Araştırma Makalesi
BibTex RIS Kaynak Göster

Agmatinin glutamaterjik iyon kanalları ile yapısal uygunluğunun araştırılması: Molecular docking çalışması

Yıl 2025, Cilt: 3 Sayı: 2, 54 - 61, 30.06.2025
https://doi.org/10.61845/agrimedical.1522158

Öz

Amaç: Agmatin beynin hemen her yerinde eksprese olan ve modülatör olarak görev yaptığı düşünülen bir nörotransmiter olarak kabul görmektedir. Uyarılabilirlik ve aşırı uyarılabilirlik gibi fizyolojik ve patolojik durumlarla alakalı glutamaterjik iyon kanallarıyla etkileştiğine dair kanıtlar vardır. Bu çalışmada, nöbet ile ilişkili iyon kanallarının (KAR'lar, AMPAR'lar ve NMDAR'lar) agmatin ile olası ilişkileri moleküler docking yöntemi kullanılarak tartışılmaktadır.
Gereç ve Yöntem: Glutamaterjik iyon kanallarına ait bilgiler Protein Data Banktan alındı. Kainat reseptörleri için 1YCJ, AMPA reseptörleri için 1FTM ve NMDA reseptörleri için 5EWJ kodlu protein XRD görüntüleri kullanıldı. Agmatin ve iyonotropik glutamat reseptör inhibitörleri olan topiramat, AMPA ve ifenprodilin 2D yapıları NCBI Pubchem 'den .sdf formatı olarak alındı. Auto Dock 4.2.6 yazılım programı kullanılarak simülasyon çalışmaları gerçekleştirildi.
Bulgular: KAR, AMPA ve NMDA reseptörlerini sırasıyla bloke ettiği bilinen topiramat, AMPA ve ifenprodil için bağlanma bölgeleri ve bağlanma enerjileri belirlendi. Agmatinin bu reseptörlere bağlanma enerjisi referans moleküllerle kıyaslanarak verildi. Bu durumda agmatininKARlara bağlanma enerjisi -5.73 kkal/mol, AMPAlar için -5.41 kkal/mol ve son olarak NMDAlar için -4.01 kkal/mol olarak hesaplanmıştır. Ayrıca bu reseptörleri aktive ettiği bilinen glutamat molekülünün bağlanma enerjileri ile agmatin bağlanma enerjileri kıyaslandığında yakın enerji değerleri elde edilmiştir.
Sonuç: Tüm bu değerlendirmeler göz önüne alındığında, Agmatinin sahip olduğu zayıf bağlar sonucu iyonotrofik glutamat reseptörleri AMPAR, KAR ve NMDAR'ı yapısal olarak bloke etme kabiliyetine sahip olmadığı söylenebilir. Bununla beraber glutamat bağlanmasına yakın bağlanma enerjileriyle kanala bağ kurma yeteneğine sahip gözükmektedir. Agmatinin reseptöre glutamat bağlama yerinden bağlandığını ancak reseptörü aktive etmek yerine glutamatın bağlanmasını bloke ederek reseptörün aktive olmasını engellemiş olabileceğini düşünüyoruz.

Kaynakça

  • Gu X, Zhou Y, Hu X, et al. Reduced numbers of cortical GABA-immunoreactive neurons in the chronic D-galactose treatment model of brain aging. Neurosci Lett. 2013;549:82–86.
  • Hendry SH, Schwark HD, Jones EG, Yan J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci. 1987;7:1503–1519.
  • Megías M, Emri Z, Freund TF, Gulyás AI. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 2001;102:527–540.
  • Hanada T. Ionotropic glutamate receptors in epilepsy: a review focusing on AMPA and NMDA receptors. Biomolecules 2020;10:464.
  • Carlson H, Ronne-Engström E, Ungerstedt U, Hillered L. Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett. 1992;140:30–32.
  • During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993;341:1607–1610.
  • Ronne-Engström E, Hillered L, Flink R, Spännare B, Ungerstedt U, Carlson H. Intracerebral 
microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab. 
1992;12:873–876.
  • Danbolt NC. Glutamate uptake. Prog. Neurobiol. 2001;65:1-105.
  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460:525-542.
  • Kumar J, Schuck P, Mayer ML. Structure and assembly mechanism for heteromeric kainate receptors. Neuron. 2011;71:319–331.
  • Postila PA, Swanson GT, Pentikainen OT. Exploring kainite receptor pharmacology using molecular dynamics simulations. Neuropharmacology. 2010;58(2):515-527.
  • Jane DE, Lodge D, Collingridge GL. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology. 2009;56:90–113.
  • Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an ampa-sensitive glutamate receptor: crystal structures of the glur2 ligand binding core. Neuron. 2000;28:165–181.
  • Lodge D. The history of thepharmacology and cloning of ionotropic glutamate receptors and the development 
of idiosyncratic nomenclature. Neuropharmacology. 2009;56:6–21.
  • Paoletti, P. Molecular basis of nmda receptor functional diversity. Eur J Neurosci. 2011;33:1351–1365.
  • Ashcroft FM. Ion channels and disease: Channelopathies. Boston, Academic Press, 2000.
  • Kossel A. Über das agmatin. Z Physiol Chem. 1911;66:257–261.
  • Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 2000;21:187–193. 

  • Gorbatyuk OS, Milner TA, Wang G, Regunathan S, Reis DJ. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp Neurol. 2001;171:235–245. 
 Askalany AR, Yamakura T, Petrenko AB, Kohno T, Sakimura K, Baba H. Effect of agmatine on heteromeric n-methyl- d-aspartate receptor channels. Neurosci Res. 2005;52:387–392.
  • Barua S, Kim JY, Kim JH, Lee JE. Therapeutic effect of agmatine on neurological disease: focus on ion channels and receptors. Neurochem Res. 2019;44(4):735-50.
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4-17.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7:42717.
  • Morris GM, Huey R, Lindstorm W, et al. Auto dock 4 and auto dock tools 4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.
  • Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport. 2002;13:387–391.
  • Zomkowski ADE, Rosa AO, Lin J, Santos AR, Calixto JB, Rodrigues ALS. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res. 2004;1023:253–263.
  • Neis VB, Moretti M, Bettio LE, et al. Agmatine produces antidepressant-like effects by activating ampa receptors and mtor signaling. EurNeuropsychopharmacol. 2016;26:959–971.
  • Piletz JE, Aricioglu F, Cheng JT, et al. Agmatine: clinical applications after 100 years in translation. Drug Discov Today. 2013;18:880–893.
  • Maeng S, Zarate Jr CA. The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep. 2007;9:467–474.
  • Maeng S, Zarate Jr CA, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–352.
  • Peterson CD, Kitto KF, Verma H, et al. Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain. Molecular Pain. 2021;17:1-12.
  • Seo S, Liu P, Leitch B. Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience. 2011;192:28–36.
  • Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neurosci Lett. 2005;390(3):129-133.
  • Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int. 2017;108:318-31.

Investigation of structural suitability of agmatine with glutamatergic ion channels: Molecular docking study

Yıl 2025, Cilt: 3 Sayı: 2, 54 - 61, 30.06.2025
https://doi.org/10.61845/agrimedical.1522158

Öz

Aim: Agmatine is considered a neurotransmitter that is expressed almost everywhere in the brain and is thought to act as a neuromodulator. There is evidence that it interacts with glutamatergic ion channels associated with physiological and pathological states such as excitability and hyperexcitability. In this study, possible relationships of seizure-related ion channels (KARs, AMPARs and NMDARs) with agmatine are discussed using molecular docking method.
Material and Method: Information on glutamatergic ion channels was obtained from the Protein Data Bank. The 2D structure of agmatine and inhibitors of receptors were retrieved from NCBI PubChem in .sdf format. Simulation studies were carried out using the Auto Dock 4.2.6 software program.
Results: Binding sites were determined. The binding energy of agmatine to these receptors was compared with reference molecules. In this case, the binding energy of agmatine to KAR, AMPAR and NMDARs is -5.73 kcal/mol, -5.41 kcal/mol and -4.01 kcal/mol, respectively. In addition, when compared with the binding energies of the glutamate molecule, approximate energy values were obtained.
Conclusion: In conclusion, it can be said that Agmatine does not have the ability to structurally block the ionotrophic glutamate receptors AMPAR, KAR and NMDAR as a result of its weak bonds. However, it seems to have the ability to bond to the channel with binding energies close to glutamate binding. We think that agmatine binds to the receptor at the glutamate binding site, but instead of activating the receptor, it may have prevented the receptor from being activated by blocking the binding of glutamate.

Kaynakça

  • Gu X, Zhou Y, Hu X, et al. Reduced numbers of cortical GABA-immunoreactive neurons in the chronic D-galactose treatment model of brain aging. Neurosci Lett. 2013;549:82–86.
  • Hendry SH, Schwark HD, Jones EG, Yan J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci. 1987;7:1503–1519.
  • Megías M, Emri Z, Freund TF, Gulyás AI. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 2001;102:527–540.
  • Hanada T. Ionotropic glutamate receptors in epilepsy: a review focusing on AMPA and NMDA receptors. Biomolecules 2020;10:464.
  • Carlson H, Ronne-Engström E, Ungerstedt U, Hillered L. Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett. 1992;140:30–32.
  • During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993;341:1607–1610.
  • Ronne-Engström E, Hillered L, Flink R, Spännare B, Ungerstedt U, Carlson H. Intracerebral 
microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab. 
1992;12:873–876.
  • Danbolt NC. Glutamate uptake. Prog. Neurobiol. 2001;65:1-105.
  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460:525-542.
  • Kumar J, Schuck P, Mayer ML. Structure and assembly mechanism for heteromeric kainate receptors. Neuron. 2011;71:319–331.
  • Postila PA, Swanson GT, Pentikainen OT. Exploring kainite receptor pharmacology using molecular dynamics simulations. Neuropharmacology. 2010;58(2):515-527.
  • Jane DE, Lodge D, Collingridge GL. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology. 2009;56:90–113.
  • Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an ampa-sensitive glutamate receptor: crystal structures of the glur2 ligand binding core. Neuron. 2000;28:165–181.
  • Lodge D. The history of thepharmacology and cloning of ionotropic glutamate receptors and the development 
of idiosyncratic nomenclature. Neuropharmacology. 2009;56:6–21.
  • Paoletti, P. Molecular basis of nmda receptor functional diversity. Eur J Neurosci. 2011;33:1351–1365.
  • Ashcroft FM. Ion channels and disease: Channelopathies. Boston, Academic Press, 2000.
  • Kossel A. Über das agmatin. Z Physiol Chem. 1911;66:257–261.
  • Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 2000;21:187–193. 

  • Gorbatyuk OS, Milner TA, Wang G, Regunathan S, Reis DJ. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp Neurol. 2001;171:235–245. 
 Askalany AR, Yamakura T, Petrenko AB, Kohno T, Sakimura K, Baba H. Effect of agmatine on heteromeric n-methyl- d-aspartate receptor channels. Neurosci Res. 2005;52:387–392.
  • Barua S, Kim JY, Kim JH, Lee JE. Therapeutic effect of agmatine on neurological disease: focus on ion channels and receptors. Neurochem Res. 2019;44(4):735-50.
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4-17.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7:42717.
  • Morris GM, Huey R, Lindstorm W, et al. Auto dock 4 and auto dock tools 4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.
  • Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport. 2002;13:387–391.
  • Zomkowski ADE, Rosa AO, Lin J, Santos AR, Calixto JB, Rodrigues ALS. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res. 2004;1023:253–263.
  • Neis VB, Moretti M, Bettio LE, et al. Agmatine produces antidepressant-like effects by activating ampa receptors and mtor signaling. EurNeuropsychopharmacol. 2016;26:959–971.
  • Piletz JE, Aricioglu F, Cheng JT, et al. Agmatine: clinical applications after 100 years in translation. Drug Discov Today. 2013;18:880–893.
  • Maeng S, Zarate Jr CA. The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep. 2007;9:467–474.
  • Maeng S, Zarate Jr CA, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–352.
  • Peterson CD, Kitto KF, Verma H, et al. Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain. Molecular Pain. 2021;17:1-12.
  • Seo S, Liu P, Leitch B. Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience. 2011;192:28–36.
  • Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neurosci Lett. 2005;390(3):129-133.
  • Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int. 2017;108:318-31.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sinirbilim (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hilal Öztürk 0000-0003-0079-5184

Nuri Yorulmaz 0000-0003-4959-2302

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 25 Temmuz 2024
Kabul Tarihi 17 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

AMA Öztürk H, Yorulmaz N. Investigation of structural suitability of agmatine with glutamatergic ion channels: Molecular docking study. Ağrı Med J. Haziran 2025;3(2):54-61. doi:10.61845/agrimedical.1522158