Araştırma Makalesi
BibTex RIS Kaynak Göster

Maydanoz tohumlarında NanoPriming uygulamalarının çıkış ve fide özelliklerine etkisi

Yıl 2025, Cilt: 7 Sayı: 2, 29 - 40, 30.12.2025

Öz

Bu çalışma ile çiftçilerin maydanoz yetiştiricilik esnasında karşılaşmış oldukları problemlerin önüne geçmek, sürdürülebilir tarım uygulamalarında yeni bir yaklaşım olarak değerlendirilen nanoteknoloji uygulamalarının etkinliğini belirlemek hedeflenmektedir. Çalışmada kontrol, hidropriming uygulaması, çinko priming, katkılı ve katkısız çinkooksit nanopriming uygulamaları olmak üzere toplamda 16 farklı uygulama kullanılmıştır. Uygulamalar sonrasında tohumlar araziye ekilmiştir. Ekimden 45 gün sonra kontrol grubu çıkış oranı %18 iken ferula katkılı nanopriming uygulamasında %36 olmuştur. Ferula ve magnezyum katkılı nanopriming uygulamalarının fide kalitesini arttırdığı görülmüştür. Çinko oksit, ferula ve magnezyum katkılı nanopriming uygulamalarının maydanoz verimini arttırdığı belirlenmiştir.

Kaynakça

  • Adhikary, S., Biswas, B., Chakraborty, D., Timsina, J., Pal, S., Chandra Tarafdar, J., & Roy, S. (2022). Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Scientific Reports, 12(1), 7103. https://doi.org/10.1038/s41598-022-11307-4
  • Akkaya, A., Sarıkaya, E. K., Kahveci, O., Aydın, R., Şahin, B., & Ayyıldız, E. (2024). Hyaluronic acid mediated ZnO-NPs: In relation to electrical and photocatalytic activity for dye degradation. Journal of Alloys and Compounds, 1005, 175861. https://doi.org/10.1016/j.jallcom.2024.175861
  • Caser, M., Percivalle, N. M., & Cauda, V. (2024). The application of micro-and nano-sized zinc oxide particles differently triggers seed germination in Ocimum basilicum L., Lactuca sativa L., and Lepidium sativum L. under controlled conditions. Horticulturae, 10(6), 575. https://doi.org/10.3390/horticulturae10060575
  • da Silva, A. L. B. R., de Barros, M. F. L., Foshee, W., Candian, J. S., & Diaz-Perez, J. C. (2022). Priming strategies for parsley seedling production. HortScience, 57(9), 1086-1091. https://doi.org/10.21273/HORTSCI16675-22
  • de Oliveira, S. F., da Costa, D. S., Mello, S. D. C., Novembre, A. D. D. L., & Gomes-Junior, F. G. (2013). Germination of parsley seeds influenced by mericarps color and internal morphology. Horticultura Brasileira, 31, 231-235. https://doi.org/10.1590/S0102-05362013000200009
  • Dehkourdi, E. H., & Mosavi, M. (2013). Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biological Trace Element Research, 155(2), 283-286. https://doi.org/10.1007/s12011-013-9788-3
  • Dursun, A., & Ekinci, M. (2010). Effects of different priming treatments and priming durations on germination percentage of parsley (Petroselinum crispum L.) seeds. Agricultural Sciences, 1(01), 17-23. https://doi.org/10.4236/as.2010.11003
  • Echeverría-Pérez, E. G., Cruz-López, V., Herrera-Rivera, R., Romellón-Cerino, M. J., Rosas-Diaz, J., & Cruz-Martínez, H. (2025). Recent developments of nanomaterials in crop growth and production: The case of the tomato (Solanum lycopersicum). Agronomy, 15(7), 1716. https://doi.org/10.3390/agronomy15071716
  • Gupta, N., Singh, P. M., Sagar, V., Pandya, A., Chinnappa, M., Kumar, R., & Bahadur, A. (2022). Seed priming with ZnO and Fe3O4 nanoparticles alleviate the lead toxicity in Basella alba L. through reduced lead uptake and regulation of ROS. Plants, 11(17), 2227. https://doi.org/10.3390/plants11172227 Hassell, R. L., & Kretchman, D. W. (1997). The effects of umbel order, soaking, and scarification on germination inhibiting substances in Petroselinum crispum L. and other Apiaceae seeds. HortScience, 32(7), 1227-1230.
  • Hossain, Z., Mustafa, G., & Komatsu, S. (2015). Plant responses to nanoparticle stress. International Journal of Molecular Sciences, 16(11), 26644-26653. https://doi.org/10.3390/ijms161125980
  • Kalathingal, S. B., & Palengara, D. (2025). Influence of nanopriming with phytosynthesized silver nanoparticles on seed germination and seedling growth performance in Cucurbitaceae species. Discover Plants, 2(1), 190. https://doi.org/10.1007/s44372-025-00292-3
  • Kandhol, N., Singh, V. P., Ramawat, N., Prasad, R., Chauhan, D. K., Sharma, S., & Tripathi, D. K. (2022). Nano-priming: Impression on the beginner of plant life. Plant Stress, 5, 100091. https://doi.org/10.1016/j.stress.2022.100091
  • Kundu, E., & Bordolui, S. K. (2023). Silver nanoparticles–mediate seed priming improves germination and physiological performance in carrot. In Biological Forum–An International Journal, 15 (10), 1079-1085.
  • Madusanka, H. K. S., Aruggoda, A. G. B., Chathurika, J. A. S., & Weerakoon, S. R. (2024). Evaluating the Impact of Seed nano-priming with green-synthesized copper oxide nanoparticles using Mimosa pigra leaf extract on the germination and seedling growth of tomato. American Journal of Bioscience and Bioinformatics, 3(1), 42-55. https://doi.org/10.54536/ajbb.v3i1.3959
  • Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7, 8263. https://doi.org/10.1038/s41598-017-08669-5
  • Mavi, K. (2016). The effect of organic priming with Marigold herbal tea on seeds quality in Aji pepper (Capsicum baccatum var. pendulum Willd.). Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21(1).
  • Mavi, K., & Uzunoğlu, F. 2020. Capsicum baccatum var. pendulum (cv. MKÜ-19) tohumlarında allelopatik materyaller ile uygulamaların çıkış ve fide kalitesine etkisi. Bahçe, 49(1), 65-69.
  • Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. https://doi.org/10.1186/s12951-022-01423-8
  • Ochoa-Chaparro, E. H., Patiño-Cruz, J. J., Anchondo-Páez, J. C., Pérez-Álvarez, S., Chávez-Mendoza, C., Castruita-Esparza, L. U., & Sánchez, E. (2025). Seed nanopriming with ZnO and SiO2 enhances germination, seedling vigor, and antioxidant defense under drought stress. Plants, 14(11), 1726. https://doi.org/10.3390/plants14111726
  • Özmen, K., Mavi, K., (2023). Sürdürülebilir Tarımda Yenilikçi Bir Yaklaşım Olarak Nanomateryallerin Sebze Tohum Uygulamalarında Kullanımı. ISPEC 13th Internatıonal Conference On Agriculture, Animal Sciences and Rural Development, Tam Metin Bildiri, 1437-1454.
  • Özmen, K., Toprak, S., Coşkun, Ö. F., Şahin, B., & Mavi, K. (2022). Nanopriming uygulamalarının kavun (Cucumis melo L.) tohumlarında çıkış ve fide kalitesine etkisi. Bahçe, 51(Özel Sayı 1) 13. Sebze Tarımı Sempozyumu), 117-122.
  • Ranaware, A. S., Kushwaha, S. B., Kunchge, N., Prakash, G., & Lele, S. S. (2025). Effect of different size silver nanoparticles synthesized at varying pH of plant extract for germination improvement of tetraploid watermelon (Citrullus lanatus). Journal of Cluster Science, 36(3), 101. https://doi.org/10.1007/s10876-025-02818-x
  • Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78. https://doi.org/10.3389/fchem.2017.00078
  • Siddiqui, M. H., Al‐Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 33(11), 2429-2437. https://doi.org/10.1002/etc.2697
  • Song, K., & He, X. (2021). How to improve seed germination with green nanopriming. Seed Science and Technology, 49(2), 81-92. https://doi.org/10.15258/sst.2021.49.2.01
  • Şahin, B., Alomari, M., & Kaya, T. (2015). Hydration detection through use of artificial sweat in doped-and partially-doped nanostructured CuO films. Ceramics International, 41(6), 8002-8007. https://doi.org/10.1016/j.ceramint.2015.02.147
  • Şahin, B., Aydın, R., & Cetin, H. (2019). Variation of the key morphological, structural, optical and electrical properties of SILAR CdO with alkaline earth Ca+2 ions doping. Ceramics International, 45(14), 16748-16758. https://doi.org/10.1016/j.ceramint.2019.05.210
  • Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates, Sunderland, MA.
  • Tasdemir, A., Akman, N., Akkaya, A., Aydin, R., & Sahin, B., (2022) Green and cost-effective synthesis of zinc oxide thin films by L-ascorbic acid (AA) and their potential for electronics and antibacterial applications , Ceramics International, 48, 10164-10173. https://doi.org/10.1016/j.ceramint.2021.12.228
  • Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Frontiers in Environmental Science, 4, 46. https://doi.org/10.3389/fenvs.2016.00046
  • TUİK, (2024). https://www.tuik.gov.tr/ Accesing date: 10.09.2025.
  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiology and Biochemistry, 110, 59-69. https://doi.org/10.1016/j.plaphy.2016.08.022
  • Yağız, A. K., & Çalışkan, M. E. (2024). Effects of TiO2 nano-priming on tomato seed germination and plant development. Journal of Animal & Plant Sciences, 34(1), 62-72. https://doi.org/10.36899/JAPS.2024.1.0695

Effect of Nanopriming on emergence and seedling characteristics in parsley seeds

Yıl 2025, Cilt: 7 Sayı: 2, 29 - 40, 30.12.2025

Öz

This study aims to prevent problems encountered by farmers during parsley cultivation and to determine the effectiveness of nanotechnology-based treatments, which are considered a new approach to sustainable agricultural practices. A total of 16 treatments were used in the study: a control and priming treatments (hydropriming, zinc priming, and zinc oxide nanopriming) with and without additives. After the treatments, the seeds were planted in the field. While the emergence rate of the control group was 18% at 45 days after planting, the highest emergence rate among treatments was 36% for the ferula-doped nanopriming treatments. Based on seedling measurements, it was observed that ferula- and magnesium-doped nanopriming treatments had a positive effect on seedling quality. When the yield calculation of the treatments under field conditions was performed, it was determined that the zinc oxide-doped, Ferula-doped, and magnesium-doped nanopriming treatments had the highest harvest efficiency.

Kaynakça

  • Adhikary, S., Biswas, B., Chakraborty, D., Timsina, J., Pal, S., Chandra Tarafdar, J., & Roy, S. (2022). Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Scientific Reports, 12(1), 7103. https://doi.org/10.1038/s41598-022-11307-4
  • Akkaya, A., Sarıkaya, E. K., Kahveci, O., Aydın, R., Şahin, B., & Ayyıldız, E. (2024). Hyaluronic acid mediated ZnO-NPs: In relation to electrical and photocatalytic activity for dye degradation. Journal of Alloys and Compounds, 1005, 175861. https://doi.org/10.1016/j.jallcom.2024.175861
  • Caser, M., Percivalle, N. M., & Cauda, V. (2024). The application of micro-and nano-sized zinc oxide particles differently triggers seed germination in Ocimum basilicum L., Lactuca sativa L., and Lepidium sativum L. under controlled conditions. Horticulturae, 10(6), 575. https://doi.org/10.3390/horticulturae10060575
  • da Silva, A. L. B. R., de Barros, M. F. L., Foshee, W., Candian, J. S., & Diaz-Perez, J. C. (2022). Priming strategies for parsley seedling production. HortScience, 57(9), 1086-1091. https://doi.org/10.21273/HORTSCI16675-22
  • de Oliveira, S. F., da Costa, D. S., Mello, S. D. C., Novembre, A. D. D. L., & Gomes-Junior, F. G. (2013). Germination of parsley seeds influenced by mericarps color and internal morphology. Horticultura Brasileira, 31, 231-235. https://doi.org/10.1590/S0102-05362013000200009
  • Dehkourdi, E. H., & Mosavi, M. (2013). Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biological Trace Element Research, 155(2), 283-286. https://doi.org/10.1007/s12011-013-9788-3
  • Dursun, A., & Ekinci, M. (2010). Effects of different priming treatments and priming durations on germination percentage of parsley (Petroselinum crispum L.) seeds. Agricultural Sciences, 1(01), 17-23. https://doi.org/10.4236/as.2010.11003
  • Echeverría-Pérez, E. G., Cruz-López, V., Herrera-Rivera, R., Romellón-Cerino, M. J., Rosas-Diaz, J., & Cruz-Martínez, H. (2025). Recent developments of nanomaterials in crop growth and production: The case of the tomato (Solanum lycopersicum). Agronomy, 15(7), 1716. https://doi.org/10.3390/agronomy15071716
  • Gupta, N., Singh, P. M., Sagar, V., Pandya, A., Chinnappa, M., Kumar, R., & Bahadur, A. (2022). Seed priming with ZnO and Fe3O4 nanoparticles alleviate the lead toxicity in Basella alba L. through reduced lead uptake and regulation of ROS. Plants, 11(17), 2227. https://doi.org/10.3390/plants11172227 Hassell, R. L., & Kretchman, D. W. (1997). The effects of umbel order, soaking, and scarification on germination inhibiting substances in Petroselinum crispum L. and other Apiaceae seeds. HortScience, 32(7), 1227-1230.
  • Hossain, Z., Mustafa, G., & Komatsu, S. (2015). Plant responses to nanoparticle stress. International Journal of Molecular Sciences, 16(11), 26644-26653. https://doi.org/10.3390/ijms161125980
  • Kalathingal, S. B., & Palengara, D. (2025). Influence of nanopriming with phytosynthesized silver nanoparticles on seed germination and seedling growth performance in Cucurbitaceae species. Discover Plants, 2(1), 190. https://doi.org/10.1007/s44372-025-00292-3
  • Kandhol, N., Singh, V. P., Ramawat, N., Prasad, R., Chauhan, D. K., Sharma, S., & Tripathi, D. K. (2022). Nano-priming: Impression on the beginner of plant life. Plant Stress, 5, 100091. https://doi.org/10.1016/j.stress.2022.100091
  • Kundu, E., & Bordolui, S. K. (2023). Silver nanoparticles–mediate seed priming improves germination and physiological performance in carrot. In Biological Forum–An International Journal, 15 (10), 1079-1085.
  • Madusanka, H. K. S., Aruggoda, A. G. B., Chathurika, J. A. S., & Weerakoon, S. R. (2024). Evaluating the Impact of Seed nano-priming with green-synthesized copper oxide nanoparticles using Mimosa pigra leaf extract on the germination and seedling growth of tomato. American Journal of Bioscience and Bioinformatics, 3(1), 42-55. https://doi.org/10.54536/ajbb.v3i1.3959
  • Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7, 8263. https://doi.org/10.1038/s41598-017-08669-5
  • Mavi, K. (2016). The effect of organic priming with Marigold herbal tea on seeds quality in Aji pepper (Capsicum baccatum var. pendulum Willd.). Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21(1).
  • Mavi, K., & Uzunoğlu, F. 2020. Capsicum baccatum var. pendulum (cv. MKÜ-19) tohumlarında allelopatik materyaller ile uygulamaların çıkış ve fide kalitesine etkisi. Bahçe, 49(1), 65-69.
  • Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. https://doi.org/10.1186/s12951-022-01423-8
  • Ochoa-Chaparro, E. H., Patiño-Cruz, J. J., Anchondo-Páez, J. C., Pérez-Álvarez, S., Chávez-Mendoza, C., Castruita-Esparza, L. U., & Sánchez, E. (2025). Seed nanopriming with ZnO and SiO2 enhances germination, seedling vigor, and antioxidant defense under drought stress. Plants, 14(11), 1726. https://doi.org/10.3390/plants14111726
  • Özmen, K., Mavi, K., (2023). Sürdürülebilir Tarımda Yenilikçi Bir Yaklaşım Olarak Nanomateryallerin Sebze Tohum Uygulamalarında Kullanımı. ISPEC 13th Internatıonal Conference On Agriculture, Animal Sciences and Rural Development, Tam Metin Bildiri, 1437-1454.
  • Özmen, K., Toprak, S., Coşkun, Ö. F., Şahin, B., & Mavi, K. (2022). Nanopriming uygulamalarının kavun (Cucumis melo L.) tohumlarında çıkış ve fide kalitesine etkisi. Bahçe, 51(Özel Sayı 1) 13. Sebze Tarımı Sempozyumu), 117-122.
  • Ranaware, A. S., Kushwaha, S. B., Kunchge, N., Prakash, G., & Lele, S. S. (2025). Effect of different size silver nanoparticles synthesized at varying pH of plant extract for germination improvement of tetraploid watermelon (Citrullus lanatus). Journal of Cluster Science, 36(3), 101. https://doi.org/10.1007/s10876-025-02818-x
  • Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78. https://doi.org/10.3389/fchem.2017.00078
  • Siddiqui, M. H., Al‐Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 33(11), 2429-2437. https://doi.org/10.1002/etc.2697
  • Song, K., & He, X. (2021). How to improve seed germination with green nanopriming. Seed Science and Technology, 49(2), 81-92. https://doi.org/10.15258/sst.2021.49.2.01
  • Şahin, B., Alomari, M., & Kaya, T. (2015). Hydration detection through use of artificial sweat in doped-and partially-doped nanostructured CuO films. Ceramics International, 41(6), 8002-8007. https://doi.org/10.1016/j.ceramint.2015.02.147
  • Şahin, B., Aydın, R., & Cetin, H. (2019). Variation of the key morphological, structural, optical and electrical properties of SILAR CdO with alkaline earth Ca+2 ions doping. Ceramics International, 45(14), 16748-16758. https://doi.org/10.1016/j.ceramint.2019.05.210
  • Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates, Sunderland, MA.
  • Tasdemir, A., Akman, N., Akkaya, A., Aydin, R., & Sahin, B., (2022) Green and cost-effective synthesis of zinc oxide thin films by L-ascorbic acid (AA) and their potential for electronics and antibacterial applications , Ceramics International, 48, 10164-10173. https://doi.org/10.1016/j.ceramint.2021.12.228
  • Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Frontiers in Environmental Science, 4, 46. https://doi.org/10.3389/fenvs.2016.00046
  • TUİK, (2024). https://www.tuik.gov.tr/ Accesing date: 10.09.2025.
  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiology and Biochemistry, 110, 59-69. https://doi.org/10.1016/j.plaphy.2016.08.022
  • Yağız, A. K., & Çalışkan, M. E. (2024). Effects of TiO2 nano-priming on tomato seed germination and plant development. Journal of Animal & Plant Sciences, 34(1), 62-72. https://doi.org/10.36899/JAPS.2024.1.0695
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Kübra Özmen 0000-0001-8554-7918

Bünyamin Şahin 0000-0001-7059-0315

Kazım Mavi 0000-0003-0195-8539

Gönderilme Tarihi 31 Ekim 2025
Kabul Tarihi 28 Kasım 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Özmen, K., Şahin, B., & Mavi, K. (2025). Effect of Nanopriming on emergence and seedling characteristics in parsley seeds. AgriTR Science, 7(2), 29-40.