Araştırma Makalesi
BibTex RIS Kaynak Göster

KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ

Yıl 2022, Cilt: 9 Sayı: 16, 49 - 60, 14.04.2022
https://doi.org/10.54365/adyumbd.996786

Öz

Bilgisayar teknolojilerindeki gelişmeler zor ve karmaşık hesaplamalar içeren kesirli matematik alanına olan ilgiyi arttırmıştır. Özellikle, gerçek sistemleri modellemedeki başarısı nedeniyle kontrol sistemleri alanında çokça yararlanılmaktadır. Pek çok çalışma yapılmasına rağmen karmaşık ve zor matematiği nedeniyle literatürde hala çözümsüz durumlar bulunmaktadır. Kontrol sistemleri alanında kullanımında karşılaşılan en büyük zorluk analitik çözüm eksikliğidir. Bu eksikliklerden biri kesir dereceli bir transfer fonksiyon için analitik zaman cevabı hesaplamasıdır. Bu nedenle, bu çalışmada bazı temel kesir dereceli transfer fonksiyon yapıları için yaklaşık analitik zaman cevabı fonksiyonları yani yaklaşık ters Laplace dönüşümlerini elde edebileceğimiz bir çözüm önerisi sunulmuştur. Bu temel çözümler, gelecekte büyük ve karmaşık kesir dereceli transfer fonksiyonların çözümünde temel taşı olacaktır. Çalışmada kesir dereceli transfer fonksiyonların hesaplamalarındaki başarısı sebebiyle Grunwald-Letnikov (GL) nümerik hesaplama metodu kullanılmıştır. Ayrıca, eğri uydurma hesaplamalarında ise en küçük kareler metodu kullanılmıştır. Sonuçlar örnek hesaplamalar ile desteklenmiştir.

Kaynakça

  • Monje CA, Chen Y, Vinagre BM et al. Fractional-order systems and controls: fundamentals and applications. London: Springer-Verlag London; 2010.
  • Bagley RL, Calico R. Fractional order state equations for the control of viscoelasticallydamped structures. Journal of Guidance, Control, and Dynamics 1991; 14:304-311.
  • Skaar SB, Michel A, Miller R. Stability of viscoelastic control systems. IEEE Transactions on Automatic Control 1988; 33:348-357.
  • Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1971; 33:253-265.
  • Hartley TT, Lorenzo CF. Dynamics and control of initialized fractional-order systems. Nonlinear Dynamics 2002; 29:201-233.
  • Sun H, Abdelwahab A, Onaral B. Linear approximation of transfer function with a pole of fractional power. IEEE Transactions on Automatic Control 1984; 29:441-444.
  • Magin RL. Fractional calculus in bioengineering. Critical Reviews™ in Biomedical Engineering 2004; 32:1-104.
  • Hartley TT, Lorenzo CF, Qammer HK. Chaos in a fractional order Chua's system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 1995; 42:485-490.
  • Nonnenmacher T, Glöckle W. A fractional model for mechanical stress relaxation. Philosophical magazine letters 1991; 64:89-93.
  • Westerlund S, Ekstam L. Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation 1994; 1:826-839.
  • Manabe S. The non-integer integral and its application to control systems. Journal of Institute of Electrical Engineers of Japan 1960; 80:589-597.
  • Manabe S. The System Design by the Use of a Model Consisting of a Saturation and Non-Integrals. Journal of Institute of Electrical Engineers of Japan 1962; 82:1731-1739.
  • Yeroglu C, Tan N. Development of a toolbox for frequency response analysis of fractional order control systems. In: European Conference on Circuit Theory and Design (ECCTD 2009) Antalya, Turkey; 2009.
  • Carlson G, Halijak C. Approximation of fractional capacitors (1/s)^(1/n) by a regular Newton process. IEEE Transactions on Circuit Theory 1964; 11:210-213.
  • Charef A, Sun H, Tsao Y, Onaral B. Fractal system as represented by singularity function. IEEE Transactions on Automatic Control 1992; 37:1465-1470.
  • Das S. Functional fractional calculus for system identification and controls. Springer-Verlag, Berlin, Heidelberg; 2008.
  • Matsuda K, Fujii H. H~ Optimized Wave-Absorbing Control: Analytical and Experimental Results. Journal of Guidance Control and Dynamics 1993; 16:1146-1146.
  • Oustaloup A, Levron F, Mathieu B, Nanot FM. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2000; 47:25-39.
  • Valério D, da Costa JS. Time domain implementations of non-integer order controllers. In: Proceedings of Controlo’2002 Portuguese Conference on Automatic Control, Portugal; 2002.
  • Atherton DP, Tan N, Yüce A. Methods for computing the time response of fractional-order systems. IET Control Theory & Applications 2014; 9:817-830.
  • Podlubny I. Fractional differential equations. USA: Academic press; 1998.
  • Polubny I. Fractional-order systems and PIλDμ controller. IEEE Trans. Automatic Control 1999; 44:208-214.
  • Yüce A, Tan N. Derivation of Analytical Inverse Laplace Transform for Fractional Order Integrator. Journal of Applied Nonlinear Dynamics 2017; 6:303-314.
  • Yüce A, Tan N. Inverse Laplace Transforms of the Fractional Order Transfer Functions. In: 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey; 2019.
  • Yüce A, Tan N. On the approximate inverse Laplace transform of the transfer function with a single fractional order. Transactions of the Institute of Measurement and Control 2020; 43: 1376-1384.
  • Caponetto R, Dongola G, Fortuna L, Petráš I. Fractional Order Systems: Modeling and Control Applications. World Scientific; 2010.
  • Petras I. Stability of fractional-order systems with rational orders: a survey. Fractional Calculus & Applied Analysis 2009; 12:269–298.
  • Chen Y, Petráš I, Xue D. Fractional order control: a tutorial. In: Proceedings of the 2009 conference on American Control Conference, St. Louis, Missouri, USA; 2009.
  • Matušů R. Application of fractional order calculus to control theory. International Journal of Mathematical models and methods in applied sciences 2011; 5:1162-1169.
  • Xue D, Chen Y, Atherton DP. Linear feedback control: analysis and design with MATLAB. Philadelphia, USA: Society for Industrial and Applied Mathematics; 2007.
  • Chen Y, Petras I, Vinagre B. A list of Laplace and inverse Laplace transforms related to fractional order calculus. In: [Online] http://ivopetras.tripod.com/foc_laplace.pdf. 2001.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Yüce 0000-0002-4642-6272

Yayımlanma Tarihi 14 Nisan 2022
Gönderilme Tarihi 17 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 16

Kaynak Göster

APA Yüce, A. (2022). KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(16), 49-60. https://doi.org/10.54365/adyumbd.996786
AMA Yüce A. KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2022;9(16):49-60. doi:10.54365/adyumbd.996786
Chicago Yüce, Ali. “KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 16 (Nisan 2022): 49-60. https://doi.org/10.54365/adyumbd.996786.
EndNote Yüce A (01 Nisan 2022) KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9 16 49–60.
IEEE A. Yüce, “KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 16, ss. 49–60, 2022, doi: 10.54365/adyumbd.996786.
ISNAD Yüce, Ali. “KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9/16 (Nisan 2022), 49-60. https://doi.org/10.54365/adyumbd.996786.
JAMA Yüce A. KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9:49–60.
MLA Yüce, Ali. “KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 16, 2022, ss. 49-60, doi:10.54365/adyumbd.996786.
Vancouver Yüce A. KESİR DERECELİ TEMEL TRANSFER FONKSİYON YAPILARI İÇİN YAKLAŞIK ANALİTİK ZAMAN CEVABI MODELİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9(16):49-60.

Cited By

Fractional model for blood flow under MHD influence in porous and non-porous media
An International Journal of Optimization and Control: Theories & Applications (IJOCTA)
https://doi.org/10.11121/ijocta.1497