Derleme
BibTex RIS Kaynak Göster

Sürdürülebı̇lı̇r Arazı̇ Kullanımı Perspektı̇fı̇nde İklı̇m Değı̇şı̇klı̇ğı̇ ve Arazı̇ Bozunumu

Yıl 2024, Cilt: 1 Sayı: 2, 98 - 113, 30.12.2024

Öz

İklim değişikliği ve arazi bozulumunun etkileşimi, sürdürülebilir arazi kullanımı için önemli zorluklar ortaya çıkarmaktadır. Bu etkileşimi etkin bir şekilde yönetmek için iklim değişikliği, arazi bozunumu ve sürdürülebilir arazi yönetimi uygulamaları arasındaki karmaşık ilişkiyi dikkate alan kapsamlı bir yaklaşıma ihtiyaç vardır. Bu çalışma, sürdürülebilir arazi kullanımı çerçevesinde iklim değişikliği ve arazi bozulmasının etkileşimini ortaya koymak amacıyla kapsamlı bir literatür taramasını amaçlamaktadır. Bu amaçla, 2000’li yıllardan günümüze kadar Web of Science kapsamında araştırma makaleleri, sürdürülebilir arazi kullanımı, iklim değişikliği senaryoları, arazi bozulması, toprak erozyonu, arazi kullanımı/arazi örtüsü değişimi, kuraklık, bitki örtüsünün azalması, toprak erozyonu, toprak tuzlanması ve toprak organik karbonunun azalması anahtar kelimeleri ile taranmıştır. Sonuç olarak 2000’li yıllardan günümüze doğru değişen küresel iklimle birlikte antropojenlik etkenler ile arazi kullanımı/örtüsü değişimi ile toprak erozyonu etkilerinin şiddetlendiğini bildiren araştırmalar artmıştır. Öte yandan, toprak tuzluluğu ve çoraklaşmanın geçmişten günümüze kadar arttığına birçok araştırmada işaret edilmiştir. Sonuç olarak, sürdürülebilir arazi kullanımı çerçevesinde iklim değişikliği ve arazi bozulumunun etkileşimini yönetmek çok boyutlu bir yaklaşım gerektirmektedir.

Kaynakça

  • Abid, M., Scheffran, J., Schneider, U. A., ve Ashfaq, M. (2015). Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth System Dynamics, 6(1), 225–243. https://doi.org/10.5194/esd-6-225-2015
  • Aires, U. R. V., Reis, G. B., ve Campos, J. A. (2019). Nonparametric tests for stationary analysis in hydrological data. Journal of Environmental Analysis and Progress, 239–250. https://doi.org/10.24221/jeap.4.4.2019.2466.239-250
  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
  • Alotaibi, M. (2023). Climate change, its impact on crop production, challenges, and possible solutions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13020-13020.
  • Annie , M., Pal, R. kumar, Gawai , A. S., & Sharma , A. (2023). Assessing the Impact of Climate Change on Agricultural Production Using Crop Simulation Model. International Journal of Environment and Climate Change, 13(7), 538–550. https://doi.org/10.9734/ijecc/2023/v13i71906
  • Bai, D., Ye, L., Yang, Z. Y., ve Wang, G. (2022). Impact of climate change on agricultural productivity: a combination of spatial Durbin model and entropy approaches. International Journal of Climate Change Strategies and Management. https://doi.org/10.1108/IJCCSM-02-2022-0016
  • Baker, J. S., Havlík, P., Beach, R., Leclère, D., Schmid, E., Valin, H., Cole, J., Creason, J., Ohrel, S., ve McFarland, J. (2018). Evaluating the effects of climate change on US agricultural systems: Sensitivity to regional impact and trade expansion scenarios. Environmental Research Letters, 13(6). https://doi.org/10.1088/1748-9326/aac1c2
  • Balesdent, J., Chenu, C., ve Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53(3–4), 215–230. https://doi.org/10.1016/S0167-1987(99)00107-5
  • Beckman, J., ve Countryman, A. M. (2021). The Importance of Agriculture in the Economy: Impacts from COVID-19. American Journal of Agricultural Economics, 103(5), 1595–1611. https://doi.org/10.1111/ajae.12212
  • Birthal, P. S., Khan, T., Negi, D. S., ve Agarwal, S. (2014). Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security. Agricultural Economics Research Review, 27(2), 145. https://doi.org/10.5958/0974-0279.2014.00019.6
  • Bol, R. A., Harkness, D. D., Huang, Y., ve Howard, D. M. (1999). The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science, 50(1), 41–51. https://doi.org/10.1046/j.1365-2389.1999.00222.x
  • Budak, M., Günal, E., Kılıç, M., Çelik, İ., Sırrı, M., ve Acir, N. (2023). Improvement of spatial estimation for soil organic carbon stocks in Yuksekova plain using Sentinel 2 imagery and gradient descent–boosted regression tree. Environmental Science and Pollution Research, 30(18), 53253–53274. https://doi.org/10.1007/s11356-023-26064-8
  • Caron, P., Ferrero y de Loma-Osorio, G., Nabarro, D., Hainzelin, E., Guillou, M., Andersen, I., Arnold, T., Astralaga, M., Beukeboom, M., Bickersteth, S., Bwalya, M., Caballero, P., Campbell, B. M., Divine, N., Fan, S., Frick, M., Friis, A., Gallagher, M., Halkin, J.-P., … Verburg, G. (2018). Food systems for sustainable development: proposals for a profound four-part transformation. Agronomy for Sustainable Development, 38(4), 41. https://doi.org/10.1007/s13593-018-0519-1
  • Caviezel, C., Hunziker, M., ve Kuhn, N. J. (2017). Bequest of the Norseman-The potential for agricultural intensification and expansion in southern greenland under climate change. Land, 6(4). https://doi.org/10.3390/land6040087
  • Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., ve Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/10.1016/j.still.2018.04.011
  • Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010
  • Cui, X., ve Graf, H. F. (2009). Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94(1–2), 47–61. https://doi.org/10.1007/s10584-009-9556-8
  • Dasgupta, S., Hossain, M. M., Huq, M., ve Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815–826. https://doi.org/10.1007/s13280-015-0681-5
  • Durodola, O. S. (2019). The Impact of Climate Change Induced Extreme Events on Agriculture and Food Security: A Review on Nigeria. Agricultural Sciences, 10(04), 487–498. https://doi.org/10.4236/as.2019.104038
  • Eekhout, J. P. C., ve De Vente, J. (2020). How soil erosion model conceptualization affects soil loss projections under climate change. Progress in Physical Geography, 44(2), 212–232. https://doi.org/10.1177/0309133319871937
  • Eka Suranny, L., Gravitiani, E., ve Rahardjo, M. (2022). Impact of climate change on the agriculture sector and its adaptation strategies. IOP Conference Series: Earth and Environmental Science, 1016(1). https://doi.org/10.1088/1755-1315/1016/1/012038 Eliades, F., Hadjimitsis, D., ve Danezis, C. (2021). Detecting changes in vegetation and climate that serve as early warning signal on land degradation using remote sensing: a review. 45. https://doi.org/10.1117/12.2600284
  • Faraz, M., Nadeem, N., Mehmood, H. Z., & Ahsan, M. B. (2023). Impact of Climate Change on Total Factor Productivity of Agriculture in District Multan. Pakistan Journal of Humanities and Social Sciences, 11(2), 2465-2479.
  • García-Ruiz, J. M., López-Moreno, I. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., ve Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3–4), 121–139. https://doi.org/10.1016/j.earscirev.2011.01.006
  • García-Ruiz, J. M., Nadal-Romero, E., Lana-Renault, N., ve Beguería, S. (2013). Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology, 198, 20–36. https://doi.org/10.1016/j.geomorph.2013.05.023
  • Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., Bede, L., Brown, D., Calle, A., Chará, J., Clement, C., Gray, E., Hoang, M. H., Minang, P., Rodríguez, A. M., Seeberg-Elverfeldt, C., Semroc, B., Shames, S., Smukler, S., … Wollenberg, E. (2014). Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture. Conservation Letters, 7(2), 77–90. https://doi.org/10.1111/conl.12066
  • Hemantaranjan, A. (2014). Heat Stress Responses and Thermotolerance. Advances in Plants ve Agriculture Research, 1(3). https://doi.org/10.15406/apar.2014.01.00012
  • Huang, N., Wang, L., Song, X. P., Andrew Black, T., Jassal, R. S., Myneni, R. B., Wu, C., Wang, L., Song, W., Ji, D., Yu, S., ve Niu, Z. (2020). Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances, 6(41). https://doi.org/10.1126/sciadv.abb8508
  • IPCC Panel. (2014). Climate Change 2014: Synthesis Report.
  • Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., ve de Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231. https://doi.org/10.1016/j.rse.2019.111260
  • Jat, M. L., Chakraborty, D., Ladha, J. K., Rana, D. S., Gathala, M. K., McDonald, A., ve Gerard, B. (2020). Conservation agriculture for sustainable intensification in South Asia. Nature Sustainability, 3(4), 336–343. https://doi.org/10.1038/s41893-020-0500-2
  • Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., … Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954. https://doi.org/10.1038/nature09396
  • Kılıç, M., Gündoğan, R., ve Günal, H. (2023). An Illustration of A Sustainable Agricultural Land Suitability Assessment System with A Land Degradation Sensitivity. Environment, Development and Sustainability, 1–30.
  • Kılıç, M., ve Gündoğan, R. (2022). Comparison of Recent Remote Sensing Data Using an Artificial Neural Network to Predict Soil Moisture by Focusing on Radiometric Indices. Turkish Journal of Agriculture - Food Science and Technology, 10(12), 2438–2445. https://doi.org/10.24925/turjaf.v10i12.2438-2445.5477
  • KULBAKA, V. (2020). Conceptual Fundamentals of Agricultural Land Use Formation in Conditions of Sustainable Development. Ukrainian Journal of Applied Economics, 5(2), 282–288. https://doi.org/10.36887/2415-8453-2020-2-33
  • Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212–222. https://doi.org/10.1002/fes3.96
  • Li, C., Li, Z., Yang, M., Ma, B., ve Wang, B. (2021). Article grid-scale impact of climate change and human influence on soil erosion within east african highlands (Kagera basin). International Journal of Environmental Research and Public Health, 18(5), 1–17. https://doi.org/10.3390/ijerph18052775
  • Li, Z., Deng, X., Wu, F., ve Hasan, S. S. (2015). Scenario analysis for water resources in response to land use change in the middle and upper reaches of the heihe river Basin. Sustainability (Switzerland), 7(3), 3086–3108. https://doi.org/10.3390/su7033086
  • Li, Z., Xu, Y., Sun, Y., Wu, M., ve Zhao, B. (2020). Urbanization-driven changes in land-climate dynamics: A case study of Haihe River Basin, China. Remote Sensing, 12(17). https://doi.org/10.3390/RS12172701
  • Liu, B., Asseng, S., Liu, L., Tang, L., Cao, W., ve Zhu, Y. (2016). Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 22(5), 1890–1903. https://doi.org/10.1111/gcb.13212
  • Liu, Z., Ballantyne, A. P., ve Cooper, L. A. (2019). Biophysical feedback of global forest fires on surface temperature. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08237-z
  • Loo, Y. Y., Billa, L., ve Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817–823. https://doi.org/10.1016/j.gsf.2014.02.009
  • Lyu, Y., Shi, P., Han, G., Liu, L., Guo, L., Hu, X., ve Zhang, G. (2020). Desertification control practices in China. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083258
  • Maheshwari, C., Garg, N. K., Hasan, M., Prathap, V., Meena, N. L., Singh, A., ve Tyagi, A. (2022). Insight of PBZ mediated drought amelioration in crop plants. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1008993
  • Mantyka-Pringle, C. S., Visconti, P., Di Marco, M., Martin, T. G., Rondinini, C., ve Rhodes, J. R. (2015). Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 187, 103–111. https://doi.org/10.1016/j.biocon.2015.04.016
  • Middendorf, B. J., Faye, A., Middendorf, G., Stewart, Z. P., Jha, P. K., ve Prasad, P. V. V. (2021). Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agricultural Systems, 190. https://doi.org/10.1016/j.agsy.2021.103108
  • Molua, E. L. (2014). Land Management for Sustainable Agriculture Under Climate Change in the Congo-Basin Countries of Central Africa. Environment and Natural Resources Research, 4(4). https://doi.org/10.5539/enrr.v4n4p178
  • Mushtaq, S., Maraseni, T. N., ve Reardon-Smith, K. (2013). Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology. Agricultural Systems, 117, 78–89. https://doi.org/10.1016/j.agsy.2012.12.009
  • Niels, H. B. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(June), 151–163.
  • Özyol, K. (2022). Çölleşmenin ekosisteme etkileri ve çölleşmeyi tersine çevirme yolunda sürdürülebilir tarımın önemi. Anadolu Orman Araştırmaları Dergisi, 8(1), 113–122. https://doi.org/10.53516/ajfr.1060466
  • Pan, J., Wang, J., Zhou, Z., Yan, Y., Zhang, W., Lu, W., Ping, S., Dai, Q., Yuan, M., Feng, B., Hou, X., Zhang, Y., Ma, R., Liu, T., Feng, L., Wang, L., Chen, M., ve Lin, M. (2009). IrrE, a global regulator of extreme radiation resistance in deinococcus radiodurans, enhances salt tolerance in escherichia coli and brassica napus. PLoS ONE, 4(2). https://doi.org/10.1371/journal.pone.0004422
  • Parnell, S., ve Pieterse, E. (2010). The ‘Right to the City’: Institutional Imperatives of a Developmental State. International Journal of Urban and Regional Research, 34(1), 146–162. https://doi.org/10.1111/j.1468-2427.2010.00954.x
  • Pruski, F. F., ve Nearing, M. A. (2002). Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resources Research, 38(12), 34-1-34–11. https://doi.org/10.1029/2001wr000493
  • Reed, M. S., Podesta, G., Fazey, I., Geeson, N., Hessel, R., Hubacek, K., Letson, D., Nainggolan, D., Prell, C., Rickenbach, M. G., Ritsema, C., Schwilch, G., Stringer, L. C., ve Thomas, A. D. (2013). Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options. Ecological Economics, 94, 66–77. https://doi.org/10.1016/j.ecolecon.2013.07.007
  • Regmi, P. P., ve Weber, K. E. (2000). Problems to agricultural sustainability in developing countries and a potential solution: diversity. International Journal of Social Economics, 27(7/8/9/10), 788–801. https://doi.org/10.1108/03068290010335226
  • Rezaei, E. E., Siebert, S., ve Ewert, F. (2015). Intensity of heat stress in winter wheat - Phenology compensates for the adverse effect of global warming. Environmental Research Letters, 10(2). https://doi.org/10.1088/1748-9326/10/2/024012
  • Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., ve Helkowski, J. H. (2009). Effects of global irrigation on the near-surface climate. Climate Dynamics, 33(2–3), 159–175. https://doi.org/10.1007/s00382-008-0445-z Sahoo, P. K., ve Sharma, D. (2023). Economic impact of artificial intelligence in the field of agriculture. International Journal of Horticulture and Food Science, 5(1), 29–34. https://doi.org/10.33545/26631067.2023.v5.i1a.152
  • Saran, A., Singh, S., Gupta, N., Walke, S. C., Rao, R., Simiyu, C., Malhotra, S., Mishra, A., Puskur, R., Masset, E., White, H., ve Sharma Waddington, H. (2022). PROTOCOL: Interventions promoting resilience through climate-smart agricultural practices for women farmers: A systematic review. Campbell Systematic Reviews, 18(3). https://doi.org/10.1002/cl2.1274
  • Savary, S., Akter, S., Almekinders, C., Harris, J., Korsten, L., Rötter, R., Waddington, S., ve Watson, D. (2020). Mapping disruption and resilience mechanisms in food systems. Food Security, 12(4), 695–717. https://doi.org/10.1007/s12571-020-01093-0
  • Shahid, S. A., ve Al-Shankiti, A. (2013). Sustainable food production in marginal lands—Case of GDLA member countries. International Soil and Water Conservation Research, 1(1), 24–38. https://doi.org/10.1016/S2095-6339(15)30047-2
  • Sillmann, J., Kharin, V., Zwiers, W., Zhang, X., ve Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6), 2473–2493.
  • Solomon, B. D. (2023). Intergovernmental Panel on Climate Change (IPCC). In Dictionary of Ecological Economics. https://doi.org/10.4337/9781788974912.i.50
  • Szabo, S., Hossain, M. S., Adger, W. N., Matthews, Z., Ahmed, S., Lázár, A. N., ve Ahmad, S. (2016). Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustainability Science, 11(3), 411–421. https://doi.org/10.1007/s11625-015-0337-1
  • Teng, H., Liang, Z., Chen, S., Liu, Y., Viscarra Rossel, R. A., Chappell, A., Yu, W., ve Shi, Z. (2018). Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment, 635, 673–686. https://doi.org/10.1016/j.scitotenv.2018.04.146
  • van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., Kardol, P., Klironomos, J. N., Kulmatiski, A., Schweitzer, J. A., Suding, K. N., Van de Voorde, T. F. J., ve Wardle, D. A. (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101(2), 265–276. https://doi.org/10.1111/1365-2745.12054
  • Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A., ve Herrick, J. E. (2017). Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. https://doi.org/10.1002/fee.1530
  • Weeraratna, S. (2022). Understanding Land Degradation. Springer International Publishing. https://doi.org/10.1007/978-3-031-12138-8
  • Werling, B. P., Dickson, T. L., Isaacs, R., Gaines, H., Gratton, C., Gross, K. L., Liere, H., Malmstrom, C. M., Meehan, T. D., Ruan, L., Robertson, B. A., Robertson, G. P., Schmidt, T. M., Schrotenboer, A. C., Teal, T. K., Wilson, J. K., ve Landis, D. A. (2014). Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1652–1657. https://doi.org/10.1073/pnas.1309492111
  • Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., Van Der Mensbrugghe, D., Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Van Meijl, H., ve Willenbockel, D. (2015). Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 10(8). https://doi.org/10.1088/1748-9326/10/8/085010
  • Xiao, C., Janssens, I. A., Liu, P., Zhou, Z., ve Sun, O. J. (2007). Irrigation and enhanced soil carbon input effects on below-ground carbon cycling in semiarid temperate grasslands. New Phytologist, 174(4), 835–846. https://doi.org/10.1111/j.1469-8137.2007.02054.x
  • Xu, P., Guo, Y., ve Fu, B. (2019). Regional impacts of climate and land cover on ecosystemwater retention services in the Upper Yangtze River Basin. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195300
  • Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K. M., ve Chandra Nayak, S. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182–207. https://doi.org/10.1093/femsre/fuv045
  • Ziadat, F. M., ve Taimeh, A. Y. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation and Development, 24(6), 582–590. https://doi.org/10.1002/ldr.2239

CLIMATE CHANGE AND LAND DEGRADATION IN THE PERSPECTIVE OF SUSTAINABLE LAND USE

Yıl 2024, Cilt: 1 Sayı: 2, 98 - 113, 30.12.2024

Öz

The interaction of climate change and land degradation poses significant challenges for sustainable land use. To effectively manage this interaction, a comprehensive approach that takes into account the complex relationship between climate change, land degradation and sustainable land management practices is needed. This study aims to conduct a comprehensive literature review to reveal the interaction of climate change and land degradation within the framework of sustainable land use. The aim of this literature review, research articles were searched in Web of Science from 2000s to present with the keywords: sustainable land use, climate change scenarios, land degradation, soil erosion, land use/land cover change, drought, vegetation decline, soil erosion, soil salinization and soil organic carbon depletion. As a result, there has been an increase in the number of studies reporting that the effects of anthropogenic factors and land use/land cover change and soil erosion have intensified with the changing global climate since 2000s. On the other hand, it has been pointed out in many studies that soil salinity and salinization have increased from the past to the present. In conclusion, managing the interaction of climate change and land degradation within the framework of sustainable land use requires a multidimensional approach.

Kaynakça

  • Abid, M., Scheffran, J., Schneider, U. A., ve Ashfaq, M. (2015). Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth System Dynamics, 6(1), 225–243. https://doi.org/10.5194/esd-6-225-2015
  • Aires, U. R. V., Reis, G. B., ve Campos, J. A. (2019). Nonparametric tests for stationary analysis in hydrological data. Journal of Environmental Analysis and Progress, 239–250. https://doi.org/10.24221/jeap.4.4.2019.2466.239-250
  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
  • Alotaibi, M. (2023). Climate change, its impact on crop production, challenges, and possible solutions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13020-13020.
  • Annie , M., Pal, R. kumar, Gawai , A. S., & Sharma , A. (2023). Assessing the Impact of Climate Change on Agricultural Production Using Crop Simulation Model. International Journal of Environment and Climate Change, 13(7), 538–550. https://doi.org/10.9734/ijecc/2023/v13i71906
  • Bai, D., Ye, L., Yang, Z. Y., ve Wang, G. (2022). Impact of climate change on agricultural productivity: a combination of spatial Durbin model and entropy approaches. International Journal of Climate Change Strategies and Management. https://doi.org/10.1108/IJCCSM-02-2022-0016
  • Baker, J. S., Havlík, P., Beach, R., Leclère, D., Schmid, E., Valin, H., Cole, J., Creason, J., Ohrel, S., ve McFarland, J. (2018). Evaluating the effects of climate change on US agricultural systems: Sensitivity to regional impact and trade expansion scenarios. Environmental Research Letters, 13(6). https://doi.org/10.1088/1748-9326/aac1c2
  • Balesdent, J., Chenu, C., ve Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53(3–4), 215–230. https://doi.org/10.1016/S0167-1987(99)00107-5
  • Beckman, J., ve Countryman, A. M. (2021). The Importance of Agriculture in the Economy: Impacts from COVID-19. American Journal of Agricultural Economics, 103(5), 1595–1611. https://doi.org/10.1111/ajae.12212
  • Birthal, P. S., Khan, T., Negi, D. S., ve Agarwal, S. (2014). Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security. Agricultural Economics Research Review, 27(2), 145. https://doi.org/10.5958/0974-0279.2014.00019.6
  • Bol, R. A., Harkness, D. D., Huang, Y., ve Howard, D. M. (1999). The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science, 50(1), 41–51. https://doi.org/10.1046/j.1365-2389.1999.00222.x
  • Budak, M., Günal, E., Kılıç, M., Çelik, İ., Sırrı, M., ve Acir, N. (2023). Improvement of spatial estimation for soil organic carbon stocks in Yuksekova plain using Sentinel 2 imagery and gradient descent–boosted regression tree. Environmental Science and Pollution Research, 30(18), 53253–53274. https://doi.org/10.1007/s11356-023-26064-8
  • Caron, P., Ferrero y de Loma-Osorio, G., Nabarro, D., Hainzelin, E., Guillou, M., Andersen, I., Arnold, T., Astralaga, M., Beukeboom, M., Bickersteth, S., Bwalya, M., Caballero, P., Campbell, B. M., Divine, N., Fan, S., Frick, M., Friis, A., Gallagher, M., Halkin, J.-P., … Verburg, G. (2018). Food systems for sustainable development: proposals for a profound four-part transformation. Agronomy for Sustainable Development, 38(4), 41. https://doi.org/10.1007/s13593-018-0519-1
  • Caviezel, C., Hunziker, M., ve Kuhn, N. J. (2017). Bequest of the Norseman-The potential for agricultural intensification and expansion in southern greenland under climate change. Land, 6(4). https://doi.org/10.3390/land6040087
  • Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., ve Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/10.1016/j.still.2018.04.011
  • Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010
  • Cui, X., ve Graf, H. F. (2009). Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94(1–2), 47–61. https://doi.org/10.1007/s10584-009-9556-8
  • Dasgupta, S., Hossain, M. M., Huq, M., ve Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815–826. https://doi.org/10.1007/s13280-015-0681-5
  • Durodola, O. S. (2019). The Impact of Climate Change Induced Extreme Events on Agriculture and Food Security: A Review on Nigeria. Agricultural Sciences, 10(04), 487–498. https://doi.org/10.4236/as.2019.104038
  • Eekhout, J. P. C., ve De Vente, J. (2020). How soil erosion model conceptualization affects soil loss projections under climate change. Progress in Physical Geography, 44(2), 212–232. https://doi.org/10.1177/0309133319871937
  • Eka Suranny, L., Gravitiani, E., ve Rahardjo, M. (2022). Impact of climate change on the agriculture sector and its adaptation strategies. IOP Conference Series: Earth and Environmental Science, 1016(1). https://doi.org/10.1088/1755-1315/1016/1/012038 Eliades, F., Hadjimitsis, D., ve Danezis, C. (2021). Detecting changes in vegetation and climate that serve as early warning signal on land degradation using remote sensing: a review. 45. https://doi.org/10.1117/12.2600284
  • Faraz, M., Nadeem, N., Mehmood, H. Z., & Ahsan, M. B. (2023). Impact of Climate Change on Total Factor Productivity of Agriculture in District Multan. Pakistan Journal of Humanities and Social Sciences, 11(2), 2465-2479.
  • García-Ruiz, J. M., López-Moreno, I. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., ve Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3–4), 121–139. https://doi.org/10.1016/j.earscirev.2011.01.006
  • García-Ruiz, J. M., Nadal-Romero, E., Lana-Renault, N., ve Beguería, S. (2013). Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology, 198, 20–36. https://doi.org/10.1016/j.geomorph.2013.05.023
  • Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., Bede, L., Brown, D., Calle, A., Chará, J., Clement, C., Gray, E., Hoang, M. H., Minang, P., Rodríguez, A. M., Seeberg-Elverfeldt, C., Semroc, B., Shames, S., Smukler, S., … Wollenberg, E. (2014). Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture. Conservation Letters, 7(2), 77–90. https://doi.org/10.1111/conl.12066
  • Hemantaranjan, A. (2014). Heat Stress Responses and Thermotolerance. Advances in Plants ve Agriculture Research, 1(3). https://doi.org/10.15406/apar.2014.01.00012
  • Huang, N., Wang, L., Song, X. P., Andrew Black, T., Jassal, R. S., Myneni, R. B., Wu, C., Wang, L., Song, W., Ji, D., Yu, S., ve Niu, Z. (2020). Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances, 6(41). https://doi.org/10.1126/sciadv.abb8508
  • IPCC Panel. (2014). Climate Change 2014: Synthesis Report.
  • Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., ve de Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231. https://doi.org/10.1016/j.rse.2019.111260
  • Jat, M. L., Chakraborty, D., Ladha, J. K., Rana, D. S., Gathala, M. K., McDonald, A., ve Gerard, B. (2020). Conservation agriculture for sustainable intensification in South Asia. Nature Sustainability, 3(4), 336–343. https://doi.org/10.1038/s41893-020-0500-2
  • Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., … Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954. https://doi.org/10.1038/nature09396
  • Kılıç, M., Gündoğan, R., ve Günal, H. (2023). An Illustration of A Sustainable Agricultural Land Suitability Assessment System with A Land Degradation Sensitivity. Environment, Development and Sustainability, 1–30.
  • Kılıç, M., ve Gündoğan, R. (2022). Comparison of Recent Remote Sensing Data Using an Artificial Neural Network to Predict Soil Moisture by Focusing on Radiometric Indices. Turkish Journal of Agriculture - Food Science and Technology, 10(12), 2438–2445. https://doi.org/10.24925/turjaf.v10i12.2438-2445.5477
  • KULBAKA, V. (2020). Conceptual Fundamentals of Agricultural Land Use Formation in Conditions of Sustainable Development. Ukrainian Journal of Applied Economics, 5(2), 282–288. https://doi.org/10.36887/2415-8453-2020-2-33
  • Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212–222. https://doi.org/10.1002/fes3.96
  • Li, C., Li, Z., Yang, M., Ma, B., ve Wang, B. (2021). Article grid-scale impact of climate change and human influence on soil erosion within east african highlands (Kagera basin). International Journal of Environmental Research and Public Health, 18(5), 1–17. https://doi.org/10.3390/ijerph18052775
  • Li, Z., Deng, X., Wu, F., ve Hasan, S. S. (2015). Scenario analysis for water resources in response to land use change in the middle and upper reaches of the heihe river Basin. Sustainability (Switzerland), 7(3), 3086–3108. https://doi.org/10.3390/su7033086
  • Li, Z., Xu, Y., Sun, Y., Wu, M., ve Zhao, B. (2020). Urbanization-driven changes in land-climate dynamics: A case study of Haihe River Basin, China. Remote Sensing, 12(17). https://doi.org/10.3390/RS12172701
  • Liu, B., Asseng, S., Liu, L., Tang, L., Cao, W., ve Zhu, Y. (2016). Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 22(5), 1890–1903. https://doi.org/10.1111/gcb.13212
  • Liu, Z., Ballantyne, A. P., ve Cooper, L. A. (2019). Biophysical feedback of global forest fires on surface temperature. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08237-z
  • Loo, Y. Y., Billa, L., ve Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817–823. https://doi.org/10.1016/j.gsf.2014.02.009
  • Lyu, Y., Shi, P., Han, G., Liu, L., Guo, L., Hu, X., ve Zhang, G. (2020). Desertification control practices in China. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083258
  • Maheshwari, C., Garg, N. K., Hasan, M., Prathap, V., Meena, N. L., Singh, A., ve Tyagi, A. (2022). Insight of PBZ mediated drought amelioration in crop plants. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1008993
  • Mantyka-Pringle, C. S., Visconti, P., Di Marco, M., Martin, T. G., Rondinini, C., ve Rhodes, J. R. (2015). Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 187, 103–111. https://doi.org/10.1016/j.biocon.2015.04.016
  • Middendorf, B. J., Faye, A., Middendorf, G., Stewart, Z. P., Jha, P. K., ve Prasad, P. V. V. (2021). Smallholder farmer perceptions about the impact of COVID-19 on agriculture and livelihoods in Senegal. Agricultural Systems, 190. https://doi.org/10.1016/j.agsy.2021.103108
  • Molua, E. L. (2014). Land Management for Sustainable Agriculture Under Climate Change in the Congo-Basin Countries of Central Africa. Environment and Natural Resources Research, 4(4). https://doi.org/10.5539/enrr.v4n4p178
  • Mushtaq, S., Maraseni, T. N., ve Reardon-Smith, K. (2013). Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology. Agricultural Systems, 117, 78–89. https://doi.org/10.1016/j.agsy.2012.12.009
  • Niels, H. B. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(June), 151–163.
  • Özyol, K. (2022). Çölleşmenin ekosisteme etkileri ve çölleşmeyi tersine çevirme yolunda sürdürülebilir tarımın önemi. Anadolu Orman Araştırmaları Dergisi, 8(1), 113–122. https://doi.org/10.53516/ajfr.1060466
  • Pan, J., Wang, J., Zhou, Z., Yan, Y., Zhang, W., Lu, W., Ping, S., Dai, Q., Yuan, M., Feng, B., Hou, X., Zhang, Y., Ma, R., Liu, T., Feng, L., Wang, L., Chen, M., ve Lin, M. (2009). IrrE, a global regulator of extreme radiation resistance in deinococcus radiodurans, enhances salt tolerance in escherichia coli and brassica napus. PLoS ONE, 4(2). https://doi.org/10.1371/journal.pone.0004422
  • Parnell, S., ve Pieterse, E. (2010). The ‘Right to the City’: Institutional Imperatives of a Developmental State. International Journal of Urban and Regional Research, 34(1), 146–162. https://doi.org/10.1111/j.1468-2427.2010.00954.x
  • Pruski, F. F., ve Nearing, M. A. (2002). Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resources Research, 38(12), 34-1-34–11. https://doi.org/10.1029/2001wr000493
  • Reed, M. S., Podesta, G., Fazey, I., Geeson, N., Hessel, R., Hubacek, K., Letson, D., Nainggolan, D., Prell, C., Rickenbach, M. G., Ritsema, C., Schwilch, G., Stringer, L. C., ve Thomas, A. D. (2013). Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options. Ecological Economics, 94, 66–77. https://doi.org/10.1016/j.ecolecon.2013.07.007
  • Regmi, P. P., ve Weber, K. E. (2000). Problems to agricultural sustainability in developing countries and a potential solution: diversity. International Journal of Social Economics, 27(7/8/9/10), 788–801. https://doi.org/10.1108/03068290010335226
  • Rezaei, E. E., Siebert, S., ve Ewert, F. (2015). Intensity of heat stress in winter wheat - Phenology compensates for the adverse effect of global warming. Environmental Research Letters, 10(2). https://doi.org/10.1088/1748-9326/10/2/024012
  • Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., ve Helkowski, J. H. (2009). Effects of global irrigation on the near-surface climate. Climate Dynamics, 33(2–3), 159–175. https://doi.org/10.1007/s00382-008-0445-z Sahoo, P. K., ve Sharma, D. (2023). Economic impact of artificial intelligence in the field of agriculture. International Journal of Horticulture and Food Science, 5(1), 29–34. https://doi.org/10.33545/26631067.2023.v5.i1a.152
  • Saran, A., Singh, S., Gupta, N., Walke, S. C., Rao, R., Simiyu, C., Malhotra, S., Mishra, A., Puskur, R., Masset, E., White, H., ve Sharma Waddington, H. (2022). PROTOCOL: Interventions promoting resilience through climate-smart agricultural practices for women farmers: A systematic review. Campbell Systematic Reviews, 18(3). https://doi.org/10.1002/cl2.1274
  • Savary, S., Akter, S., Almekinders, C., Harris, J., Korsten, L., Rötter, R., Waddington, S., ve Watson, D. (2020). Mapping disruption and resilience mechanisms in food systems. Food Security, 12(4), 695–717. https://doi.org/10.1007/s12571-020-01093-0
  • Shahid, S. A., ve Al-Shankiti, A. (2013). Sustainable food production in marginal lands—Case of GDLA member countries. International Soil and Water Conservation Research, 1(1), 24–38. https://doi.org/10.1016/S2095-6339(15)30047-2
  • Sillmann, J., Kharin, V., Zwiers, W., Zhang, X., ve Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118(6), 2473–2493.
  • Solomon, B. D. (2023). Intergovernmental Panel on Climate Change (IPCC). In Dictionary of Ecological Economics. https://doi.org/10.4337/9781788974912.i.50
  • Szabo, S., Hossain, M. S., Adger, W. N., Matthews, Z., Ahmed, S., Lázár, A. N., ve Ahmad, S. (2016). Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustainability Science, 11(3), 411–421. https://doi.org/10.1007/s11625-015-0337-1
  • Teng, H., Liang, Z., Chen, S., Liu, Y., Viscarra Rossel, R. A., Chappell, A., Yu, W., ve Shi, Z. (2018). Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment, 635, 673–686. https://doi.org/10.1016/j.scitotenv.2018.04.146
  • van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., Kardol, P., Klironomos, J. N., Kulmatiski, A., Schweitzer, J. A., Suding, K. N., Van de Voorde, T. F. J., ve Wardle, D. A. (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101(2), 265–276. https://doi.org/10.1111/1365-2745.12054
  • Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A., ve Herrick, J. E. (2017). Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. https://doi.org/10.1002/fee.1530
  • Weeraratna, S. (2022). Understanding Land Degradation. Springer International Publishing. https://doi.org/10.1007/978-3-031-12138-8
  • Werling, B. P., Dickson, T. L., Isaacs, R., Gaines, H., Gratton, C., Gross, K. L., Liere, H., Malmstrom, C. M., Meehan, T. D., Ruan, L., Robertson, B. A., Robertson, G. P., Schmidt, T. M., Schrotenboer, A. C., Teal, T. K., Wilson, J. K., ve Landis, D. A. (2014). Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1652–1657. https://doi.org/10.1073/pnas.1309492111
  • Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., Van Der Mensbrugghe, D., Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Van Meijl, H., ve Willenbockel, D. (2015). Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 10(8). https://doi.org/10.1088/1748-9326/10/8/085010
  • Xiao, C., Janssens, I. A., Liu, P., Zhou, Z., ve Sun, O. J. (2007). Irrigation and enhanced soil carbon input effects on below-ground carbon cycling in semiarid temperate grasslands. New Phytologist, 174(4), 835–846. https://doi.org/10.1111/j.1469-8137.2007.02054.x
  • Xu, P., Guo, Y., ve Fu, B. (2019). Regional impacts of climate and land cover on ecosystemwater retention services in the Upper Yangtze River Basin. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195300
  • Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K. M., ve Chandra Nayak, S. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182–207. https://doi.org/10.1093/femsre/fuv045
  • Ziadat, F. M., ve Taimeh, A. Y. (2013). Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation and Development, 24(6), 582–590. https://doi.org/10.1002/ldr.2239
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Arazi Üretim Kapasitesi ve Toprak Verimliliği
Bölüm Derlemeler
Yazarlar

Ahmet Çelik 0000-0001-8958-4978

Abdullah Atum 0009-0007-4747-4501

Miraç Kiliç 0000-0001-8026-5540

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 17 Temmuz 2024
Kabul Tarihi 2 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: 2

Kaynak Göster

APA Çelik, A., Atum, A., & Kiliç, M. (2024). Sürdürülebı̇lı̇r Arazı̇ Kullanımı Perspektı̇fı̇nde İklı̇m Değı̇şı̇klı̇ğı̇ ve Arazı̇ Bozunumu. Özal Tarım Ve Gıda Bilimleri Dergisi, 1(2), 98-113.