. Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces. 2022;33:102289.
  • Wang K, Zhu J, Wang H, Yang K, Zhu Y, Qing Y, ... & He J. Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 2022;11(10):1571-1582.
  • Faraj MG & Omar HD. The effect of substrate temperature on the structural properties of spray pyrolysed lead sulphide (PbS) thin films. Aro-The Sci. J. Koya Univ. 2014;2(2):11-14.
  • Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, ... & Kim SO. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014;26(1):40-67.
  • Correa C R, Hehr T, Voglhuber-Slavinsky A, Rauscher Y, & Kruse A. Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. J. Anal. Appl. Pyrolysis. 2019;140:137-147.
  • Ikeda S, Tachi K, Ng Y H, Ikoma Y, Sakata T, Mori H, ... & Matsumura M. Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls. Chem. Mat. 2007;19(17):4335-4340.
  • Caihong W, Chu X, & Wu M. Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators B: Chem. 2007;120(2):508-513.
  • Guo Z, Liu J, Jia Y, Chen X, Meng F, Li M, & Liu J. Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnol. 2008;19(34):345704.
  • Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, & Titirici MM. Nitrogen‐containing hydrothermal carbons with superior performance in supercapacitors. Adv. Matter. 2010;22(45):5202-5206.
  • Ilnicka A & Lukaszewicz JP. Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3. Mater. Sci. Eng. B. 2015;201:66-71.
  • Hoffmann V, Rodriguez Correa C, Sautter D, Maringolo E & Kruse A. Study of the electrical conductivity of biobased carbonaceous powder materials under moderate pressure for the application as electrode materials in energy storage technologies. Glob. Change Biol. Bioenergy, 2019;11(1):230-248.
  • Hu B, Wang K, Wu L, Yu SH, Antonietti M & Titirici MM. Engineering carbon materials from the rothermal carbonization process of biomass. Adv. Mater. 2010;22(7):813-828.
  • Wang Q, Li H, Chen L & Huang X. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ion. 2002;152:43-50.
  • Yuan D, Chen J, Zeng J & Tan S. Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 2008;10(7):1067-1070.
  • Huang Z, Liu X, Li K, Li D, Luo Y, Li H, ... & Meng Q. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 2007;9(4):596-598.
  • Paraknowitsch JP, Thomas A & Antonietti M. Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem. Mater. 2009;21(7):1170-1172.
  • Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, ... & Kundu TK. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 2008;8(10):3182-3188.
  • Serp P, Machado B. Nanostructured carbon materials for catalysis. 1st ed. Cambridge: Royal Society of Chemistry; 2015.
  • Antolini E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 2009;88(1-2);1-24.
  • Teh SJ, Hamid SBA, Lai CW & Lim YS. ZnCl2/NaCl-catalysed hydrothermal carbonization of glucose and oil palm shell fiber. Nanosci. Nanotech. Let. 2015;7(7):611-615.
  • Yücel E. Farklı Oranlarda Sürfaktan İçeren PbS İnce Filmlerin Fiziksel Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022;9(1):495-504.
  • Kurtaran S. Kimyasal püskürtme tekniği ile üretilen PbS ince filmin karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2021;8(2):770-777.
  • Chandekar KV, Alkallas FH, Trabelsi ABG, Shkir M, Hakami J, Khan A, ... & AlFaify S. Improved linear and nonlinear optical properties of PbS thin films synthesized by spray pyrolysis technique for optoelectronics: An effect of Gd3+ doping concentrations. Phys. B: Condens. Matter. 2022;641:414099.
  • Makhlouf O, Khadraoui M, Aissat A, Sahraoui K. & Miloua, R. Structural, optical and electrical properties of mixed PbS-SnS thin films deposited by spray pyrolysis. Mater. Today Commun. 2025;46:112923.
  • Chalapathi U, Park SH, & Choi WJ. Chemically grown highly crystalline PbS thin films with ethylenediamine tetraacetic acid complexing agent. Mat. Sci. Semicon. Proc. 2021;134:106022.
  • Chalapathi U, Park, SH, & Choi WJ. Two-step chemical bath deposition enhanced mobility of PbS thin films. Mat. Sci. Semicon. Proc. 2021;136:106147.

Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri

Yıl 2025, Cilt: 12 Sayı: 27, 375 - 389, 24.12.2025
https://doi.org/10.54365/adyumbd.1713888

Öz

Nanoyapılı kurşun sülfür (PbS), 0.4 ila 2.6 eV arasında değişen ayarlanabilir bant aralığı nedeniyle önemli araştırma ilgisi uyandırmıştır ve bu da onu diğer filmlerin yanı sıra fiber optik iletişim, spektroskopi, görüntüleme, güvenlik ve uzaktan algılama uygulamaları için uygun hale getirmiştir. Son zamanlarda, çeşitli kullanımlar için fiziksel, kimyasal ve optoelektronik özelliklerini geliştirmek amacıyla PbS nanoyapılarına çeşitli metaller ve heteroatomlar dahil edilmiştir. Bu çalışmada, hidrotermal karbon (HTC) katkılanan PbS nanokompozit ince filmler, püskürtme tekniği ile 100 °C sıcaklıktaki cam alt tabakalar üzerine depolanmıştır. Filmlerin 2 ve 3 sprey sayısına bağlı olarak gözlenen tane boyutları sırası ile 31.32 nm ve 28.74 nm olarak hesaplanmıştır ve sprey sayısının artması ile tane boyutlarının küçüldüğü görülmektedir. Elektriksel özdirenç değerlerini belirlemek için dört nokta probe tekniği kullanılmıştır. 2 ve 3 sprey sayısı için elektriksel özdirenç değerleri sırasıyla 0.33 Ωcm ve 0.76 Ωcm olarak ölçülmüştür.

Destekleyen Kurum

Karabük Üniversitesi BAP Koordinatörlüğü

Proje Numarası

KBÜBAP-25-YL-020

Teşekkür

Bu çalışma Karabük Üniversitesi BAP Koordinatörlüğü tarafından KBÜBAP-25-YL-020 proje kodu ile desteklenmiştir. Yazarlar KBÜ-BAP birimine finansal desteklerinden dolayı teşekkür eder. Ayrıca deneysel çalışmalar sırasında kullanılan ekipmanlar için Karabük Üniversitesi Demir Çelik Enstitüsü’ne teşekkür ederiz.

Kaynakça

  • Dutta S, Indra A, Feng Y, Han H&Song T. Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Appl. Catal. B: Environ. 2019;241:521-527.
  • Guan J, Li C, Zhao J, Yang Y, Zhou W, Wang Y&Li GR. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl. Catal. B: Environ. 2020;269:118600.
  • Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, ... & Yamauchi Y. Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting. Adv. Mater. 2019;31(17):1807134.
  • Ahmed A, Al-Amin AQ, Ambrose AF & Saidur R. Hydrogen fuel and transport system: A sustainable and environmental future. Int. J. Hydrogen Energy 2016;41(3):1369-1380.
  • Luo J, Zhang S, Sun M, Yang L, Luo S & Crittenden JC. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano, 2019;13(9):9811-9840.
  • Fujishima A&Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nat. 1972;238(5358):37-38.
  • Su J, Feng X, Sloppy JD, Guo L & Grimes CA. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 2011;11(1):203-208.
  • Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X, ... & Sun XW. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnol. 2012;23(23):235401.
  • AlOtaibi B, Harati M, Fan S, Zhao S, Nguyen HPT, Kibria MG & Mi Z. High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode. Nanotechnol. 2013;24(17):175401.
  • Mageshwari K, Mali SS, Sathyamoorthy R&Patil PS. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 2013;249:456-462.
  • Ibrahim M, Zayed M, Ahmed AM, Ghanem MA, Shaban M, Abd Elkhalik S&Mohamed F. Synthesis and characterization of Mo-doped PbS thin films for enhancing the photocatalytic hydrogen production. Mater. Chem. Phys. 2024;315:128962.
  • Yücel Y&Beleli B. The role of high Mg level as a dopant on the PbS nanostructures grown by the CBD method. Mater. Res. Express. 2018;5(5):056408.
  • Castillo-Sanchez YB & Gonzalez LA. Chemically deposited PbS thin films by reaction media with glycine for use in photovoltaics. Mater. Sci. Semicon. Proc. 2021;121:105405.
  • Vidhya P, Shanmugasundaram K, Sasikala T, Akila T, Balasubramani V, Rajamanikam AT, ... & Khan A. Optimization of PN junction diode using crack-free PbS thin films: The role of Y³⁺ doping via jet nebulizer spray pyrolysis. Phys. B: Condens. Matter. 2025;699:416836.
  • Shaafi NF, Muzakir SK, Aziz SB, Kadir MFZ & Thanakodi S. The effect of activated carbon additives on lead sulphide thin film for solar cell applications. J. Alloys Compd. 2021;864:158117.
  • Yücel E&Yücel Y. Effect of doping concentration on the structural, morphological and optical properties of Ca-doped PbS thin films grown by CBD. Optik. 2017;142:82-89.
  • Vidhya P, Shanmugasundaram K, Thirunavukkarasu P, Govindaraj T, Balasubramani V, Yogeswari B & Karuppusamy M. Enhancement of optoelectronic properties of PbS thin films grown by Jet nebulizer spray pyrolysis technique for photodetector applications: an impact of substrate temperature. J. Mater. Sci.: Mater. Electron. 2023;34(12):1023.
  • Khan ZR & Shkir M. Improved opto-nonlinear and emission properties of spray pyrolysis grown Nd: PbS nanostructured thin films. Phys. B: Condens. Matter. 2022;627:413612.
  • Kumar SS, Valanarasu S, Isaac RR, Juliet AV, Ganesh V&Yahia IS. Enhanced photodetection properties of PbS thin films prepared via nebulizer spray pyrolysis (NSP) technique: Effect of coating temperature. J. Phys. Chem. Solids. 2025;206:112811.
  • Alghoraibi I. Influence of the DEA Concentration on Structural and Optical Properties of Nanodot PbS Thin Films Growth by Chemical Solution Deposition: Unveiling Dual Optical Absorption Edges. J. Nanomater. 2024;2024(1):9504522.
  • Hone FG & Dejene FB. Six complexing agents and their effects on optical, structural, morphological and photoluminescence properties of lead sulphide thin films prepared by chemical route. J. Lumin. 2018;201:321-328.
  • Mohamed WS, Ali HM, Adam AG & Shokr EK. Vacuum-evaporated PbS:0.03 Zn thin films with varying thicknesses for environmental applications. Opt. Mater. 2024;148:114885.
  • Huang Z, Li R, Huan Z, Yu M, Lv Q, Osman SM, ... & Liu J. Effect of oxide layer state on the photoelectric properties of thermally sensitized PbS thin films. Opt. Mater. 2024;150:115289.
  • Kaur G, Beatriceveena TV, Jayaraman V, & Gnanasekar KI. Understanding of ammonia detection of PbS in inert ambient: Experimental and computational approach. Appl. Surf. Sci. 2019;495:143605.
  • Paulraj K, Ramaswamy S, Chidhambaram N, Algarni H, Shkir M, & AlFaify S. Investigation of samarium-doped PbS thin films fabricated using nebulizer spray technique for photosensing applications. Superlattice Microst. 2020;148:106723.
  • Hone FG, & Dejene FB. Chemosynthesis of nanostructures lead sulphide thin films from triethylamin (Et3N) complexing agent. Inorg. Chem. Commun. 2020;111:107583.
  • Heiba ZK, Mohamed MB, El-Naggar AM, Badawi A, & Elshimy H. Structural and the optical characteristics of PbSx thin films. J. Mater. Sci.: Mater. Electron. 2022;33(29):23270-23281.
  • Althagafi TM, Heiba ZK, Ahmed SI, Elshimy H, & Mohamed MB. Tailoring wide band gap PdS thin film doped with Cd ions using spin coating. Opt. Quantum Electron. 2023;55(8):735.
  • Devi SC, Balu AR, Devi BS, Suganya M, Sriramraj M, Devendran K, & Adityan S. Improved optoelectronic, electrochemical and nonlinear optical properties of PbS thin films doped with Sr2+ ions. Mater. Sci. Eng.: B. 2023;297:116797.
  • Yang YJ. A novel electrochemical preparation of PbS nanoparticles. Mater. Sci. Eng.: B. 2006;131(1-3):200-202.
  • RaviShankar S, Balu AR, Anbarasi M, & Nagarethinam VS. Influence of precursor molar concentration on the structural, morphological, optical and electrical properties of PbS thin films deposited by spray pyrolysis technique using perfume atomizer. Optik. 2015;126(20):2550-2555.
  • Ma C, Shi C, Lv K, Ying C, Fan S, & Yang Y. Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells. Nanoscale. 2019;11(17):8402-8407.
  • Gamit CL, Bhavsar VK, & Patel T. Investigation on Optical Properties of Silar-Grown Highly Oriented Lead Sulphide (PbS) Thin Films. In: ITM Web of Conferences: International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development, EDP Sci. 2024;65:04004.
  • Jang JW, Lee SM, & Cho YS. Effective two-step chemical deposition for homogeneous lead sulfide thin films on a flexible polymer substrate. Thin Solid Films, 2019;679:1-7.
  • Gaur J, Sharma HK, Tyagi S, Tyagi C, Vashishtha P, Sharma SK, & Singh BP. Enhancement of photosensitivity of thermally evaporated crystalline PbS thin films by low energy oxygen ions implantation. Nano Express. 2020;1(2):020044.
  • Aghassi A, Jafarian M, Danaee I, Gobal F, & Mahjani MG. AC impedance and cyclic voltammetry studies on PbS semiconducting film prepared by electrodeposition. J. Electroanal. Chem. 2011;661(1):265-269.
  • Mohamed HA. p-Type transparent conducting copper-strontium oxide thin films for optoelectronic devices. E.P.J. Appl. Phys. 2011;56(3):30301.
  • Balaji M, Chandrasekaran J, & Raja M. Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P-N junction diode application. Mater. Sci. Semicon. Proc. 2016;43:104-113.
  • Motlagh ZA, & Araghi MEA. Effect of annealing temperature on optical and electrical properties of lead sulfide thin films. Mater. Sci.Semicon. Proc. 2015;40:701-707.
  • Dhlamini MS, Terblans JJ, Ntwaeaborwa OM, Ngaruiya JM, Hillie KT, Botha JR, & Swart HC. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2. J. Lumin. 2008;128(12):1997-2003.
  • El madani A, Essajai R, Qachaou A, Raidou A, Fahoume M, & Lharch M. The temperature effect on the physical properties of PbS thin films produced by the chemical bath deposition (CBD) technique. Adv. Mater. Process. Tec. 2022;8(3): 3413-3424.
  • Önal M, Altıokka B. (2020). Chemical Bath Deposition of PbS Thin Films. MJST. 2020;6(2): 94-98.
  • Yıldırım AK. Kimyasal Banyo Depolama Yöntemi ile Üretilen PbS İnce Filmleri Üzerine Tavlamanın Etkileri. FÜMBD. 2020;32(2):415-423.
  • Yıldırım A K, Altıokka B. Farklı molaritede Pb(NO3)2 çözeltisi kullanılarak kimyasal banyo depolaması yöntemi ile elde edilen Pbs filmlerin bazı fiziksel özellikleri. DÜFED. 2018;7(1): 42-49.
  • Yıldızay H. Pinhole-Free PbS thin films obtained by chemical bath deposition method. BSEUFBD. 2021;8(2): 1017-1023.
  • Davar F, Mohammadikish M, Loghman-Estarki MR, Masteri-Farahani M. Synthesis of micro-and nanosized PbS with different morphologies by the hydrothermal process. Ceram. Int. 2014;40(6): 8143-8148.
  • Jin R, Chen G, Wang Q, Pei J, Wang G, Wang L. Flowerlike PbS microcrystals: citric acid assisted synthesis, shape evolution, and electrical conductivities. EurJIC. 2010;2010(36):5700-5708.
  • Zheng X, Gao F, Ji F, Wu H, Zhang J, Hu X, Xiang Y. Cu-doped PbS thin films with low resistivity prepared via chemical bath deposition. Mater. Lett. 2016;167(7):128-130.
  • Yücel E, Yücel Y. Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram. Int. 2017;43(1): 407-413.
  • Moreno OP, Pérez RG, Portillo MC, Lima LC, Téllez GH, Rosas ER. RETRACTED: Morphological, structural, optical and electrical properties of PbS nanocrystals doped with Fe2+ grown by chemical bath. Optik. 2017;127(22): 10273-10282
  • Kul M. Characterization of PbS film produced by chemical bath deposition at room temperature. ESTUBTDB. 2019;7(1): 46-58.
  • Yan S, Yang Q, Feng S, Shen J, Yang J, Tang L, ... & Zhou D. Effect of air atmosphere sensitization on formation of PbSe p–n junctions for high-performance photodetectors. J. Electron. Mater. 2020;49:4929-4935.
  • Zhu Y, Yu M, Lv Q, Hou H, Yang J, Liu G, ... & Qiao G. Effects of the high-temperature sensitization in argon atmosphere on the microstructure and properties of polycrystalline PbSe films. Mater. Sci. Semicon. Proc. 2023;162:107486.
  • Slater JC. Barrier theory of the photoconductivity of lead sulfide. Phys. Rev. 1956;103(6):1631-1644.
  • Harada RH, & Minden HT. Photosensitization of PbS films. Phys. Rev. 1956;102(5):1258-1262.
  • Chen J, Zhang Z, & Lu H. Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces. 2022;33:102289.
  • Wang K, Zhu J, Wang H, Yang K, Zhu Y, Qing Y, ... & He J. Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 2022;11(10):1571-1582.
  • Faraj MG & Omar HD. The effect of substrate temperature on the structural properties of spray pyrolysed lead sulphide (PbS) thin films. Aro-The Sci. J. Koya Univ. 2014;2(2):11-14.
  • Maiti UN, Lee WJ, Lee JM, Oh Y, Kim JY, Kim JE, ... & Kim SO. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014;26(1):40-67.
  • Correa C R, Hehr T, Voglhuber-Slavinsky A, Rauscher Y, & Kruse A. Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. J. Anal. Appl. Pyrolysis. 2019;140:137-147.
  • Ikeda S, Tachi K, Ng Y H, Ikoma Y, Sakata T, Mori H, ... & Matsumura M. Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls. Chem. Mat. 2007;19(17):4335-4340.
  • Caihong W, Chu X, & Wu M. Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators B: Chem. 2007;120(2):508-513.
  • Guo Z, Liu J, Jia Y, Chen X, Meng F, Li M, & Liu J. Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnol. 2008;19(34):345704.
  • Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, & Titirici MM. Nitrogen‐containing hydrothermal carbons with superior performance in supercapacitors. Adv. Matter. 2010;22(45):5202-5206.
  • Ilnicka A & Lukaszewicz JP. Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3. Mater. Sci. Eng. B. 2015;201:66-71.
  • Hoffmann V, Rodriguez Correa C, Sautter D, Maringolo E & Kruse A. Study of the electrical conductivity of biobased carbonaceous powder materials under moderate pressure for the application as electrode materials in energy storage technologies. Glob. Change Biol. Bioenergy, 2019;11(1):230-248.
  • Hu B, Wang K, Wu L, Yu SH, Antonietti M & Titirici MM. Engineering carbon materials from the rothermal carbonization process of biomass. Adv. Mater. 2010;22(7):813-828.
  • Wang Q, Li H, Chen L & Huang X. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ion. 2002;152:43-50.
  • Yuan D, Chen J, Zeng J & Tan S. Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 2008;10(7):1067-1070.
  • Huang Z, Liu X, Li K, Li D, Luo Y, Li H, ... & Meng Q. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 2007;9(4):596-598.
  • Paraknowitsch JP, Thomas A & Antonietti M. Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem. Mater. 2009;21(7):1170-1172.
  • Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, ... & Kundu TK. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 2008;8(10):3182-3188.
  • Serp P, Machado B. Nanostructured carbon materials for catalysis. 1st ed. Cambridge: Royal Society of Chemistry; 2015.
  • Antolini E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 2009;88(1-2);1-24.
  • Teh SJ, Hamid SBA, Lai CW & Lim YS. ZnCl2/NaCl-catalysed hydrothermal carbonization of glucose and oil palm shell fiber. Nanosci. Nanotech. Let. 2015;7(7):611-615.
  • Yücel E. Farklı Oranlarda Sürfaktan İçeren PbS İnce Filmlerin Fiziksel Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022;9(1):495-504.
  • Kurtaran S. Kimyasal püskürtme tekniği ile üretilen PbS ince filmin karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2021;8(2):770-777.
  • Chandekar KV, Alkallas FH, Trabelsi ABG, Shkir M, Hakami J, Khan A, ... & AlFaify S. Improved linear and nonlinear optical properties of PbS thin films synthesized by spray pyrolysis technique for optoelectronics: An effect of Gd3+ doping concentrations. Phys. B: Condens. Matter. 2022;641:414099.
  • Makhlouf O, Khadraoui M, Aissat A, Sahraoui K. & Miloua, R. Structural, optical and electrical properties of mixed PbS-SnS thin films deposited by spray pyrolysis. Mater. Today Commun. 2025;46:112923.
  • Chalapathi U, Park SH, & Choi WJ. Chemically grown highly crystalline PbS thin films with ethylenediamine tetraacetic acid complexing agent. Mat. Sci. Semicon. Proc. 2021;134:106022.
  • Chalapathi U, Park, SH, & Choi WJ. Two-step chemical bath deposition enhanced mobility of PbS thin films. Mat. Sci. Semicon. Proc. 2021;136:106147.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektronik,Optik ve Manyetik Malzemeler, Kaplama Teknolojisi, Kompozit ve Hibrit Malzemeler, Malzeme Karekterizasyonu
Bölüm Araştırma Makalesi
Yazarlar

Fatımah Talal Munshid Munshid 0009-0004-4439-466X

Fatma Meydaneri Tezel 0000-0003-1546-875X

Proje Numarası KBÜBAP-25-YL-020
Gönderilme Tarihi 4 Haziran 2025
Kabul Tarihi 27 Ekim 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 27

Kaynak Göster

APA Munshid, F. T. M., & Meydaneri Tezel, F. (2025). Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 12(27), 375-389. https://doi.org/10.54365/adyumbd.1713888
AMA Munshid FTM, Meydaneri Tezel F. Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;12(27):375-389. doi:10.54365/adyumbd.1713888
Chicago Munshid, Fatımah Talal Munshid, ve Fatma Meydaneri Tezel. “Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 27 (Aralık 2025): 375-89. https://doi.org/10.54365/adyumbd.1713888.
EndNote Munshid FTM, Meydaneri Tezel F (01 Aralık 2025) Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12 27 375–389.
IEEE F. T. M. Munshid ve F. Meydaneri Tezel, “Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 27, ss. 375–389, 2025, doi: 10.54365/adyumbd.1713888.
ISNAD Munshid, Fatımah Talal Munshid - Meydaneri Tezel, Fatma. “Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12/27 (Aralık2025), 375-389. https://doi.org/10.54365/adyumbd.1713888.
JAMA Munshid FTM, Meydaneri Tezel F. Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:375–389.
MLA Munshid, Fatımah Talal Munshid ve Fatma Meydaneri Tezel. “Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 27, 2025, ss. 375-89, doi:10.54365/adyumbd.1713888.
Vancouver Munshid FTM, Meydaneri Tezel F. Sprey Yöntemiyle Üretilen Hidrotermal Karbon (HTC) Katkılı-PbS İnce Filmlerin Yapısal, Yüzey ve Elektriksel Özellikleri. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12(27):375-89.