Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 5 Sayı: 9, 156 - 173, 31.12.2018

Öz

Kaynakça

  • Ziegler JG, Nichols N B (1942). Optimum Settings for Automatic Controllers, Trans. ASME, 64, 759 – 765.
  • Ǻström KJ, Häggland T, Hang CC, Ho WK (1993). Automatik tuning and adaptation for PID controllers - a survey, Control Eng. Prac,1; 699-714.
  • Ǻström KJ, Häggland T (1995). PID controllers: Theory, Design, and Tuning, Instrument, Society of America.
  • Zhuang M, Atherton DP (1993). Automatic tuning of optimum PID, IEE Proceedings D – Control Theory and Applications, 140(3), 216-224.
  • Mizumoto I, Tanaka H, Iwai Z (2010). Adaptive PID Control for Nonlinear Systems With a Parallel Feed forward Compensator, International Journal of Innovative Computing, Information and Control, 2901-2918.
  • Chang WD, Hwang RC, Hsieh JG (1998). Adaptive control of multivariable dynamic systems using independent self-tuning neurons, In Proceeding of the Tenth International Conference on Tools with Artificial Intelligence, 68-73.
  • Chen CT, Chang WD (1996) A feed forward neural network with function shape autotuning, Neural Networks, 9(4), 627-641.
  • Xu B, Pandian RS, Sakagami N, Petry F (2012). Neuro-fuzzy control of underwater vehicle- manipulator systems, Journal of the Franklin Institute, 349, 1125-1138.
  • Saad MS, Jamaluddin M, Darus IZM (2012). Implementation of PID Controller Tuning Using Differential Evolution and Genetic Algorithms, International Journal of Innovative Computing, Information and Control, 9(11), 7761-7779.
  • Gaing ZL (2004). A Particle Swarm Optimization Approach For Optimum Design of PID Controller in AVR system, IEEE Trans. on Energy Conversion, 19(2), 384-391.
  • Bagis A (2011). Tabu search algorithm based PID controller tuning for desired system specifications, Journal of the Franklin Institute, 348, 2795-2812.
  • Lee CH, Chang FK (2010). Fractional-order PID controller optimization via improved electromagnetism-like algorithm, Expert Systems with Applications, 37(12), 8871-8878.
  • Ali ES, Abd-Elazim SM (2011). Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, International Journal of Electrical Power & Energy Systems, 33(3), 633-638.
  • Podlubny I (1999). Fractional order systems and PIλDμ controller, Proc. IEEE Transaction on Automatic Control, 44, 208–214.
  • Li HS, Luo Y, Chen YQ (2010). A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments, IEEE Transactions on Control System Technology, 18, 516-520.
  • Valério D, Costa JS (2006). Tuning of fractional PID controllers with Zeigler-Nichols-type rules, Signal Processing, 86, 2771–2784.
  • Valério D, Costa JS (2007). Tuning-Rules for Fractional PID controllers, Advances in Fractional Calculus, 463-476.
  • Duma R, Dobra P, Trusca M (2012). Embedded application of fractional order control, Electronics Letters, 48(24),1526-1528.
  • Padula F, Visioli A (2012). Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes, Control Theory & Applications, 6(6), 776-786.
  • Caponetto R, Fortuna L, Porto D (2002). Parameter Tuning of a Non Integer Order PID Controller, In: Electronic proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems.
  • Chen YQ, Moore KL (2002). Discretization schemes for fractional order differentiators and integrators, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No 3, 363–367.
  • Valério D, Sá da Costa JMG (2006). Tuning-Rules for Fractional PID controllers, 2nd IFAC workshop on fractional differentiation and its applications 06, Porto.
  • Kohonen T (1984). Self-Organization and Associative Memory, (3rd edition 1989). Springer, Berlin.
  • Petras I (1998). Control Quality Enhancement by Fractional Order Controllers, Acta Montanistica Slovaca, Vol. 3, No 2, 143-148.
  • Fausett LV (1994). Fundamentals of Neural Networks, Prentice Hall.
  • Base NK (1995). Neural Network Fundamentals with Graphs, Algorithms and Applications, McGraw-Hill Education.
  • Cinsdikici M, Yücetürk AC, Öztürk Y (1997). ATM Networkleri için Yapay Sinir Ağı Çözümleri, 14.Ulusal Bilişim Kurultayı (BİLİŞİM.97) Bildirileri, İstanbul, 55-59.
  • Lipmann RP (1987). An introduction to computing with neural networks, IEEE ASSP Mag. 4, 4- 22.
  • Cao JY, Liang J, Cao BG (2005). Optimization of Fractional Order PID Controllers Based on Generic Algorithm, 2005 International Conference on Machine Learning and Cybernetics, Vol.9, 5686-5689, 18-21.
  • Zhang Y, Li J (2011). Fractional-order PID Controller Tuning Based on Genetic Algorithm, Business Management and Electronic Information (BMEI), 2011 International Conference on, Vol.3, 764 – 767, 13-15.

YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI

Yıl 2018, Cilt: 5 Sayı: 9, 156 - 173, 31.12.2018

Öz

Bu makalede, Yapay Sinir
Ağları (YSA) kullanarak adaptif kesir dereceli PID (FOPID) kontrolörün
katsayılarının ayarlanmasına yönelik bir çalışma sunulmaktadır. Kontrolör katsayıların
adaptif olarak ayarlanması pratik kontrol uygulamalarında dayanıklılık için çok
önemlidir. Çünkü parametre belirsizlikleri ve dış etkenler nedeniyle sistemin
katsayılarının değişmesi kontrolörün dayanıklılığını olumsuz yönde etkileyebilir.
Bu çalışmada YSA ile kontrolörün oransal, integral ve türev kazanç katsayıları kontrol
süreci devam ederken geri beslemeler ile duruma göre yeniden
ayarlanabilmektedir. Bu da kesir dereceli PID kontrolörüne hem adaptif hemde
dinamik bir yapı kazandırmaktadır. Klasik kontrol uygulamalarında ise kazanç
katsayıları başlangıçta tasarımcı tarafından ayarlanır ve kontrol süresince
sabit kalır, değişmez. Oysa günümüz kontrol uygulamalarında bu tarz
kontrolörler yetersiz kalmaktadır. YSA’ lar eğitildikten sonra kontrolörün
kazanç katsayılarını en uygun şekilde ayarlarlar. Geri beslemeler sayesinde
hatayı azaltarak kontrolörün performansını arttırırlar. Kontrol işlemi
sırasında kontrol edilen sisteminin parametrelerinde bozulma gerçekleşirse, bu
bozulmaya karşı YSA’ lar kontrolör katsayılarını otomatik olarak yeniden
optimum değere getirerek uyarlama yaparlar. Önerilen yöntem pratik kontrol
uygulamaları için FOPID kontrolörün uygulanabilirliğini kolaylaştırır. İki
simülasyon örneğinde önerilen adaptif kontrol yönteminin performansını
göstermek için MATLAB/Simulink kullanılarak YSA içeren FOPI, FOPD, FOPID
kontrolörlerin tasarımı gerçekleştirilmiş ve birim basamak cevapları
sunulmuştur.

Kaynakça

  • Ziegler JG, Nichols N B (1942). Optimum Settings for Automatic Controllers, Trans. ASME, 64, 759 – 765.
  • Ǻström KJ, Häggland T, Hang CC, Ho WK (1993). Automatik tuning and adaptation for PID controllers - a survey, Control Eng. Prac,1; 699-714.
  • Ǻström KJ, Häggland T (1995). PID controllers: Theory, Design, and Tuning, Instrument, Society of America.
  • Zhuang M, Atherton DP (1993). Automatic tuning of optimum PID, IEE Proceedings D – Control Theory and Applications, 140(3), 216-224.
  • Mizumoto I, Tanaka H, Iwai Z (2010). Adaptive PID Control for Nonlinear Systems With a Parallel Feed forward Compensator, International Journal of Innovative Computing, Information and Control, 2901-2918.
  • Chang WD, Hwang RC, Hsieh JG (1998). Adaptive control of multivariable dynamic systems using independent self-tuning neurons, In Proceeding of the Tenth International Conference on Tools with Artificial Intelligence, 68-73.
  • Chen CT, Chang WD (1996) A feed forward neural network with function shape autotuning, Neural Networks, 9(4), 627-641.
  • Xu B, Pandian RS, Sakagami N, Petry F (2012). Neuro-fuzzy control of underwater vehicle- manipulator systems, Journal of the Franklin Institute, 349, 1125-1138.
  • Saad MS, Jamaluddin M, Darus IZM (2012). Implementation of PID Controller Tuning Using Differential Evolution and Genetic Algorithms, International Journal of Innovative Computing, Information and Control, 9(11), 7761-7779.
  • Gaing ZL (2004). A Particle Swarm Optimization Approach For Optimum Design of PID Controller in AVR system, IEEE Trans. on Energy Conversion, 19(2), 384-391.
  • Bagis A (2011). Tabu search algorithm based PID controller tuning for desired system specifications, Journal of the Franklin Institute, 348, 2795-2812.
  • Lee CH, Chang FK (2010). Fractional-order PID controller optimization via improved electromagnetism-like algorithm, Expert Systems with Applications, 37(12), 8871-8878.
  • Ali ES, Abd-Elazim SM (2011). Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, International Journal of Electrical Power & Energy Systems, 33(3), 633-638.
  • Podlubny I (1999). Fractional order systems and PIλDμ controller, Proc. IEEE Transaction on Automatic Control, 44, 208–214.
  • Li HS, Luo Y, Chen YQ (2010). A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments, IEEE Transactions on Control System Technology, 18, 516-520.
  • Valério D, Costa JS (2006). Tuning of fractional PID controllers with Zeigler-Nichols-type rules, Signal Processing, 86, 2771–2784.
  • Valério D, Costa JS (2007). Tuning-Rules for Fractional PID controllers, Advances in Fractional Calculus, 463-476.
  • Duma R, Dobra P, Trusca M (2012). Embedded application of fractional order control, Electronics Letters, 48(24),1526-1528.
  • Padula F, Visioli A (2012). Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes, Control Theory & Applications, 6(6), 776-786.
  • Caponetto R, Fortuna L, Porto D (2002). Parameter Tuning of a Non Integer Order PID Controller, In: Electronic proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems.
  • Chen YQ, Moore KL (2002). Discretization schemes for fractional order differentiators and integrators, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No 3, 363–367.
  • Valério D, Sá da Costa JMG (2006). Tuning-Rules for Fractional PID controllers, 2nd IFAC workshop on fractional differentiation and its applications 06, Porto.
  • Kohonen T (1984). Self-Organization and Associative Memory, (3rd edition 1989). Springer, Berlin.
  • Petras I (1998). Control Quality Enhancement by Fractional Order Controllers, Acta Montanistica Slovaca, Vol. 3, No 2, 143-148.
  • Fausett LV (1994). Fundamentals of Neural Networks, Prentice Hall.
  • Base NK (1995). Neural Network Fundamentals with Graphs, Algorithms and Applications, McGraw-Hill Education.
  • Cinsdikici M, Yücetürk AC, Öztürk Y (1997). ATM Networkleri için Yapay Sinir Ağı Çözümleri, 14.Ulusal Bilişim Kurultayı (BİLİŞİM.97) Bildirileri, İstanbul, 55-59.
  • Lipmann RP (1987). An introduction to computing with neural networks, IEEE ASSP Mag. 4, 4- 22.
  • Cao JY, Liang J, Cao BG (2005). Optimization of Fractional Order PID Controllers Based on Generic Algorithm, 2005 International Conference on Machine Learning and Cybernetics, Vol.9, 5686-5689, 18-21.
  • Zhang Y, Li J (2011). Fractional-order PID Controller Tuning Based on Genetic Algorithm, Business Management and Electronic Information (BMEI), 2011 International Conference on, Vol.3, 764 – 767, 13-15.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Hüseyin Arpacı

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 8 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 9

Kaynak Göster

APA Arpacı, H. (2018). YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 5(9), 156-173.
AMA Arpacı H. YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2018;5(9):156-173.
Chicago Arpacı, Hüseyin. “YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 5, sy. 9 (Aralık 2018): 156-73.
EndNote Arpacı H (01 Aralık 2018) YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 5 9 156–173.
IEEE H. Arpacı, “YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 5, sy. 9, ss. 156–173, 2018.
ISNAD Arpacı, Hüseyin. “YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 5/9 (Aralık 2018), 156-173.
JAMA Arpacı H. YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2018;5:156–173.
MLA Arpacı, Hüseyin. “YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 5, sy. 9, 2018, ss. 156-73.
Vancouver Arpacı H. YAPAY SİNİR AĞLARI İLE KESİR DERECELİ PID DENETLEYİCİ KATSAYILARININ AYARLANMASI. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2018;5(9):156-73.