Araştırma Makalesi
BibTex RIS Kaynak Göster

Kürlenme Süresinin Sıcak Preslenmiş GFRP Kompozitlerin Çekme Ve Eğilme Performansı Üzerine Etkisi

Yıl 2025, Cilt: 12 Sayı: 27, 507 - 519, 24.12.2025
https://doi.org/10.54365/adyumbd.1778323

Öz

Bu çalışmada, cam elyaf takviyeli polimer (GFRP) kompozitler, 80 °C sıcaklıkta ve 4 bar basınçta üç farklı kürleme süresi (2 saat, 4 saat ve 6 saat) boyunca sıcak presleme ile üretilmiştir. Laminatların elyaf hacim oranı (Vf), kürleme süresinden bağımsız olarak yaklaşık %63 olmuştur, bu da sabit basınç altında stabil konsolidasyonu doğrulamaktadır. Mekanik karakterizasyon, çekme ve üç noktalı eğme testleri ile gerçekleştirilmiş ve kırılma yüzeyleri stereomikroskopi kullanılarak analiz edilmiştir. 4 saat kürlenen kompozitler, 2 saatlik kürlemeye göre %12.84 ve %41.71'lik bir iyileşmeye karşılık gelen çekme (669.91 MPa) ve eğme mukavemeti (620.34 MPa) değerleri sergilemiştir. Fraktografik gözlemler, 4 saatlik ve 6 saatlik numunelerde baskın hasar mekanizmasının lif kırılması olduğunu ortaya koyarken, 2 saatlik numunelerde yetersiz çapraz bağlanma ile ilişkili lif çekilmesi, delaminasyon ve kesme kırılmaları gözlemlenmiştir. Bu bulgular, sıcak preslemenin etkili bir konsolidasyon sağladığını ve GFRP kompozitlerin mekanik performansını önemli ölçüde artırdığını göstermektedir. Geleneksel kompozit üretim teknikleriyle karşılaştırıldığında, sıcak preslemenin önemli ölçüde daha hızlı olduğu, daha kısa sürede verimli kürleme sağladığı ve bu işlemi epoksi polimer matrisli kompozitlerin seri üretimi için son derece uygun hale getirdiği görülmüştür. Çalışma, mukavemet, tokluk ve yapısal bütünlük arasında bir denge sağlayan 4 saatlik kürleme süresinin en etkili süre olduğunu vurgulamaktadır.

Kaynakça

  • Rubino F, Nisticò A, Tucci F, Carlone P. Marine Application of Fiber Reinforced Composites: A Review. Journal of Marine Science and Engineering. 2020;8:26.
  • Santhanakrishnan Balakrishnan V, Obrosov A, Kuke F, Seidlitz H, Weiß S. Influence of metal surface preparation on the flexural strength and impact damage behaviour of thermoplastic FRP reinforced metal laminate made by press forming. Composites Part B: Engineering. 2019;173:106883.
  • Şükran Tanrıverdi TÇ. Taş Köprülerin FRP ile Güçlendirilmesi: Leylekli Köprüsü Örneği. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:235-65.
  • Uzay Ç, Çetin A, Geren N. Physical and mechanical properties of laminar composites depending on the production methods: an experimental investigation. Sadhana-Acad P Eng S. 2022;47.
  • Vannessa Dr Goodship BM, Ruth Cherrington. Design and Manufacture of Plastic Components for Multifunctionality: Elsevier; 2015.
  • Ratna D. Chapter 2 - Properties and processing of thermoset resin. In: Ratna D, editor. Recent Advances and Applications of Thermoset Resins (Second Edition): Elsevier; 2022. p. 173-292.
  • Bere P, Krolczyk JB. Determination of mechanical properties of carbon/epoxy plates by tensile stress test. E3s Web Conf. 2017;19.
  • Lengsfeld H, Wolff-Fabris F, Krämer J, Lacalle J, Altstädt V. Composite Technology: Prepregs and Monolithic Part Fabrication Technologies: Hanser; 2015.
  • Chen F, Yao W, Jiang W. Experimental and simulation investigation on BVID and CAI behaviors of CFRP laminates manufactured by RTM technology. Engineering Computations. 2021;38:2252-73.
  • Chohan JS, Boparai KS, Singh R, Hashmi MSJ. Manufacturing techniques and applications of polymer matrix composites: a brief review. Advances in Materials and Processing Technologies. 2022;8:884-94.
  • Tatsuno D, Yoneyama T, Kawamoto K, Okamoto M. Hot press forming of thermoplastic CFRP sheets. Procedia Manufacturing. 2018;15:1730-7.
  • Genç Ç. Experimental Comparison of production methods regarding fiberglass reinforced plastic. Kocaeli: Kocaeli University; 2006.
  • Durgun I, Vatansever O, Ertan R, Yavuz N. The Effect of production technique on mechanical properties of polymer based fiber reinforced composite materials. Otekon’14, 7th Automotive Technologies Congress. Bursa2014.
  • Sevkat E, Brahimi M, Berri S. The Bearing Strength of Pin Loaded Woven Composites Manufactured by Vacuum Assisted Resin Transfer Moulding and Hand Lay-Up Techniques. Polymers and Polymer Composites. 2012;20:321-32.
  • Bere P, Sabău E, Dudescu C, Neamtu C, Fărtan M. Experimental research regarding carbon fiber/epoxy material manufactured by autoclave process. MATEC Web Conf. 2019;299:06005.
  • Jinku K. A Simple Method to Produce Fiber Metal Laminates with Enhanced Mechanical Properties Using an Ethylene Vinyl Acetate (EVA)-based Adhesive Film. Polymer(Korea). 2019;43:295-301.
  • Fan Y, Yang X, He J, Sun C, Wang S, Gu Y, Li M. The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets. Journal of Materials Research and Technology. 2021;15:6113-24.
  • Pagé DJYS, Bates PJ, Bui VT, Bonin HW. Consolidation of commingled glass and polypropylene roving. Journal of Reinforced Plastics and Composites. 2000;19:1227-34.
  • Salman SD, Leman Z, Sultan MTH, Ishak MR, Cardona F. Influence of Fiber Content on Mechanical and Morphological Properties of Woven Kenaf Reinforced PVB Film Produced Using a Hot Press Technique. International Journal of Polymer Science. 2016;2016:7828451.
  • Ghori S-W, Rao G-S. Fiber Loading of Date Palm and Kenaf Reinforced Epoxy Composites: Tensile, Impact and Morphological Properties. Journal of Renewable Materials. 2021;9:1283--92.
  • Chandrasekar M, Shahroze RM, Ishak MR, Saba N, Jawaid M, Senthilkumar K, et al. Flax and sugar palm reinforced epoxy composites: effect of hybridization on physical, mechanical, morphological and dynamic mechanical properties. Materials Research Express. 2019;6:105331.
  • Kandar MIM, Akil HM. Application of Design of Experiment (DoE) for Parameters Optimization in Compression Moulding for Flax Reinforced Biocomposites. Procedia Chemistry. 2016;19:433-40.
  • Özdemir B, Bahçe E, Önal T. Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science. 2023;6:229-34.
  • Kim HH, Lee MS, Kang CG. The Fabrication of a Hybrid Material Using the Technique of Hot-Press Molding. Materials and Manufacturing Processes. 2013;28:892-8.
  • Li Y, Li Q, Ma H. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing. 2015;72:40-8.
  • Kim Y, Choi C, Kumar SKS, Kim C-G, Kim S-W, Lim JH. Thermo-gravimetric analysis method to determine the fiber volume fraction for PAN-based CFRP considering oxidation of carbon fiber and matrix. Composites Part A: Applied Science and Manufacturing. 2017;102:40-7.
  • Genç Ç. Experimental comparison of production methods regarding fiberglass reinforced plastic. Kocaeli: Kocaeli Üniversitesi; 2006.
  • Kang MK, Lee WI, Hahn HT. Formation of microvoids during resin-transfer molding process. Composites Science and Technology. 2000;60:2427-34.
  • Kim JH, Kim HJ, Chyun IB, An JJ, Kim JH. Characteristic analysis of carbon FRP tube changed cross-sectional shape by bending load. Materials Research Innovations. 2014;18:S2-328-S2-31.
  • Zhang Z, Chen C, Zhang S, Guo C, Ni M, Liu X, et al. Effect of AFP induced triangular gaps on manufacturing quality and stress distribution of composite panels. Composites Science and Technology. 2023;243:110222.
  • Nguyen MH, Vijayachandran AA, Davidson P, Call D, Lee D, Waas AM. Effect of automated fiber placement (AFP) manufacturing signature on mechanical performance of composite structures. Composite Structures. 2019;228:111335.
  • MP, Cimini Junior CA, Ha SK. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites: An enhanced review. Composites Part A: Applied Science and Manufacturing. 2021;149:106526.
  • Minakuchi S, Simacek P, Advani SG. In-situ consolidation deformation of composite laminate with gaps of various widths. Composites Part A: Applied Science and Manufacturing. 2024;180:108054.
  • Çetin A, Uzay Ç, Geren N, Bayramoğlu M, Tütüncü N. A practical approach to predict the flexural properties of woven plain carbon fiber/epoxy laminates. Mechanics of Advanced Materials and Structures. 2023;30:1801-11.
  • Santos JC, Vieira LMG, Panzera TH, Schiavon MA, Christoforo AL, Scarpa F. Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions. Materials & Design (1980-2015). 2015;65:543-9.
  • Uzay Ç. Investigation of physical, mechanical, and thermal properties of glass fiber reinforced polymer composites strengthened with KH550 and KH570 silane-coated silicon dioxide nanoparticles. Journal of Composite Materials. 2022;56:2995-3011.
  • D638-14 Standard Test Method for Tensile Properties of Plastics. ASTM International; 2015.
  • D7264/D7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International; 2015.

Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites

Yıl 2025, Cilt: 12 Sayı: 27, 507 - 519, 24.12.2025
https://doi.org/10.54365/adyumbd.1778323

Öz

In this study, glass fiber reinforced polymer (GFRP) composites were fabricated by hot-pressing at 80 °C and 4-bar pressure for three different curing durations (2 h, 4 h, and 6 h). The fiber volume fraction (Vf) of the laminates was approximately 63%, regardless of curing time, confirming stable consolidation under constant pressure. Mechanical characterization was conducted through tensile and three-point bending tests, and the fracture surfaces were analyzed using stereomicroscopy. The 4-hour cured composites exhibited superior tensile (669.91 MPa) and flexural strength (620.34 MPa) values corresponding to a 12.84% and 41.71% improvement over 2 h curing. Fractographic observations revealed fiber fracture as the dominant failure mechanism in 4 h and 6 h samples, whereas the 2 h samples displayed fiber pullout, delamination, and shear fractures associated with insufficient crosslinking. These findings demonstrate that hot pressing provides effective consolidation and significantly enhances the mechanical performance of GFRP composites. Compared with conventional composite manufacturing techniques, hot pressing was found to be significantly faster, ensuring efficient curing in shorter durations and making the process highly suitable for mass production of epoxy polymer matrix composites. The study highlights 4-hour curing as the most effective duration, offering a balance between strength, toughness, and structural integrity.

Kaynakça

  • Rubino F, Nisticò A, Tucci F, Carlone P. Marine Application of Fiber Reinforced Composites: A Review. Journal of Marine Science and Engineering. 2020;8:26.
  • Santhanakrishnan Balakrishnan V, Obrosov A, Kuke F, Seidlitz H, Weiß S. Influence of metal surface preparation on the flexural strength and impact damage behaviour of thermoplastic FRP reinforced metal laminate made by press forming. Composites Part B: Engineering. 2019;173:106883.
  • Şükran Tanrıverdi TÇ. Taş Köprülerin FRP ile Güçlendirilmesi: Leylekli Köprüsü Örneği. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:235-65.
  • Uzay Ç, Çetin A, Geren N. Physical and mechanical properties of laminar composites depending on the production methods: an experimental investigation. Sadhana-Acad P Eng S. 2022;47.
  • Vannessa Dr Goodship BM, Ruth Cherrington. Design and Manufacture of Plastic Components for Multifunctionality: Elsevier; 2015.
  • Ratna D. Chapter 2 - Properties and processing of thermoset resin. In: Ratna D, editor. Recent Advances and Applications of Thermoset Resins (Second Edition): Elsevier; 2022. p. 173-292.
  • Bere P, Krolczyk JB. Determination of mechanical properties of carbon/epoxy plates by tensile stress test. E3s Web Conf. 2017;19.
  • Lengsfeld H, Wolff-Fabris F, Krämer J, Lacalle J, Altstädt V. Composite Technology: Prepregs and Monolithic Part Fabrication Technologies: Hanser; 2015.
  • Chen F, Yao W, Jiang W. Experimental and simulation investigation on BVID and CAI behaviors of CFRP laminates manufactured by RTM technology. Engineering Computations. 2021;38:2252-73.
  • Chohan JS, Boparai KS, Singh R, Hashmi MSJ. Manufacturing techniques and applications of polymer matrix composites: a brief review. Advances in Materials and Processing Technologies. 2022;8:884-94.
  • Tatsuno D, Yoneyama T, Kawamoto K, Okamoto M. Hot press forming of thermoplastic CFRP sheets. Procedia Manufacturing. 2018;15:1730-7.
  • Genç Ç. Experimental Comparison of production methods regarding fiberglass reinforced plastic. Kocaeli: Kocaeli University; 2006.
  • Durgun I, Vatansever O, Ertan R, Yavuz N. The Effect of production technique on mechanical properties of polymer based fiber reinforced composite materials. Otekon’14, 7th Automotive Technologies Congress. Bursa2014.
  • Sevkat E, Brahimi M, Berri S. The Bearing Strength of Pin Loaded Woven Composites Manufactured by Vacuum Assisted Resin Transfer Moulding and Hand Lay-Up Techniques. Polymers and Polymer Composites. 2012;20:321-32.
  • Bere P, Sabău E, Dudescu C, Neamtu C, Fărtan M. Experimental research regarding carbon fiber/epoxy material manufactured by autoclave process. MATEC Web Conf. 2019;299:06005.
  • Jinku K. A Simple Method to Produce Fiber Metal Laminates with Enhanced Mechanical Properties Using an Ethylene Vinyl Acetate (EVA)-based Adhesive Film. Polymer(Korea). 2019;43:295-301.
  • Fan Y, Yang X, He J, Sun C, Wang S, Gu Y, Li M. The variation mechanism of core pressure and its influence on the surface quality of honeycomb sandwich composite with thin facesheets. Journal of Materials Research and Technology. 2021;15:6113-24.
  • Pagé DJYS, Bates PJ, Bui VT, Bonin HW. Consolidation of commingled glass and polypropylene roving. Journal of Reinforced Plastics and Composites. 2000;19:1227-34.
  • Salman SD, Leman Z, Sultan MTH, Ishak MR, Cardona F. Influence of Fiber Content on Mechanical and Morphological Properties of Woven Kenaf Reinforced PVB Film Produced Using a Hot Press Technique. International Journal of Polymer Science. 2016;2016:7828451.
  • Ghori S-W, Rao G-S. Fiber Loading of Date Palm and Kenaf Reinforced Epoxy Composites: Tensile, Impact and Morphological Properties. Journal of Renewable Materials. 2021;9:1283--92.
  • Chandrasekar M, Shahroze RM, Ishak MR, Saba N, Jawaid M, Senthilkumar K, et al. Flax and sugar palm reinforced epoxy composites: effect of hybridization on physical, mechanical, morphological and dynamic mechanical properties. Materials Research Express. 2019;6:105331.
  • Kandar MIM, Akil HM. Application of Design of Experiment (DoE) for Parameters Optimization in Compression Moulding for Flax Reinforced Biocomposites. Procedia Chemistry. 2016;19:433-40.
  • Özdemir B, Bahçe E, Önal T. Sıcak Pres CETP Kompozit Panellerin Eğilme Performansları Üzerine Deneysel ve Teorik Çalışmalar. Black Sea Journal of Engineering and Science. 2023;6:229-34.
  • Kim HH, Lee MS, Kang CG. The Fabrication of a Hybrid Material Using the Technique of Hot-Press Molding. Materials and Manufacturing Processes. 2013;28:892-8.
  • Li Y, Li Q, Ma H. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing. 2015;72:40-8.
  • Kim Y, Choi C, Kumar SKS, Kim C-G, Kim S-W, Lim JH. Thermo-gravimetric analysis method to determine the fiber volume fraction for PAN-based CFRP considering oxidation of carbon fiber and matrix. Composites Part A: Applied Science and Manufacturing. 2017;102:40-7.
  • Genç Ç. Experimental comparison of production methods regarding fiberglass reinforced plastic. Kocaeli: Kocaeli Üniversitesi; 2006.
  • Kang MK, Lee WI, Hahn HT. Formation of microvoids during resin-transfer molding process. Composites Science and Technology. 2000;60:2427-34.
  • Kim JH, Kim HJ, Chyun IB, An JJ, Kim JH. Characteristic analysis of carbon FRP tube changed cross-sectional shape by bending load. Materials Research Innovations. 2014;18:S2-328-S2-31.
  • Zhang Z, Chen C, Zhang S, Guo C, Ni M, Liu X, et al. Effect of AFP induced triangular gaps on manufacturing quality and stress distribution of composite panels. Composites Science and Technology. 2023;243:110222.
  • Nguyen MH, Vijayachandran AA, Davidson P, Call D, Lee D, Waas AM. Effect of automated fiber placement (AFP) manufacturing signature on mechanical performance of composite structures. Composite Structures. 2019;228:111335.
  • MP, Cimini Junior CA, Ha SK. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites: An enhanced review. Composites Part A: Applied Science and Manufacturing. 2021;149:106526.
  • Minakuchi S, Simacek P, Advani SG. In-situ consolidation deformation of composite laminate with gaps of various widths. Composites Part A: Applied Science and Manufacturing. 2024;180:108054.
  • Çetin A, Uzay Ç, Geren N, Bayramoğlu M, Tütüncü N. A practical approach to predict the flexural properties of woven plain carbon fiber/epoxy laminates. Mechanics of Advanced Materials and Structures. 2023;30:1801-11.
  • Santos JC, Vieira LMG, Panzera TH, Schiavon MA, Christoforo AL, Scarpa F. Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions. Materials & Design (1980-2015). 2015;65:543-9.
  • Uzay Ç. Investigation of physical, mechanical, and thermal properties of glass fiber reinforced polymer composites strengthened with KH550 and KH570 silane-coated silicon dioxide nanoparticles. Journal of Composite Materials. 2022;56:2995-3011.
  • D638-14 Standard Test Method for Tensile Properties of Plastics. ASTM International; 2015.
  • D7264/D7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International; 2015.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Yalın Yamaç 0000-0002-0294-3171

Çağrı Uzay 0000-0002-7713-8951

Gönderilme Tarihi 4 Eylül 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 27

Kaynak Göster

APA Yamaç, Y., & Uzay, Ç. (2025). Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 12(27), 507-519. https://doi.org/10.54365/adyumbd.1778323
AMA Yamaç Y, Uzay Ç. Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;12(27):507-519. doi:10.54365/adyumbd.1778323
Chicago Yamaç, Yalın, ve Çağrı Uzay. “Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 27 (Aralık 2025): 507-19. https://doi.org/10.54365/adyumbd.1778323.
EndNote Yamaç Y, Uzay Ç (01 Aralık 2025) Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12 27 507–519.
IEEE Y. Yamaç ve Ç. Uzay, “Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 27, ss. 507–519, 2025, doi: 10.54365/adyumbd.1778323.
ISNAD Yamaç, Yalın - Uzay, Çağrı. “Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12/27 (Aralık2025), 507-519. https://doi.org/10.54365/adyumbd.1778323.
JAMA Yamaç Y, Uzay Ç. Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:507–519.
MLA Yamaç, Yalın ve Çağrı Uzay. “Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 27, 2025, ss. 507-19, doi:10.54365/adyumbd.1778323.
Vancouver Yamaç Y, Uzay Ç. Effect Of Curing Time On The Tensile And Flexural Performance of Hot-Pressed GFRP Composites. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12(27):507-19.