Araştırma Makalesi
BibTex RIS Kaynak Göster

Evsel Çamaşır Makinesi Gri Suyunun Fizikokimyasal Karakterizasyonu ve Granül Aktif Karbon ile Arıtımı

Yıl 2025, Cilt: 12 Sayı: 27, 426 - 434, 24.12.2025
https://doi.org/10.54365/adyumbd.1792017

Öz

Bu çalışmada, evsel çamaşır makinesi gri suyunun fizikokimyasal özellikleri belirlenmiş ve laboratuvar ortamında granül aktif karbon (GAK) ile arıtım performansı değerlendirilmiştir. Farklı yıkama programları kullanılarak gri su örnekleri toplanmış ve pH, elektriksel iletkenlik, askıda katı madde, kimyasal oksijen ihtiyacı (KOİ), yüzey aktif maddeler, toplam fosfat ve toplam azot gibi temel parametreler açısından analiz edilmiştir. Farklı GAK dozlarında (0,5–4 g/L) ve 30–120 dakika temas süresinde yürütülen adsorpsiyon deneyleri, optimum koşulların 4 g/L GAK ve 120 dakika temas süresi olduğunu göstermiştir. Bu koşullarda KOİ giderimi %32, yüzey aktif madde giderimi %38 olarak saptanmıştır. Kinetik analizler pseudo-second-order modeline (R²=0,98) yüksek uyum göstermiş, izoterm çalışmaları ise Freundlich modelinin heterojen yüzey özelliklerini yansıttığını ortaya koymuştur. Sonuç olarak, GAK ile elde edilen düşük giderim oranları, çamaşır makinesi gri su arıtımında mevcut yöntemin yetersiz kaldığını ve daha etkili yeni filtre malzemelerinin tasarımına ve kullanımına ihtiyaç olduğunu göstermektedir.

Destekleyen Kurum

Adıyaman Üniversitesi Bilimsel Araştırma Projeleri Birimi Bireysel Araştırmaları

Proje Numarası

MUFMAP/2024-0002.

Kaynakça

  • Akkurt Ş, Uçkun Alkan A. Determination of Minimum Inhibition Concentrations of Escherichia coli hMT1 Recombinant Strain against Nickel and Aluminum. Erciyes Univ J Institue Sci Technol 2022;38:557–67.
  • Ma D, Yi H, Lai C, Liu X, Huo X, An Z, et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021;275:130104. https://doi.org/10.1016/j.chemosphere.2021.130104.
  • Ivanković T, Hrenović J. Surfactants in the Environment. Arh Hig Rada Toksikol 2010;61:95–109.
  • Vishali S, Poonguzhali E, Banerjee I, George SS, Srinivasan P. Purification of domestic laundry wastewater in an integrated treatment system consists of coagulation and ultrafiltration membrane process. Chemosphere 2023;314:137662. https://doi.org/10.1016/j.chemosphere.2022.137662.
  • Collivignarelli MC, Carnevale Miino M, Baldi M, Manzi S, Abbà A, Bertanza G. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf Environ Prot 2019;132:105–15. https://doi.org/10.1016/j.psep.2019.10.022.
  • Bajpai D, Tyagi VK. Laundry Detergents: An Overview. J Oleo Sci 2007;56:327–40. https://doi.org/10.5650/jos.56.327.
  • Smulders E, Rähse W. Laundry detergents. vol. 10. Wiley Online Library; 2002.
  • Ellmer K, Fuchs M, Bauer U, Schneider T, Thamsen PU, Morgenthal T, et al. Research project Simulation Wäschepflege – Recommendations for improving resource efficiency in the laundry process in households in Germany. J Clean Prod 2017;153:539–47. https://doi.org/10.1016/j.jclepro.2015.07.157.
  • Pakula C, Stamminger R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic 2010;3:365–82. https://doi.org/10.1007/s12053-009-9072-8.
  • Sheth KN, Patel M, Desai MD. A study on characterization & treatment of laundry effluent. Int J Innov Res Sci Technol 2017;4.
  • Braga J, Varesche M. Commercial Laundry Water Characterisation. Am J Anal Chem 2014;5:8–16.
  • Huang AK, Veit MT, Juchen PT, Gonçalves G da C, Palácio SM, Cardoso C de O. Sequential process of coagulation/flocculation/sedimentation- adsorption - microfiltration for laundry effluent treatment. J Environ Chem Eng 2019;7:103226. https://doi.org/10.1016/j.jece.2019.103226.
  • Rao CS. Environmental pollution control engineering. New Age International; 2007.
  • Göksu L. Evaluation of Detergent-Degrading Bacteria in Water Contaminated with Anionic Detergents. Kirikkale University, 2015.
  • Bhatnagar A, Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem Eng J 2010;157:277–96. https://doi.org/10.1016/j.cej.2010.01.007.
  • Patil V V, Gogate PR, Bhat AP, Ghosh PK. Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation. Sep Purif Technol 2020;239:116594. https://doi.org/10.1016/j.seppur.2020.116594.
  • Turkay O, Barışçı S, Sillanpää M. E-peroxone process for the treatment of laundry wastewater: A case study. J Environ Chem Eng 2017;5:4282–90. https://doi.org/10.1016/j.jece.2017.08.012.
  • Delhiraja K, Philip L. Characterization of segregated greywater from Indian households: part A—physico-chemical and microbial parameters. Environ Monit Assess 2020;192:428. https://doi.org/10.1007/s10661-020-08369-0.
  • Boyjoo Y, Pareek VK, Ang M. A review of greywater characteristics and treatment processes. Water Sci Technol 2013;67:1403–24. https://doi.org/10.2166/wst.2013.675.
  • Mozia S, Janus M, Bering S, Tarnowski K, Mazur J, Szymański K, et al. Hybrid System Coupling Moving Bed Bioreactor with UV/O3 Oxidation and Membrane Separation Units for Treatment of Industrial Laundry Wastewater. Materials (Basel) 2020;13. https://doi.org/10.3390/ma13112648.
  • Jjagwe J, Olupot PW, Menya E, Kalibbala HM. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J Bioresour Bioprod 2021;6:292–322. https://doi.org/10.1016/j.jobab.2021.03.003.
  • American Public Health Association. Standard methods for the examination of water and wastewater (27th ed.). Washington, 2017.
  • Jurado E, Fernández-Serrano M, Núñez-Olea J, Luzón G, Lechuga M. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 2006;65:278–85. https://doi.org/10.1016/j.chemosphere.2006.02.044.
  • Zhang K, Zhang Z, Wang H, Wang X, Zhang X, Xie YF. Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation. J Hazard Mater 2020;382:121091. https://doi.org/10.1016/j.jhazmat.2019.121091.
  • Sharaf A, Guo B, Shoults DC, Ashbolt NJ, Liu Y. Viability of a Single-Stage Unsaturated-Saturated Granular Activated Carbon Biofilter for Greywater Treatment. Sustainability 2020;12. https://doi.org/10.3390/su12218847.
  • Kumar PS, Korving L, van Loosdrecht MCM, Witkamp G-J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res X 2019;4:100029. https://doi.org/10.1016/j.wroa.2019.100029.
  • Su Y, Muller KR, Yoshihara-Saint H, Najm I, Jassby D. Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. Environ Sci Technol 2021;55:16597–606. https://doi.org/10.1021/acs.est.1c02152.
  • Wang Z, Yang Y, Xiang W, Wu B, Cui X, Zhou Y. Performance and mechanisms of greywater treatment in a bio-enhanced granular-activated carbon dynamic biofilm reactor. Npj Clean Water 2022;5:56. https://doi.org/10.1038/s41545-022-00198-7.
  • Cetinkaya Atesci Z, Inan H. Removal of microfiber and surfactants from household laundry washing effluents by powdered activated carbon: kinetics and isotherm studies. Water Sci Technol 2023;88:1578–93. https://doi.org/10.2166/wst.2023.281.
  • Kaleta J, Elektorowicz M. The removal of anionic surfactants from water in coagulation process. Environ Technol 2013;34:999–1005. https://doi.org/10.1080/09593330.2012.733415.
  • Corona RRB, Sad CMS, da Silva M, Lopes DL, Leite JSD, de F. Viegas GM, et al. Adsorption of anionic surfactant in graphite oxide: A study for treatment of laundry wastewater. J Environ Chem Eng 2021;9:106858. https://doi.org/10.1016/j.jece.2021.106858.
  • Elmorsi TM, Mohamed ZH, Shopak W, Ismaiel AM. Kinetic and equilibrium isotherms studies of adsorption of Pb (II) from water onto natural adsorbent. J Environ Prot (Irvine, Calif) 2014;5:1667–81.
  • Oz N, Erol Y, Yurtsever M. Investigation of detergent adsorption on microplastics in laboratory conditions. Fresenius Environ Bull 2019;28:818–23.
  • El Shahawy A, Heikal G. Regression, kinetics and isotherm models for biosorption of organic pollutants, suspended and dissolved solids by environmentally friendly and economical dried Phragmites australis. RSC Adv 2018;8:40511–28.
  • Bautista Quispe JI, Campos LC, Mašek O, Bogush A. Removal of anionic surfactant from aqueous solutions by adsorption onto biochars: characterisation, kinetics, and mechanism. Environ Technol 2024;45:5723–44. https://doi.org/10.1080/09593330.2024.2304677.

Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon

Yıl 2025, Cilt: 12 Sayı: 27, 426 - 434, 24.12.2025
https://doi.org/10.54365/adyumbd.1792017

Öz

In this study, the physicochemical properties of domestic washing machine graywater were determined, and the treatment performance of granular activated carbon (GAC) was evaluated in a laboratory setting. Graywater samples were collected using different washing programs and analyzed for key parameters such as pH, electrical conductivity, suspended solids, chemical oxygen demand (COD), surfactants, total phosphate, and total nitrogen. Adsorption experiments conducted at different GAC doses (0.5–4 g/L) and contact times of 30–120 minutes revealed that the optimum conditions were 4 g/L GAC and 120 minutes of contact time. Under these conditions, COD removal was 32% and surfactant removal was 38%. Kinetic analyses showed a high fit to the pseudo-second-order model (R²=0.98), and isotherm studies revealed that the Freundlich model reflects heterogeneous surface properties. In conclusion, the low removal rates obtained with GAC indicate that the current method is inadequate for the treatment of washing machine graywater and that the design and use of more effective new filter materials are needed.

Destekleyen Kurum

Adıyaman University Scientific Research Projects Unit's Individual Research

Proje Numarası

MUFMAP/2024-0002.

Kaynakça

  • Akkurt Ş, Uçkun Alkan A. Determination of Minimum Inhibition Concentrations of Escherichia coli hMT1 Recombinant Strain against Nickel and Aluminum. Erciyes Univ J Institue Sci Technol 2022;38:557–67.
  • Ma D, Yi H, Lai C, Liu X, Huo X, An Z, et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021;275:130104. https://doi.org/10.1016/j.chemosphere.2021.130104.
  • Ivanković T, Hrenović J. Surfactants in the Environment. Arh Hig Rada Toksikol 2010;61:95–109.
  • Vishali S, Poonguzhali E, Banerjee I, George SS, Srinivasan P. Purification of domestic laundry wastewater in an integrated treatment system consists of coagulation and ultrafiltration membrane process. Chemosphere 2023;314:137662. https://doi.org/10.1016/j.chemosphere.2022.137662.
  • Collivignarelli MC, Carnevale Miino M, Baldi M, Manzi S, Abbà A, Bertanza G. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf Environ Prot 2019;132:105–15. https://doi.org/10.1016/j.psep.2019.10.022.
  • Bajpai D, Tyagi VK. Laundry Detergents: An Overview. J Oleo Sci 2007;56:327–40. https://doi.org/10.5650/jos.56.327.
  • Smulders E, Rähse W. Laundry detergents. vol. 10. Wiley Online Library; 2002.
  • Ellmer K, Fuchs M, Bauer U, Schneider T, Thamsen PU, Morgenthal T, et al. Research project Simulation Wäschepflege – Recommendations for improving resource efficiency in the laundry process in households in Germany. J Clean Prod 2017;153:539–47. https://doi.org/10.1016/j.jclepro.2015.07.157.
  • Pakula C, Stamminger R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic 2010;3:365–82. https://doi.org/10.1007/s12053-009-9072-8.
  • Sheth KN, Patel M, Desai MD. A study on characterization & treatment of laundry effluent. Int J Innov Res Sci Technol 2017;4.
  • Braga J, Varesche M. Commercial Laundry Water Characterisation. Am J Anal Chem 2014;5:8–16.
  • Huang AK, Veit MT, Juchen PT, Gonçalves G da C, Palácio SM, Cardoso C de O. Sequential process of coagulation/flocculation/sedimentation- adsorption - microfiltration for laundry effluent treatment. J Environ Chem Eng 2019;7:103226. https://doi.org/10.1016/j.jece.2019.103226.
  • Rao CS. Environmental pollution control engineering. New Age International; 2007.
  • Göksu L. Evaluation of Detergent-Degrading Bacteria in Water Contaminated with Anionic Detergents. Kirikkale University, 2015.
  • Bhatnagar A, Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem Eng J 2010;157:277–96. https://doi.org/10.1016/j.cej.2010.01.007.
  • Patil V V, Gogate PR, Bhat AP, Ghosh PK. Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation. Sep Purif Technol 2020;239:116594. https://doi.org/10.1016/j.seppur.2020.116594.
  • Turkay O, Barışçı S, Sillanpää M. E-peroxone process for the treatment of laundry wastewater: A case study. J Environ Chem Eng 2017;5:4282–90. https://doi.org/10.1016/j.jece.2017.08.012.
  • Delhiraja K, Philip L. Characterization of segregated greywater from Indian households: part A—physico-chemical and microbial parameters. Environ Monit Assess 2020;192:428. https://doi.org/10.1007/s10661-020-08369-0.
  • Boyjoo Y, Pareek VK, Ang M. A review of greywater characteristics and treatment processes. Water Sci Technol 2013;67:1403–24. https://doi.org/10.2166/wst.2013.675.
  • Mozia S, Janus M, Bering S, Tarnowski K, Mazur J, Szymański K, et al. Hybrid System Coupling Moving Bed Bioreactor with UV/O3 Oxidation and Membrane Separation Units for Treatment of Industrial Laundry Wastewater. Materials (Basel) 2020;13. https://doi.org/10.3390/ma13112648.
  • Jjagwe J, Olupot PW, Menya E, Kalibbala HM. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J Bioresour Bioprod 2021;6:292–322. https://doi.org/10.1016/j.jobab.2021.03.003.
  • American Public Health Association. Standard methods for the examination of water and wastewater (27th ed.). Washington, 2017.
  • Jurado E, Fernández-Serrano M, Núñez-Olea J, Luzón G, Lechuga M. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 2006;65:278–85. https://doi.org/10.1016/j.chemosphere.2006.02.044.
  • Zhang K, Zhang Z, Wang H, Wang X, Zhang X, Xie YF. Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation. J Hazard Mater 2020;382:121091. https://doi.org/10.1016/j.jhazmat.2019.121091.
  • Sharaf A, Guo B, Shoults DC, Ashbolt NJ, Liu Y. Viability of a Single-Stage Unsaturated-Saturated Granular Activated Carbon Biofilter for Greywater Treatment. Sustainability 2020;12. https://doi.org/10.3390/su12218847.
  • Kumar PS, Korving L, van Loosdrecht MCM, Witkamp G-J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res X 2019;4:100029. https://doi.org/10.1016/j.wroa.2019.100029.
  • Su Y, Muller KR, Yoshihara-Saint H, Najm I, Jassby D. Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. Environ Sci Technol 2021;55:16597–606. https://doi.org/10.1021/acs.est.1c02152.
  • Wang Z, Yang Y, Xiang W, Wu B, Cui X, Zhou Y. Performance and mechanisms of greywater treatment in a bio-enhanced granular-activated carbon dynamic biofilm reactor. Npj Clean Water 2022;5:56. https://doi.org/10.1038/s41545-022-00198-7.
  • Cetinkaya Atesci Z, Inan H. Removal of microfiber and surfactants from household laundry washing effluents by powdered activated carbon: kinetics and isotherm studies. Water Sci Technol 2023;88:1578–93. https://doi.org/10.2166/wst.2023.281.
  • Kaleta J, Elektorowicz M. The removal of anionic surfactants from water in coagulation process. Environ Technol 2013;34:999–1005. https://doi.org/10.1080/09593330.2012.733415.
  • Corona RRB, Sad CMS, da Silva M, Lopes DL, Leite JSD, de F. Viegas GM, et al. Adsorption of anionic surfactant in graphite oxide: A study for treatment of laundry wastewater. J Environ Chem Eng 2021;9:106858. https://doi.org/10.1016/j.jece.2021.106858.
  • Elmorsi TM, Mohamed ZH, Shopak W, Ismaiel AM. Kinetic and equilibrium isotherms studies of adsorption of Pb (II) from water onto natural adsorbent. J Environ Prot (Irvine, Calif) 2014;5:1667–81.
  • Oz N, Erol Y, Yurtsever M. Investigation of detergent adsorption on microplastics in laboratory conditions. Fresenius Environ Bull 2019;28:818–23.
  • El Shahawy A, Heikal G. Regression, kinetics and isotherm models for biosorption of organic pollutants, suspended and dissolved solids by environmentally friendly and economical dried Phragmites australis. RSC Adv 2018;8:40511–28.
  • Bautista Quispe JI, Campos LC, Mašek O, Bogush A. Removal of anionic surfactant from aqueous solutions by adsorption onto biochars: characterisation, kinetics, and mechanism. Environ Technol 2024;45:5723–44. https://doi.org/10.1080/09593330.2024.2304677.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Araştırma Makalesi
Yazarlar

Aysel Alkan Uçkun 0000-0002-8957-7476

Şeyma Akkurt 0000-0002-0135-1975

Özgür Özdemir 0000-0002-0573-9221

Şerif Çitil 0000-0002-3714-3772

Proje Numarası MUFMAP/2024-0002.
Gönderilme Tarihi 26 Eylül 2025
Kabul Tarihi 6 Kasım 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 27

Kaynak Göster

APA Alkan Uçkun, A., Akkurt, Ş., Özdemir, Ö., Çitil, Ş. (2025). Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 12(27), 426-434. https://doi.org/10.54365/adyumbd.1792017
AMA Alkan Uçkun A, Akkurt Ş, Özdemir Ö, Çitil Ş. Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;12(27):426-434. doi:10.54365/adyumbd.1792017
Chicago Alkan Uçkun, Aysel, Şeyma Akkurt, Özgür Özdemir, ve Şerif Çitil. “Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 27 (Aralık 2025): 426-34. https://doi.org/10.54365/adyumbd.1792017.
EndNote Alkan Uçkun A, Akkurt Ş, Özdemir Ö, Çitil Ş (01 Aralık 2025) Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12 27 426–434.
IEEE A. Alkan Uçkun, Ş. Akkurt, Ö. Özdemir, ve Ş. Çitil, “Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 27, ss. 426–434, 2025, doi: 10.54365/adyumbd.1792017.
ISNAD Alkan Uçkun, Aysel vd. “Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12/27 (Aralık2025), 426-434. https://doi.org/10.54365/adyumbd.1792017.
JAMA Alkan Uçkun A, Akkurt Ş, Özdemir Ö, Çitil Ş. Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:426–434.
MLA Alkan Uçkun, Aysel vd. “Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 27, 2025, ss. 426-34, doi:10.54365/adyumbd.1792017.
Vancouver Alkan Uçkun A, Akkurt Ş, Özdemir Ö, Çitil Ş. Physicochemical Characterization of Domestic Washing Machine Grey Water and Treatment with Granular Activated Carbon. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12(27):426-34.