Araştırma Makalesi
BibTex RIS Kaynak Göster

METASEZGİSEL ALGORİTMALARIN FARKLI PERFORMANS KRİTERLERİ İLE KARŞILAŞTIRILMASI

Yıl 2023, Cilt: 10 Sayı: 21, 266 - 275, 31.12.2023
https://doi.org/10.54365/adyumbd.1344257

Öz

Doğadan ilham alan metasezgisel algoritmalar, zor optimizasyon problemlerinde başarılı sonuçlar elde ettikleri için yaygın olarak kullanılır. Algoritmaların popülerliği farklı mühendislik problemlerinin çözümü için yeni metasezgisellerin geliştirilmesine olanak sağlamıştır. Yeni metasezgiseller, daha hızlı ve verimli sonuçlar sunarak bilimsel araştırmalara öncülük etmektedir. Bu çalışmada, yeni geliştirilen metasezgisellerden Yapay Tavşan Algoritması (Artificial Rabbit Algorithm, ARO), Cüce Firavun Algoritması (Dwarf Mongoose Algorithm, DMO) ve temel metasezgisellerden Genetik Algoritma (Genetic Algoritm, GA) kıyaslanmıştır. Literatür taramasına göre bu üç algoritmanın performansları ilk defa karşılaştırılmıştır. Algoritmalar değerlendirilirken tek ve çok modlu standart kalite testi fonksiyonları kullanılmıştır. Algoritmaların sonuçları kullanılan fonksiyonlar bakımından anlamlı bir fark olup olmadığı t-testi ile kontrol edilmiştir. Elde edilen sonuçlara göre, ARO’nun karşılaştırılan diğer algoritmalardan daha başarılı sonuçlar ürettiği gözlemlenmiştir. Bu durum yeni geliştirilen metasezgisellerin birçok mühendislik problemlerinde kullanılabileceğini göstermiştir.

Proje Numarası

-

Kaynakça

  • Yang XS. Nature-inspired metaheuristic algorithms. Luniver press 2010.
  • Çelik Y, Yıldız İ, Karadeniz AT. Son Üç Yılda Geliştirilen Metasezgisel Algoritmalar Hakkında Kısa Bir İnceleme. Avrupa Bilim ve Teknoloji Dergisi 2019; 463-477.
  • Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence 2022; 114, 105082.
  • Alorf A. A survey of recently developed metaheuristics and their comparative analysis. Engineering Applications of Artificial Intelligence 2023; 117, 105622.
  • Cikan M, Kekezoglu B. Comparison of metaheuristic optimization techniques including Equilibrium optimizer algorithm in power distribution network reconfiguration. Alexandria Engineering Journal 2022; 61(2), 991-1031.
  • Gupta S, Abderazek H, Yıldız BS, Yildiz AR, Mirjalili S, Sait SM. Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Systems with Applications 2021; 183, 115351.
  • Panda KP, Panda G. Application of swarm optimisation‐based modified algorithm for selective harmonic elimination in reduced switch count multilevel inverter. IET Power Electronics 2018; 11(8), 1472-1482.
  • Yiğit H, Ürgün S, Mirjalili S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI. Neural Computing and Applications 2023; 35(10), 7369-7388.
  • Altay O. Güncel Metasezgisel Yöntemlerin Standart Kalite Testi Fonksiyonlarında Karşılaştırılması. International Journal of Pure and Applied Sciences 2022; 8(2), 286-301
  • Mirjalili S, Mirjalili S. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications 2019; 43-55.
  • Lambora A, Gupta K, Chopra K. Genetic algorithm-A literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon) 2019; 380-384.
  • What is Exploitation and Exploration in Optimization Algorithms. https://www.researchgate.net/post/What_is_Exploitation_and_Exploration_in_Optimization_Algorithms. (Erişim Tarihi:02.07.2023)
  • Riad AJ, Hasanien HM, Turky RA, Yakout AH. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algo-rithm. Sustainability 2023; 15(5), 4625.
  • Agushaka JO, Ezugwu AE, Abualigah L. Dwarf mongoose optimization algorithm. Computer methods in applied mechanics and engineering 2022; 391, 114570.
  • Mehmood K, Chaudhary NI, Khan ZA, Cheema KM, Raja MAZ, Milyani AH, Azhari AA. Dwarf Mongoose optimization metaheuristics for autoregressive exogenous model identification. Mathematics 2022; 10(20), 3821.
  • Kızıloluk S, Can Ü. Kalite Test Fonksiyonları Kullanılarak Güncel Metasezgisel Optimizasyon Algoritmalarının Karşılaştırılması. International Journal of Pure and Applied Sciences 2021; 7(1), 100-112.
  • Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application. Advances in engineering software 2017; 105, 30-47.
  • Arslan S. Güncel Metasezgisel Algoritmalarının Performansları Üzerine Karşılaştırılmalı Bir Çalışma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2023; 11(4), 1861-1884.
  • Kim TK. T test as a parametric statistic. Korean journal of anesthesiology 2015; 68(6), 540-546.
  • Browne RH. The t-test p value and its relationship to the effect size and P (X> Y). The American Statistician 2010; 64(1), 30-33.

COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA

Yıl 2023, Cilt: 10 Sayı: 21, 266 - 275, 31.12.2023
https://doi.org/10.54365/adyumbd.1344257

Öz

Nature-inspired metaheuristic algorithms are widely used because they achieve successful results in difficult optimization problems. Their popularity has led to the development of new metaheuristics for solving different engineering problems. New metaheuristics lead scientific research by providing faster and more efficient results. In this study, Artificial Rabbit Algorithm (ARO), Dwarf Mongoose Algorithm (DMO) and Genetic Algorithm (GA), which are recently developed metaheuristics, are compared. According to the literature review, the performances of these three algorithms are compared for the first time. Single and multi-modal standard quality test functions were used to evaluate the algorithms. The results of the algorithms were checked by t-test to see if there is a significant difference in terms of the functions used. According to the results obtained, it was observed that ARO produced more successful results than the other algorithms compared. This shows that the newly developed metaheuristics can be used in many engineering problems.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Yang XS. Nature-inspired metaheuristic algorithms. Luniver press 2010.
  • Çelik Y, Yıldız İ, Karadeniz AT. Son Üç Yılda Geliştirilen Metasezgisel Algoritmalar Hakkında Kısa Bir İnceleme. Avrupa Bilim ve Teknoloji Dergisi 2019; 463-477.
  • Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence 2022; 114, 105082.
  • Alorf A. A survey of recently developed metaheuristics and their comparative analysis. Engineering Applications of Artificial Intelligence 2023; 117, 105622.
  • Cikan M, Kekezoglu B. Comparison of metaheuristic optimization techniques including Equilibrium optimizer algorithm in power distribution network reconfiguration. Alexandria Engineering Journal 2022; 61(2), 991-1031.
  • Gupta S, Abderazek H, Yıldız BS, Yildiz AR, Mirjalili S, Sait SM. Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Systems with Applications 2021; 183, 115351.
  • Panda KP, Panda G. Application of swarm optimisation‐based modified algorithm for selective harmonic elimination in reduced switch count multilevel inverter. IET Power Electronics 2018; 11(8), 1472-1482.
  • Yiğit H, Ürgün S, Mirjalili S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI. Neural Computing and Applications 2023; 35(10), 7369-7388.
  • Altay O. Güncel Metasezgisel Yöntemlerin Standart Kalite Testi Fonksiyonlarında Karşılaştırılması. International Journal of Pure and Applied Sciences 2022; 8(2), 286-301
  • Mirjalili S, Mirjalili S. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications 2019; 43-55.
  • Lambora A, Gupta K, Chopra K. Genetic algorithm-A literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon) 2019; 380-384.
  • What is Exploitation and Exploration in Optimization Algorithms. https://www.researchgate.net/post/What_is_Exploitation_and_Exploration_in_Optimization_Algorithms. (Erişim Tarihi:02.07.2023)
  • Riad AJ, Hasanien HM, Turky RA, Yakout AH. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algo-rithm. Sustainability 2023; 15(5), 4625.
  • Agushaka JO, Ezugwu AE, Abualigah L. Dwarf mongoose optimization algorithm. Computer methods in applied mechanics and engineering 2022; 391, 114570.
  • Mehmood K, Chaudhary NI, Khan ZA, Cheema KM, Raja MAZ, Milyani AH, Azhari AA. Dwarf Mongoose optimization metaheuristics for autoregressive exogenous model identification. Mathematics 2022; 10(20), 3821.
  • Kızıloluk S, Can Ü. Kalite Test Fonksiyonları Kullanılarak Güncel Metasezgisel Optimizasyon Algoritmalarının Karşılaştırılması. International Journal of Pure and Applied Sciences 2021; 7(1), 100-112.
  • Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application. Advances in engineering software 2017; 105, 30-47.
  • Arslan S. Güncel Metasezgisel Algoritmalarının Performansları Üzerine Karşılaştırılmalı Bir Çalışma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2023; 11(4), 1861-1884.
  • Kim TK. T test as a parametric statistic. Korean journal of anesthesiology 2015; 68(6), 540-546.
  • Browne RH. The t-test p value and its relationship to the effect size and P (X> Y). The American Statistician 2010; 64(1), 30-33.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dağıtılmış Sistemler ve Algoritmalar
Bölüm Makaleler
Yazarlar

Yıldız Zoralioğlu 0009-0008-7482-0964

Sibel Arslan 0000-0003-3626-553X

Proje Numarası -
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 16 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 21

Kaynak Göster

APA Zoralioğlu, Y., & Arslan, S. (2023). COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(21), 266-275. https://doi.org/10.54365/adyumbd.1344257
AMA Zoralioğlu Y, Arslan S. COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2023;10(21):266-275. doi:10.54365/adyumbd.1344257
Chicago Zoralioğlu, Yıldız, ve Sibel Arslan. “COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 21 (Aralık 2023): 266-75. https://doi.org/10.54365/adyumbd.1344257.
EndNote Zoralioğlu Y, Arslan S (01 Aralık 2023) COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 21 266–275.
IEEE Y. Zoralioğlu ve S. Arslan, “COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 21, ss. 266–275, 2023, doi: 10.54365/adyumbd.1344257.
ISNAD Zoralioğlu, Yıldız - Arslan, Sibel. “COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10/21 (Aralık 2023), 266-275. https://doi.org/10.54365/adyumbd.1344257.
JAMA Zoralioğlu Y, Arslan S. COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10:266–275.
MLA Zoralioğlu, Yıldız ve Sibel Arslan. “COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 21, 2023, ss. 266-75, doi:10.54365/adyumbd.1344257.
Vancouver Zoralioğlu Y, Arslan S. COMPARISON OF METAHEURISTIC ALGORITHMS WITH DIFFERENT PERFORMANCE CRITERIA. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10(21):266-75.