Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 1 Sayı: 2, 1 - 51, 31.12.2020

Öz

Kaynakça

  • [1] World Health Organization. “Cancer”. Who.int. https://www.who.int/health-topics/cancer#tab=tab_1 (accessed November 27, 2020).
  • [2] D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell, vol. 144, no. 5, pp. 646-674, Mar. 2011, doi: 10.1016/j.cell.2011.02.013.
  • [3] Z. Abbas and S. Rehman, “An Overview of Cancer Treatment Modalities,” in Neoplasm, H. N. Shahzad, Ed. United Kingdom: IntechOpen, 2018, pp. 139-157.
  • [4] P. Kanavos, “The rising burden of cancer in the developing world,” Ann. Oncol., vol. 17, no. 8, pp. viii15-viii23, Jul. 2006, doi: 10.1093/annonc/mdl983.
  • [5] National Cancer Institute. “Cancer Statistics”. Cancer.gov. https://www.cancer.gov/about-cancer/understanding/statistics (accessed November 28, 2020).
  • [6] American Cancer Society, “Cancer Facts & Figures 2020,” 2020. [Online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020 (accessed November 28, 2020).
  • [7] A. Kumar and V. Jaitak, “Natural products as multidrug resistance modulators in cancer,” Eur. J. Med. Chem., vol. 176, pp. 268-291, May 2019, doi: 10.1016/j.ejmech.2019.05.027.
  • [8] I. Valle, D. Tramalloni, N. L. Bragazzi, “Cancer prevention: state of the art and future prospects,” J. Rev. Med. Hyg., vol. 56, no. 1, pp. E21-E27, Mar. 2015.
  • [9] M. F. Ullah, “Cancer Multidrug Resistance (MDR): A Major Impediment to Effective Chemotherapy,” Asian Pac. J. Cancer Prev., vol. 9, no. 1, pp. 1-6, Jan.-Mar. 2008.
  • [10] R. Briffa, S. P. Langdon, G. Grech, D. J. Harrison, “Acquired and Intrinsic Resistance to Colorectal Cancer Treatment”, in Colorectal Cancer-Diagnosis, Screening and Management, J. Chen, Ed. United Kingdom: IntechOpen, 2017, pp. 57-81.
  • [11] S. K. Gupta, P. Singh, V. Ali, M. Verma, “Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy,” Oncol. Rev., vol. 14, no. 2, p. 448, Jul. 2020. doi: 10.4081/oncol.2020.448.
  • [12] R-J. Ju, L-M. Mu, W.-L. Lu, “Targeting drug delivery systems for circumventing multidrug resistance of cancers,” Ther. Deliv. vol. 4, no. 6, pp. 667-671, Jun. 2013. doi: 10.4155/tde.13.39.
  • [13] M. Saraswathy and S. Gong, “Different strategies to overcome multidrug resistance in cancer,” Biotechnol. Adv., vol. 31, no. 8, pp. 1397-1407, Dec. 2013. doi: 10.1016/j.biotechadv.2013.06.004.
  • [14] T. H. Lippert, H.-J. Ruoff, M. Volm, “Intrinsic and Acquired Drug Resistance in Malignant Tumors,” Arzneimittelforschung, vol. 58, no. 6, pp. 261-264, Feb. 2008. doi: 10.1055/s-0031-1296504.
  • [15] A. Rose-James, T. T. Sreelekha, S. K. George, “Nano strategies in the war against multidrug resistance in leukemia,” OncoDrugs, vol. 1, no. 1, pp. 3e-9e, Dec. 2013.
  • [16] J. Wang, N. Seebacher, H. Shi, Q. Kan, Z. Duan, “Novel strategies to prevent the development of multidrug resistance (MDR) in cancer,” Oncotarget, vol. 8, no. 48, pp. 84559-84571, Jul. 2017. doi: 10.18632/oncotarget.19187.
  • [17] S. Tuncer, “Drug Delivery With Nanoparticles To Multi-Drug Resistance Cancer Cell Line,” M.Sc. dissertation, Dept. Nanotechnology and Nanomedicine, Hacettepe Univ., Ankara, 2014.
  • [18] O. Fapohunda and D. C. Ajayi, “Cancer cell metabolism resulting in multidrug resistance to chemotherapy and possible ways out,” J. Cancer Prev. Curr. Res., vol. 11, no. 3, pp. 64-70, Jun. 2020. doi: 10.15406/jcpcr.2020.11.00429.
  • [19] A. Zargar, S. Chang, A. Kothari, A. M. Snijders, J.-H. Mao et. al., “Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy,” CDTM, vol. 5, no. 4, pp. 258-266, Dec. 2019. doi: 10.1016/j.cdtm.2019.11.001.
  • [20] X.-J. Liang, C. Chen, Y. Zhao, P. C. Wang, “Circumventing Tumor Resistance to Chemotherapy by Nanotechnology,” Methods Mol Biol., vol. 596, pp. 467-488, Mar. 2010. doi: 10.1007/978-1-60761-416-6_21.
  • [21] V. Schirrmacher, “From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review),” Int. J. Oncol., vol. 54, no. 2, pp. 407-419, Dec. 2019. doi: 10.3892/ijo.2018.4661.
  • [22] S. A. Mirzaei, S. Reiisi, P. G. Tabari, A. Shekari, F. Aliakbari et. al., “Broad blocking of MDR efflux pumps by acetylshikonin and acetoxyisovalerylshikonin to generate hypersensitive phenotype of malignant carcinoma cells,” Sci. Rep., vol. 8, no. 1, p. 3446, Feb. 2018. doi: 10.1038/s41598-018-21710-5.
  • [23] Z. Chen, T. Shi, L. Zhang, M. Deng, C. Huang, “Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade,” Cancer Lett., vol. 370, no. 1, pp. 153-164, Jan. 2016. doi: 10.1016/j.canlet.2015.10.010.
  • [24] T. Haider, V. Pandey, N. Banjare, P. N. Gupta, V. Soni, “Drug resistance in cancer: mechanisms and tackling strategies,” Pharmacol. Rep., vol. 72, pp. 1125-1151, Jul. 2020. doi: 10.1007/s43440-020-00138-7.
  • [25] C. S. Chambers, J. Viktorová, K. Řehořová, D. Biedermann, L. Turková, “Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans,” J. Agric. Food Chem., vol. 68, no. 7, pp. 1763-1779, Feb. 2020. doi: 10.1021/acs.jafc.9b00694.
  • [26] K. Bukowski, M. Kciuk, R. Kontek, “Mechanisms of Multidrug Resistance in Cancer Chemotherapy,” Int. J. Mol. Sci., vol. 21, no. 9, p. 3233, May 2020. doi: 10.3390/ijms21093233.
  • [27] S. Wu and L. Fu, “Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells,” Mol. Cancer, vol. 17, no. 1, p. 25, Feb. 2018. doi: 10.1186/s12943-018-0775-3.
  • [28] A. C. Jaramillo, F. A. Saig, J. Cloos, G. Jansen, G. J. Peters et. al., “How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance?”, Cancer Drug Resist., vol. 1, pp. 6-29, Mar. 2018. doi: 10.20517/cdr.2018.02.
  • [29] M. Liscovitch and Y. Lavie, “Cancer multidrug resistance: a review of recent drug discovery research, IDrugs, vol. 5, no. 4, pp. 349-355, Apr. 2002.
  • [30] W. An, H. Lai, Y. Zhang, M. Liu, X. Lin, “Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines,” Front. Pharmacol., vol. 10, p. 758, Jul. 2019. doi: 10.3389/fphar.2019.00758.
  • [31] S.-T. Pan, Z.-L. Li, Z.-X. He, J.-X. Qiu, S.-F. Zhou, “Molecular mechanisms for tumour resistance to chemotherapy,” Clin. Exp. Pharmacol. Physiol., vol. 43, no. 8, pp. 723-737, Apr. 2016. doi: 10.1111/1440-1681.12581.
  • [32] B. L. Y. Kwan and V. W. K. Wai, “Autophagy in Multidrug-Resistant Cancers,” in Autophagy in Current Trends in Cellular Physiology and Pathology, N. V. Gorbunov, Ed. United Kingdom: IntechOpen, 2016, pp. 435-454.
  • [33] G. Pistritto, D. Trisciuoglio, C. Ceci, A. Garufi, G. D’Orazi, “Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies,” Aging, vol. 8, no. 4, pp. 603-619, Apr. 2016. doi: 10.18632/aging.100934.
  • [34] C. M. Pfeffer and A. T. K. Singh, “Apoptosis: A Target for Anticancer Therapy,” Int. J. Mol. Sci., vol. 19, no. 2, p. 448, Feb. 2018. doi: 10.3390/ijms19020448.
  • [35] J. G. Alvarez-Meythaler, Y. Garcia-Mayea, C. Mir, H. Kondoh, M. E. LLeonart, “Autophagy Takes Center Stage as a Possible Cancer Hallmark,” Front. Oncol., vol. 10, p. 586069, Oct. 2020. doi: 10.3389/fonc.2020.586069.
  • [36] X. Hou, J. Jiang, Z. Tian, L. Wei, “Autophagy and Tumour Chemotherapy,” in Autophagy: Biology and Diseases - Clinical Science, W. Le, Ed. Singapore: Springer, 2020, pp. 351-374.
  • [37] Y.‑J. Li, Y.‑H. Lei, N. Yao, C.-R. Wang, N. Hu et. al., “Autophagy and multidrug resistance in cancer,” Chin. J. Cancer, vol. 36, p. 52, Jun. 2017. doi: 10.1186/s40880-017-0219-2.
  • [38] J. M. M. Levy and A. Thorburn, “Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients,” Cell Death Differ., vol. 27, no. 3, pp. 1-15, Dec. 2019. doi: 10.1038/s41418-019-0474-7.
  • [39] S. Nagini, P. Manikandan, R. R. Malla, “The Autophagy Conundrum in Cancer Development, Progression and Therapeutics,” in Autophagy in Tumor and Tumor Microenvironment, S. K. Bhutia, Ed. Singapore: Springer, 2020, pp. 223-247.
  • [40] H. Chang and Z. Zou, “Targeting autophagy to overcome drug resistance: further developments,” J. Hematol. Oncol., vol. 13, p. 159, Nov. 2020. doi: 10.1186/s13045-020-01000-2.
  • [41] F. Cuomo, L. Altucci, G. Cobellis, “Autophagy Function and Dysfunction: Potential Drugs as Anti-Cancer Therapy,” Cancers (Basel), vol. 11, no. 10, p. 1465, Sep. 2019. doi: 10.3390/cancers11101465.
  • [42] A. S. Rodrigues, B. C. Gomes, C. Martins, M. Gromicho, N. G. Oliveira et. al., “DNA Repair and Resistance to Cancer Therapy,” in New Research Directions in DNA Repair, C. Chen, Ed. United Kingdom: IntechOpen, 2013, pp. 489-528.
  • [43] C. J. Link Jr. and V. A. Bohr, “DNA repair in drug resistance: Studies on the repair process at the level of the gene,” in Molecular and Clinical Advances in Anticancer Drug Resistance, R. F. Ozols, Ed. New York: Springer, 1991, pp. 209-232.
  • [44] A. Torgovnick and B. Schumacher, “DNA repair mechanisms in cancer development and therapy,” Front. Genet., vol. 6, p. 157, Apr. 2015. doi: 10.3389/fgene.2015.00157.
  • [45] L. Wang, A. J. Mosel, G. G. Oakley, A. Peng, “Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer,” Mol. Cancer. Ther., vol. 11, no. 11, pp. 2401-2409, Nov. 2012. doi: 10.1158/1535-7163.MCT-12-0448.
  • [46] J.-P. Gillet and M. M. Gottesman, “Mechanisms of Multidrug Resistance in Cancer,” in Cancer, Methods in Molecular Biology, J. M. Walker, Ed. United States: Springer, 2010, pp. 47-76.
  • [47] S. Sato and H. Itamoch, “DNA Repair and Chemotherapy,” in Advances in DNA Repair, C. C. Chen, Ed. United Kingdom: IntechOpen, 2015, pp. 359-380.
  • [48] N. Hosoya and K. Miyagawa, “Targeting DNA damage response in cancer therapy,” Cancer Sci., vol. 105, pp. 370-388, Jan. 2014. doi: 10.1111/cas.12366.
  • [49] N. E. Muvarak, K. Chowdhury, L. Xia, C. Robert, E. Y. Choi et. al., “Enhancing the Cytotoxic Effects of PARP Inhibitors with DNA Demethylating Agents - A Potential Therapy for Cancer,” Cancer Cell, vol. 30, pp. 637-650, Oct. 2016. doi: 10.1016/j.ccell.2016.09.002.
  • [50] S. Liu, Y. Ge, T. Wang, H. Edwards, Q. Ren et. al., “Inhibition of ATR potentiates the cytotoxic effect of gemcitabine on pancreatic cancer cells through enhancement of DNA damage and abrogation of ribonucleotide reductase induction by gemcitabine,” Oncol. Rep., vol. 37, pp. 3377-3386, Mar. 2017. doi: 10.3892/or.2017.5580.
  • [51] X. An, C. Sarmiento, T. Tan, H. Zhu, “Regulation of multidrug resistance by microRNAs in anti-cancer therapy,” Acta Pharm. Sin. B., vol. 7, no. 1, pp. 38-51, Jul. 2017. doi: 10.1016/j.apsb.2016.09.002.
  • [52] V. S. Jones, R.-Y. Huang, L.-P. Chen, Z.-S. Chen, L. Fu et. al., “Cytokines in cancer drug resistance: Cues to new therapeutic strategies,” Biochim. Biophys. Acta, vol. 1865, pp. 255-265, Mar. 2016. doi: 10.1016/j.bbcan.2016.03.005.
  • [53] E. C. Aniogo, B. P. A. George, H. Abrahamse, “The role of photodynamic therapy on multidrug resistant breast cancer,” Cancer Cell Int., vol. 19, p. 91, Apr. 2019. doi: 10.1186/s12935-019-0815-0.
  • [54] T. Ozben, “Mechanisms and strategies to overcome multiple drug resistance in cancer,” FEBS Lett., vol. 580, pp. 2903-2909, Feb. 2006. doi: 10.1016/j.febslet.2006.02.020.
  • [55] Y. Cho and Y. K. Kim, “Cancer Stem Cells as a Potential Target to Overcome Multidrug Resistance,” Front Oncol., vol. 10, p. 764, Jun. 2020. doi: 10.3389/fonc.2020.00764.
  • [56] S. M. Stefan, “Multi-target ABC transporter modulators: what next and where to go?,” Future Med.Chem., vol. 11, no. 18, pp. 2353-2358, Sept. 2019. doi: 10.4155/fmc-2019-0185.
  • [57] M. Falasca and K. J. Linton, “Investigational ABC transporter inhibitors,” Expert Opin. Investig. Drugs, vol. 21, no. 5, pp. 657-666, May 2012. doi: 10.1517/13543784.2012.679339.
  • [58] A. K. Nanayakkara, C. A. Follit, G. Chen, N. S. Williams, P. D. Vogel et. al., “Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells,” Sci. Rep., vol. 8, p. 967, Jan. 2018. doi: 10.1038/s41598-018-19325-x.
  • [59] I. S. Mohammad, W. He, L. Yin, “Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR,” Biomed. Pharmacother., vol. 100, pp. 335-348, Apr. 2018. doi: 10.1016/j.biopha.2018.02.038.
  • [60] B. M. F. Gonçalves, D. S. P. Cardoso, M.-J. U. Ferreira, “Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators,” Molecules, vol. 25, p. 3364, Jul. 2020. doi: 10.3390/molecules25153364.
  • [61] Y. H. Choi, A.-M. Yu, “ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development,” Curr. Pharm. Des., vol. 20, no. 5, pp. 793-807, Jan. 2014.
  • [62] A. R. Hamed, N. S. Abdel-Azim, K. A. Shams, F. M. Hammouda, “Targeting multidrug resistance in cancer by natural chemosensitizers,” Bull. Natl. Res. Cent., vol. 43, p. 8, Jan. 2019. doi: 10.1186/s42269-019-0043-8.
  • [63] H. M. Coley, “Overcoming Multidrug Resistance in Cancer: Clinical Studies of P-Glycoprotein Inhibitors,” in Cancer, Methods in Molecular Biology, J. M. Walker, Ed. United States: Springer, 2010, pp. 341-358.
  • [64] X.-D. Dong, M. Zhang, X. Ma, J.-Q. Wang, Z.-N. Lei et. al., “Bruton’s Tyrosine Kinase (BTK) Inhibitor RN486 Overcomes ABCB1-Mediated Multidrug Resistance in Cancer Cells,” Front. Cell Dev. Biol., vol. 8, p. 865, Aug. 2020. doi: 10.3389/fcell.2020.00865.
  • [65] Z. Zhao, M. Ji, Q. Wang, N. He, Y. Li, “Ca2+ signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer,” Carbohydr. Polym., vol. 238, p. 116073, Feb. 2020. doi: 10.1016/j.carbpol.2020.116073.
  • [66] S. Sinha, S. Sharma, J. Vora, N. Shrivastava, “Emerging role of sirtuins in breast cancer metastasis and multidrug resistance: Implication for novel therapeutic strategies targeting sirtuins,” Pharmacol. Res., vol. 158, p. 104880, May 2020. doi: 10.1016/j.phrs.2020.104880.
  • [67] S. Pramual, K. Lirdprapamongkol, V. Jouan-Hureaux, M. Barberi-Heyob, C. Frochot et. al., “Overcoming the diverse mechanisms of multidrug resistance in lung cancer cells by photodynamic therapy using pTHPP-loaded PLGA-lipid hybrid nanoparticles,” Eur. J. Pharm. Biopharm., vol. 149, pp. 218-228, Feb. 2020. doi: 10.1016/j.ejpb.2020.02.012.
  • [68] J. Yang, D. Sontag, Y. Gong, G. Y. Minuk, “Enhanced Gemcitabine Cytotoxicity with Knockdown of Multidrug Resistance Protein Genes in Human Cholangiocarcinoma Cell Lines,” J. Gastroenterol. Hepatol., Oct. 2020. doi: 10.1111/jgh.15289.
  • [69] C. Martinelli and M. Biglietti “Nanotechnological approaches for counteracting multidrug resistance in cancer” Cancer Drug Resist., Oct. 2020. doi: 10.20517/cdr.2020.47.
  • [70] W. Lin, Y. Miao, X. Meng, Y. Huang, W. Zhao et. al., “miRNA-765 mediates multidrug resistance via targeting BATF2 in gastric cancer cells,” FEBS Open Bio., vol. 10, no. 6, pp. 1021-1030, Jun. 2020. doi: 10.1002/2211-5463.12838.
  • [71] W. Ma, Q. Chen, W, Xu, M, Yu, Y. Yang et. al., “Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer,” Nano Res., Nov. 2020. doi: 10.1007 / s12274-020-3124-y.
  • [72] M. Majidinia, M. Mirza-Aghazadeh-Attari, M. Rahimi, A. Mihanfar, A. Karimian et. al., “Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons,” IUBMB Life., vol. 72, no. 5, pp. 855-871, May 2020. doi: 10.1002/iub.2215.
  • [73] J. Yu, F. Hu, Q. Zhu, X. Li, H. Ren et. al., “ PD-L1 monoclonal antibody-decorated nanoliposomes loaded with Paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers,” Nanoscale Res. Lett., vol. 15, no. 1, p. 59, Mar. 2020. doi: 10.1186/s11671-019-3228-z.
  • [74] Q.-X. Teng, X. Luo, Z.-N. Lei, J.-Q. Wang, J. Wurpel et. al., “The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide,” Cancers (Basel), vol. 12, no. 7, p. 1963, Jul. 2020. doi: 10.3390/cancers12071963.
  • [75] J. Hong, S. Jing, Y. Zhang, R. Chen, K. G. Owusu-Ansah et. al., “Y-320, a novel immune-modulator, sensitizes multidrug-resistant tumors to chemotherapy,” Am. J. Transl. Res., vol. 12, no. 2, pp. 551-562, Feb. 2020.
  • [76] M. Lahlou, “The Success of Natural Products in Drug Discovery,” J. Pharm. Pharmacol., vol. 4, pp. 17-31, Jun. 2013. doi: 10.4236/pp.2013.43A003.
  • [77] A. A. Koparde, R. C. Doijad, C. S. Magdum, “Natural Products in Drug Discovery,” in Pharmacognosy - Medicinal Plants, S. Perveen and A. Al-Taweel, Eds. United Kingdom: IntechOpen, 2019, pp. 1-19.
  • [78] E. E. Carlson, “Natural Products as Chemical Probes”, ACS Chem. Biol., vol. 5, no. 7, pp. 639-653, Jul. 2010. doi: 10.1021/cb100105c.
  • [79] S. Dalavelle, V. Dobričić, L. Lazzarato, E. Gazzano, M. Machuqueiro et. al., “Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors,” Drug Resist. Updat., vol. 50, p. 100682, May 2020. doi: 10.1016/j.drup.2020.100682.
  • [80] V. Seidel, “Plant-Derived Chemicals: A Source of Inspiration for New Drugs,” Plants (Basel), vol. 9, no. 11, p. 1562, Nov. 2020. doi: 10.3390/plants9111562.
  • [81] S. Karthikeyan and S. L. Hoti, “Development of Fourth Generation ABC Inhibitors from Natural Products: A Novel Approach to Overcome Cancer Multidrug Resistance,” Anticancer Agents Med. Chem., vol. 15, no. 5, pp. 605-615, Jan. 2015. doi: 0.2174/1871520615666150113103439.
  • [82] A. Ramakrishna and G. A. Ravishankar, “Influence of abiotic stress signals on secondary metabolites in plants,” Plant Signal. Behav., vol. 6, no. 11, pp. 1720-1731, Nov. 2011. doi: 10.4161/psb.6.11.17613.
  • [83] A. M. L. Seca and D. C. G. A. Pinto, “Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application,” Int. J. Mol. Sci., vol. 19, no. 1, p. 263, Jan. 2018. doi: 10.3390/ijms19010263.
  • [84] X. Xue, J.-L. Yu, D.-Q. Sun, W. Zou, F. Kong et. al., “Curcumin as a multidrug resistance modulator - A quick review,” Biomed. Prev. Nutr., vol. 3, no. 2, pp. 173-176, Apr. 2013. doi: 10.1016/j.bionut.2012.12.001.
  • [85] L. Pan, H. Hu, X. Wang, L. Yu, H. Jiang, “Inhibitory Effects of Neochamaejasmin B on P-Glycoprotein in MDCK-hMDR1 Cells and Molecular Docking of NCB Binding in P-Glycoprotein,” Molecules, vol. 20, pp. 2931-2948, Feb. 2015. doi: 10.3390/molecules20022931.
  • [86] M. M. Jucá, F. M. S. C. Filho, J. C. de Almeida, D. da Silva Mesquita, J. R. de Moraes Barriga et. al., “Flavonoids: biological activities and therapeutic potential,” Nat. Prod. Res., vol. 34, no. 5, pp. 692-705, Mar. 2020. doi: 10.1080/14786419.2018.1493588.
  • [87] J. Dinic, A. Podolski-Renic, T. Stankovic, J. Bankovic, M. Pesic, “New Approaches With Natural Product Drugs for Overcoming Multidrug Resistance in Cancer,” Curr. Pharm. Des., vol. 21, no. 38, pp. 5589-5604, Oct. 2015. doi: 10.2174/1381612821666151002113546.
  • [88] A. Ferreira, M. Rodrigues, A. Fortuna, A. Falcão, G. Alves, “Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs,” Food Res. Int., vol. 103, pp. 110-120, Jan. 2018. doi: 10.1016/j.foodres.2017.10.010.
  • [89] M. Saeed, O. Kadioglu, H. Khalid, Y. Sugimoto, T. Efferth, “Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking,” J. Nutr. Biochem., vol. 26, no. 1, pp. 44-56, Jan. 2015. doi: 10.1016/j.jnutbio.2014.09.008.
  • [90] Z. Chen, D. Tian, X. Liao, Y. Zhang, J. Xiao, “Apigenin Combined With Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells,” Front. Pharmacol., vol. 10, p. 260, Mar. 2019. doi: 10.3389/fphar.2019.00260.
  • [91] S. Erdogan, K. Turkekul, R. Serttas, Z. Erdogan, “The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy,” Biomed. Pharmacother., vol. 88, pp. 210-217, Apr. 2017. doi: 10.1016/j.biopha.2017.01.056.
  • [92] A.-M. Gao, X.-Y. Zhang, J.-N. Hu, Z.-P. Ke, “Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis,” Chem. Biol. Interact., vol. 280, pp. 45-50, Jan. 2018. doi: 10.1016/j.cbi.2017.11.020.
  • [93] R. B. Semwal, D. K. Semwal, S. Combrinck, A. Viljoen, “Butein: From ancient traditional remedy to modern nutraceutical,” Phytochem. Lett., vol. 11, pp. 188-201, Dec. 2014. doi: 10.1016/j.phytol.2014.12.014.
  • [94] L. Zhang, X. Yang, X. Li, C. Li, L. Z. Barriga et. al., “Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a,” Int. J. Mol. Med., vol. 36, no. 4, pp. 957-966, Oct. 2015. doi: 10.3892/ijmm.2015.2324.
  • [95] S. J. Hewlings and D. S. Kalman, “Curcumin: A Review of Its Effects on Human Health,” Foods., vol. 6, no. 10, p. 92, Oct. 2017. doi: 10.3390/foods6100092.
  • [96] E. Khatoon, K. Banik, C. Harsha, B. L. Sailo, K. K. Thakur et. al., “Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives,” Semin. Cancer Biol., vol. 28, p. S1044-579X(20)30150-4, Jun. 2020. doi: 10.1016/j.semcancer.2020.06.014.
  • [97] H. Mahammedi, E. Planchat, M. Pouget, X. Durando, H. Curé et. al., “The New Combination Docetaxel, Prednisone and Curcumin in Patients with Castration-Resistant Prostate Cancer: A Pilot Phase II Study,” Oncology, vol. 90, no. 2, pp. 69-78, Jan. 2016. doi: 10.1159/000441148.
  • [98] S. H. Shahcheraghi, M. Zangui, M. Lotfi, M. Ghayour-Mobarhan, A. Ghorbani et. al., “Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme,” Curr. Pharm. Des., vol. 25, no. 3, pp. 333-342, Jan. 2019. doi: 10.2174/1381612825666190313123704.
  • [99] K. S. Park, S. Y. Yoon, S. H. Park, J. H. Hwang, “Anti-Migration and Anti-Invasion Effects of Curcumin via Suppression of Fascin Expression in Glioblastoma Cells,” Brain Tumor Res. Treat., vol. 7, no. 1, pp. 16-24, Apr. 2019. doi: 10.14791/btrt.2019.7.e28.
  • [100] W. Li, W. Yang, Y. Liu, S. Chen, S. Chin et. al., “MicroRNA-378 enhances inhibitory effect of curcumin on glioblastoma,” Oncotarget, vol. 8, no. 43, pp. 73938-73946, May 2017. doi: 10.18632/oncotarget.17881.
  • [101] Z. C. Gersey, G. A. Rodriguez, E. Barbarite, A. Sanchez, W. M. Walters et. al., “Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species,” BMC Cancer, vol. 17, no. 1, p. 99, Feb. 2017. doi: 10.1186/s12885-017-3058-2.
  • [102] J. Shen, Y.-J. Chen, Y.-W. Jia, W.-Y. Zhao, G.-H. Chen et. al., “Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell,” Asian Pac. J. Trop. Med., vol. 10, no. 12, pp. 1190-1196, Dec. 2017. doi: 10.1016/j.apjtm.2017.10.028.
  • [103] S. Keyvani-Ghamsari, K. Khorsandi, A. Gul, “Curcumin effect on cancer cells' multidrug resistance: An update,” Phytother. Res., vol. 34, no. 10, pp. 2534-2556, Oct. 2020. doi: 10.1002/ptr.6703.
  • [104] B. Wang, X. Liu, Y. Teng, T. Yu, J. Chen et. al., “Improving anti-melanoma effect of curcumin by biodegradable nanoparticles,” Oncotarget, vol. 8, no. 65, pp. 108624-108642, Aug. 2017. doi: 10.18632/oncotarget.20585.
  • [105] Y. Li, S. M. Meeran, T. O. Tollefsbol, “Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression,” Sci. Rep., vol. 7, no. 1, p. 9345, Aug. 2017. doi: 10.1038/s41598-017-09764-3.
  • [106] B. N. Prashanth Kumar, N. Puvvada, S. Rajput, S. Sarkar, M. K. Mahto et. al., “Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica-Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer,” Mol. Pharm., vol. 15, no. 7, pp. 2698-2713, Jul. 2018. doi: 10.1021/acs.molpharmaceut.8b00218.
  • [107] W. Zhang, W. Zhang, L. Sun, L. Xiang, X. Lai et. al., “The effects and mechanisms of epigallocatechin-3-gallate on reversing multidrug resistance in cancer,” Trends Food Sci. Technol., vol. 93, pp. 221-233, Sept. 2019. doi: 10.1016/j.tifs.2019.09.017.
  • [108] C. T. Le, W. P. J. Leenders, R. J. Molenaar, C. J. F. van Noorden et. al., “Effects of the Green Tea Polyphenol Epigallocatechin-3-Gallate on Glioma: A Critical Evaluation of the Literature,” Nutr. Cancer, vol. 70, no. 3, pp. 317-333, Apr. 2018. doi: 10.1080/01635581.2018.1446090.
  • [109] N. Khan, D. N. Syed, N. Ahmad, H. Mukhtar, “Fisetin: a dietary antioxidant for health promotion,” Antioxid. Redox Signal., vol. 19, no. 2, pp. 151-162, Jul. 2013. doi: 10.1089/ars.2012.4901.
  • [110] M.-T. Lin, C.-L. Lin, T.-Y. Lin, C.-W. Cheng, S.-F. Yang et. al., “Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway,” Tumour Biol., vol. 37, no. 5, pp. 6987-6996, May 2016. doi: 10.1007/s13277-015-4526-4.
  • [111] L.-B. Jeng, B. K. Velmurugan, M.-C. Chen, H.-H. Hsu, T.-J. Ho et. al., “Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo,” J. Cell Physiol., vol. 233, no. 9, pp. 7134-7142, Sept. 2018. doi: 10.1002/jcp.26532.
  • [112] A. A. Ganai and H. Farooqi, “Bioactivity of genistein: A review of in vitro and in vivo studies,” Biomed. Pharmacother., vol. 76, pp. 30-38, Dec. 2015. doi: 10.1016/j.biopha.2015.
  • [113] S. Pintova, S. Dharmupari, E. Moshier, N. Zubizarreta, C. Ang et. al., “Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: phase I/II pilot study,” Cancer Chemother. Pharmacol., vol. 84, no.3, pp. 591-598, Sept. 2019. doi: 10.1007/s00280-019-03886-3.
  • [114] S.-L. Huang, T.-C. Chang, C. C. K. Chao, N.-K. Sun, “Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells,” Biochem. Pharmacol., vol. 177, p. 113965, Jul. 2020. doi: 10.1016/j.bcp.2020.113965.
  • [115] S. Kandakumar and V. Manju, “Pharmacological Applications of Isorhamnetin: A Short Review,” Int. J. Trend Res. Dev., vol. 1, no. 4, pp. 672-678, Jun. 2017.
  • [116] K. A. Manu, M. K. Shanmugam, L. Ramachandran, F. Li, K. S. Siveen et. al., “Corrigendum on "Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-κB signaling cascade in gastric cancer,” Cancer Lett., vol. 28, no. 420, p. 259, Apr. 2018. doi: 10.1016/j.canlet.2018.01.003.
  • [117] J. Wang, X. Fang, L. Ge, F. Cao, L. Zhao et. al., “Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol,” PLoS One, vol. 13, no. 5, p. e0197563, May 2018. doi: 10.1371/journal.pone.0197563.
  • [118] M. Moradzadeh, A. Tabarraei, H. R. Sadeghnia, A. Ghorbani, A. Mohamadkhani et. al., “Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes,” J. Cell Biochem., vol. 119, no. 2, pp. 2288-2297, Feb. 2018. doi: 10.1002/jcb.26391.
  • [119] B. Nair, R. J. Anto, S. M. L. R. Nath, “Kaempferol-Mediated Sensitization Enhances Chemotherapeutic Efficacy of Sorafenib Against Hepatocellular Carcinoma: An In Silico and In Vitro Approach,” Adv. Pharm. Bull., vol. 10, no. 3, pp. 472-476, Jul. 2020. doi: 10.34172/apb.2020.058.
  • [120] C.-P. Wu, S. Lusvarghi, S.-H. Hsiao, T.-C. Liu, Y.-Q. Li et. al., “Licochalcone A Selectively Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs,” J. Nat. Prod., vol. 83, no. 5, pp. 1461-1472, May 2020. doi: 10.1021/acs.jnatprod.9b01022.
  • [121] A. V. A. David, R. Arulmoli, S. Parasuraman, “Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid,” Pharmacogn. Rev., vol. 10, no. 20, pp. 84-89, Jul.-Dec. 2016. doi: 10.4103/0973-7847.194044.
  • [122] H. G. Ulusoy and N. Sanlier, “A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities,” Crit. Rev. Food Sci. Nutr., vol. 60, no. 19, pp. 3290-3303, Nov. 2020. doi: 10.1080/10408398.2019.1683810.
  • [123] S. Sun, F. Gong, P. Liu, Q. Miao, “Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway,” Gene, vol. 664, pp. 50-57, Jul. 2018. doi: 10.1016/j.gene.2018.04.045.
  • [124] A. Maruszewska and J. Tarasiuk, “Quercetin Triggers Induction of Apoptotic and Lysosomal Death of Sensitive and Multidrug Resistant Leukaemia HL60 Cells,” Nutr. Cancer, pp. 1-18, Apr. 2020. doi: 10.1080/01635581.2020.1752745.
  • [125] Y. Zhou, J. Zhang, K. Wang, W. Han, X. Wang et. al., “Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter,” Eur. J. Pharmacol., vol. 881, p. 173185, Aug. 2020. doi: 10.1016/j.ejphar.2020.173185.
  • [126] J. Cao, J. Han, H. Xiao, J. Qiao, M. Han, “Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics,” Nutrients, vol. 8, no. 12, p. 762, Dec. 2016. doi: 10.3390/nu8120762.
  • [127] J. Shen, T. Yang, Y. Xu, Y. Luo, X. Zhong, “δ-Tocotrienol, Isolated from Rice Bran, Exerts an Anti-Inflammatory Effect via MAPKs and PPARs Signaling Pathways in Lipopolysaccharide-Stimulated Macrophages,” Int. J. Mol. Sci., vol. 19, no. 10, p. 3022, Oct. 2018. doi: 10.3390/ijms19103022.
  • [128] C. B. Thomsen, R. F. Andersen, K. D. Steffensen, P. Adimi, A. Jakobsen, “Delta tocotrienol in recurrent ovarian cancer. A phase II trial,” Pharmacol. Res., vol. 141, pp. 392-396, Mar. 2019. doi: 10.1016/j.phrs.2019.01.017.
  • [129] I. B. Abubakar, S.-W. Lim, H.-S. Loh, “Synergistic Apoptotic Effects of Tocotrienol Isomers and Acalypha wilkesiana on A549 and U87MG Cancer Cells,” Trop. Life Sci. Res., vol. 29, no. 1, pp. 229-238, Mar. 2018. doi: 10.21315/tlsr2018.29.1.15.
  • [130] J. Saguez, J. Attoumbré, P. Giordanengo, S. Baltora-Rosset, “Biological activities of lignans and neolignans on the aphid Myzus persicae (Sulzer),” Arthropod Plant Interact., vol. 7, pp. 225-233, Nov. 2013. doi: 10.1007/s11829-012-9236-x.
  • [131] S. Su, X. Cheng, M. Wink, “Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells,” Phytomedicine, vol. 22, no. 2, pp. 301-307, Feb. 2015. doi: 10.1016/j.phymed.2014.12.009.
  • [132] A. Rauf, S. Patel, M. Imran, A. Maalik, M. U. Arshad et. al., “Honokiol: An anticancer lignan,” Biomed. Pharmacother., vol. 107, pp. 555-562, Nov. 2018. doi: 10.1016/j.biopha.2018.08.054.
  • [133] C. P. Ong, W. L. Lee, Y. Q. Tang, W. H. Yap, “Honokiol: A Review of Its Anticancer Potential and Mechanisms,” Cancers (Basel), vol. 12, no. 1, pp. 48, Dec. 2019. doi: 10.3390/cancers12010048.
  • [134] S. Kiokias, C. Proestos, V. Oreopoulou, “Phenolic Acids of Plant Origin-A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties,” Foods, vol. 9, no. 4, p. 534, Apr. 2020. doi: 10.3390/foods9040534.
  • [135] Y.-N. Teng, C. C. N. Wang, W.-C. Liao, Y.-H. Lan, C.-C. Hung, “Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein, Molecules, vol. 25, no. 2, p. 247, Jan. 2020. doi: 10.3390/molecules25020247.
  • [136] B. C. Akinwumi, K.-A. M. Bordun, H. D. Anderson, “Biological Activities of Stilbenoids,” Int. J. Mol. Sci., vol. 19, no. 3, p. 792, Mar. 2018. doi: 10.3390/ijms19030792.
  • [137] B. Salehi, A. P. Mishra, M. Nigam, B. Sener, M. Kilic, “Resveratrol: A Double-Edged Sword in Health Benefits,” Biomedicines, vol. 6, no. 3, p. 91, Sept. 2018. doi: 10.3390/biomedicines6030091.
  • [138] X. Guo, Z. Zhao, D. Chen, M. Qiao, F. Wan, “Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors,” Asian J. Pharm. Sci., vol. 14, no. 1, pp. 78-85, Jan. 2019. doi: 10.1016/j.ajps.2018.03.002.
  • [139] E. Sameiyan, A. W. Hayes, G. Karimi, “The effect of medicinal plants on multiple drug resistance through autophagy: A review of in vitro studies,” Eur. J. Pharmacol., vol. 852, pp. 244-253, Jun. 2019. doi: 10.1016/j.ejphar.2019.04.001.
  • [140] N. S. Alamolhodaei, A. M. Tsatsakis, M. Ramezan, A. W. Hayes, G. Karim, “Resveratrol as MDR reversion molecule in breast cancer: An overview,” Food Chem. Toxicol., vol. 103, pp. 223-232, May 2017. doi: 10.1016/j.fct.2017.03.024.
  • [141] L.-Y. Wang, S. Zhao, G.-J. Lv, X.-J. Ma, J.-B. Zhang, “Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer,” World J. Clin. Cases, vol. 8, no. 12, pp. 2425-2437, Jun. 2020. doi: 10.12998/wjcc.v8.i12.2425.
  • [142] H. N. Matsuura and A. G. Fett-Neto, “Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action,” in Plant Toxins, P. Gopalakrishnakone, C. R. Carlini, R. Ligabue-Braun, Eds. Switzerland: Springer, 2017, pp. 243-261.
  • [143] B. Debnath, W. S. Singh, M. Das, S. Goswami, M. K. Singh et. al., “Role of plant alkaloids on human health: A review of biological activities,” Mater. Today Chem., vol. 9, pp. 56-72, May 2018. doi: 10.1016/j.mtchem.2018.05.001.
  • [144] Y. Pan, F. Zhang, Y. Zhao, D. Shao, X. Zheng et. al., “Berberine Enhances Chemosensitivity and Induces Apoptosis Through Dose-orchestrated AMPK Signaling in Breast Cancer,” J. Cancer, vol. 8, no. 9, pp. 1679-1689, Jun. 2017. doi: 10.7150/jca.19106.
  • [145] X. Liu, Q, Ji, N, Ye, H, Sui, L. Zhou et. al., “Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE2 Mediated JAK2/STAT3 Signaling Pathway,” PLoS One, vol. 10, no. 5, p. e0123478, May 2015. doi: 10.1371/journal.pone.0123478.
  • [146] T. Zhu, L.-L. Li, G.-F. Xiao, Q.-Z. Luo, Q.-Z. Liu et. al., “Berberine Increases Doxorubicin Sensitivity by Suppressing STAT3 in Lung Cancer,” Am. J. Chin. Med., vol. 43, no. 7, pp. 1487-1502, Oct. 2015. doi: 10.1142/S0192415X15500846.
  • [147] L. Liu, J. Fan, G. Ai, J. Liu, N. Luo et. al., “Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells,” Biol. Res., vol. 52, no. 1, p. 37, Jul. 2019. doi: 10.1186/s40659-019-0243-6.
  • [148] Y. Pan, D. Shao, Y. Zhao, F. Zhang, X. Zheng et. al., “Berberine Reverses Hypoxia-induced Chemoresistance in Breast Cancer through the Inhibition of AMPK-HIF-1α,” Int. J. Biol. Sci., vol. 13, no. 6, pp. 794-803, Jul. 2017. doi: 10.7150/ijbs.18969.
  • [149] P. P. Kushwaha, A. K. Singh, K. S. Prajapati, M. Shuaib, S. Fayez et. al., “Induction of apoptosis in breast cancer cells by naphthylisoquinoline alkaloids,” Toxicol. Appl. Pharmacol., vol. 409, p. 115297, Dec. 2020. doi: 10.1016/j.taap.2020.115297.
  • [150] D. S. P. Cardoso, A. Kincses, M. Nové, G. Spengler, S. Mulhovo et. al., “Alkylated monoterpene indole alkaloid derivatives as potent P-glycoprotein inhibitors in resistant cancer cells,” Eur. J. Med. Chem., p. 112985, Nov. 2020. doi: 10.1016/j.ejmech.2020.112985.
  • [151] R.-M. Liu, P. Xu, Q. Chen, S.-L. Feng, Y. Xie, “A multiple-targets alkaloid nuciferine overcomes paclitaxel-induced drug resistance in vitro and in vivo,” Phytomedicine, vol. 79, p. 153342, Dec. 2020. doi: 10.1016/j.phymed.2020.153342.
  • [152] S.-Z. Han, H.-X. Liu, L.-Q. Yang, L. de Cui, Y. Xu, “Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB,” Biomed. Pharmacother., vol. 96, pp. 1403-1410, Dec. 2017. doi: 10.1016/j.biopha.2017.11.022.
  • [153] Y.-J. Chen, C.-C. Kuo, L.-L. Ting, L.-S. Lu, Y.-C. Lu et. al., “Piperlongumine inhibits cancer stem cell properties and regulates multiple malignant phenotypes in oral cancer,” Oncol. Lett., vol. 15, no. 2, pp. 1789-1798, Feb. 2018. doi: 10.3892/ol.2017.7486.
  • [154] S. A. A. Abdelfatah and T. Efferth, “Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells,” Phytomedicine, vol. 22, no. 2, pp. 308-318, Feb. 2015. doi: 10.1016/j.phymed.2015.01.002.
  • [155] T. Liu, X. Liu, W. Li, “Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy,” Oncotarget, vol. 7, no. 26, pp. 40800-40815, Jun. 2016. doi: 10.18632/oncotarget.8315.
  • [156] Y.-T. Chang, Y.-C. Lin, L. Sun, W.-C. Liao, C. C. N. Wang et. al., “Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein,” Phytomedicine, vol. 71, p. 153239, Jun. 2020. doi: 10.1016/j.phymed.2020.153239.
  • [157] W.-Y. Tong, “Biotransformation of Terpenoids and Steroids,” in Natural Products, K.G. Ramawat and J. M. Mérillon, Eds. Germany: Springer, 2013, pp. 2733-2759.
  • [158] M. Biradi and K. Hullatti, “Bioactivity guided isolation of cytotoxic terpenoids and steroids from Premna serratifolia,” Pharm. Biol., vol. 55, no. 1, pp. 1375-1379, Dec. 2017. doi: 10.1080/13880209.2017.1301491.
  • [159] N. Gyémánt, M. Tanaka, P. Molnár, J. Deli, L. Mándoky et. al., “Reversal of multidrug resistance of cancer cells in vitro: modification of drug resistance by selected carotenoids,” Anticancer Res., vol. 26, no. 1A, pp. 367-374, Jan.-Feb. 2006.
  • [160] S. Y. Eid, M. Z. El-Readi, M. Wink, “Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters,” Phytomedicine, vol. 19, no. 11, pp. 977-987, Aug. 2012. doi: 10.1016/j.phymed.2012.05.010.
  • [161] S. Y. Eid, M. A. lthubiti, M. E. Abdallah, M. Wink, M. Z. El-Readi, “The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes,” Phytomedicine, vol. 77, p. 153280, Oct. 2020. doi: 10.1016/j.phymed.2020.153280.
  • [162] Y.-N. Teng, M.-J. Sheu, Y.-W. Hsieh, R.-Y. Wang, Y.-C. Chiang et. al., “β-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function,” Phytomedicine, vol. 23, no. 3, pp. 316-323, Mar. 2016. doi: 10.1016/j.phymed.2016.01.008.
  • [163] S. Mafu and P. Zerbe, “Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges,” Phytochem. Rev., vol. 17, pp. 113-130, May 2017. doi: 10.1007/s11101-017-9513-5.
  • [164] S. Shaker, J. Sang, X.-L. Yan, R.-Z. Fan, G.-H. Tang et. al., “Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells,” Phytochemistry, vol. 176, p. 112395, Aug. 2020. doi: 10.1016/j.phytochem.2020.112395.
  • [165] T. Yang, S. Wang, H. Li, Q. Zhao, S. Yan et. al., “Lathyrane diterpenes from Euphorbia lathyris and the potential mechanism to reverse the multi-drug resistance in HepG2/ADR cells,” Biomed. Pharmacother., vol. 121, p. 109663, Jan. 2020. doi: 10.1016/j.biopha.2019.109663.
  • [166] Q. Liu, P. Cai, S. Guo, J. Shi, H. Sun, “Identification of a lathyrane-type diterpenoid EM-E-11-4 as a novel paclitaxel resistance reversing agent with multiple mechanisms of action,” Aging (Albany NY), vol. 12, no. 4, pp. 3713-3729, Feb. 2020. doi: 10.18632/aging.102842.
  • [167] J. Zhu, R. Wang, L. Lou, W. Li, G. Tang et. al., “Jatrophane Diterpenoids as Modulators of P-Glycoprotein-Dependent Multidrug Resistance (MDR): Advances of Structure-Activity Relationships and Discovery of Promising MDR Reversal Agents,” J. Med. Chem., vol. 59, no. 13, pp. 6353-6369, Jul. 2016. doi: 10.1021/acs.jmedchem.6b00605.
  • [168] G. Krstić, M. Jadranin, N. M. Todorović, M. Pešić, T. Stanković et. al., “Jatrophane diterpenoids with multidrug-resistance modulating activity from the latex of Euphorbia nicaeensis,” Phytochemistry, vol. 148, pp. 104-112, Apr. 2018. doi: 10.1016/j.phytochem.2018.01.016.
  • [169] D. Rédei, N. Kúsz, G. Sátori, A. Kincses, G. Spengler et. al., “Bioactive Segetane, Ingenane, and Jatrophane Diterpenes from Euphorbia taurinensis,” Planta Med., vol. 84, no. 9-10, pp. 729-735, Jul. 2018. doi: 10.1055/a-0589-0525.
  • [170] M. A. Reis, A. M. Matos, N. Duarte, O. B. Ahmed, R. J. Ferreira et. al., “Epoxylathyrane Derivatives as MDR-Selective Compounds for Disabling Multidrug Resistance in Cancer,” Front. Pharmacol., vol. 8, no. 11, p. 599, May 2020. doi: 10.3389/fphar.2020.00599.
  • [171] C. Garcia, V. M. S. Isca, F. Pereir, C. M. Monteiro, E. Ntungwe et. al., “Royleanone Derivatives From Plectranthus spp. as a Novel Class of P-Glycoprotein Inhibitors,” Front. Pharmacol., vol. 11, p. 557789, Nov. 2020. doi: 10.3389/fphar.2020.557789.
  • [172] A. Ahuja, J. H. Kim, J.-H. Kim, Y.-S. Yi, J. Y. Cho, “Functional role of ginseng-derived compounds in cancer,” J. Ginseng Res., vol. 42, no. 3, pp. 248-254, Jul. 2018. doi: 10.1016/j.jgr.2017.04.009.
  • [173] Y.-J. Kim, J.-N. Jeon, M.-G. Jang, J. Y. Oh, W.-S. Kwon et. al., “Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer,” J. Ginseng Res., vol. 38, no. 1, pp. 66-72, Jan. 2014. doi: 10.1016/j.jgr.2013.11.001.
  • [174] P. Zhang, Z. Cui, S. Wei, Y. Li, Y. Yin et. al., “Diverse limonoids from barks of Toona ciliata var. yunnanensis and their biological activities,” Ind. Crops Prod., vol. 148, p. 112275, Feb. 2020. doi: 10.1016/j.indcrop.2020.112275.
  • [175] Y. Li, Y.-Z. Xia, S.-M. Hu, L.-Y. Kong, L. Yang, “Tooniliatone A sensitizes multidrug resistant cancer cells by decreasing Bcl-xL via activation of JNK MAPK signaling,” Phytomedicine, vol. 62, p. 152947, Sept. 2019. doi: 10.1016/j.phymed.2019.152947.
  • [176] M. Zielińska-Błajet and J. Feder-Kubis, “Monoterpenes and Their Derivatives-Recent Development in Biological and Medical Applications,” Int. J. Mol. Sci., vol. 21, no. 19, p. 7078, Sept. 2020. doi: 10.3390/ijms21197078.
  • [177] J. Ma, X. Hu, J. Li, D. Wu, Q. Lan et. al., “Enhancing conventional chemotherapy drug cisplatin-induced anti-tumor effects on human gastric cancer cells both in vitro and in vivo by Thymoquinone targeting PTEN gene,” Oncotarget, vol. 8, no. 49, pp. 85926-85939, Sept. 2017. doi: 10.18632/oncotarget.20721.
  • [178] Ç. Şakalar, K. İzgi, B. İskender, S. Sezen, H. Aksu et. al., “The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer,” Tumour Biol., vol. 37, no. 4, pp. 4467-4477, Apr. 2016. doi: 10.1007/s13277-015-4307-0.
  • [179] M. Chudzik, I. Korzonek-Szlacheta, W. Król, “Triterpenes as Potentially Cytotoxic Compounds,” Molecules, vol. 20, pp. 1610-1625, Jan. 2015. doi: 10.3390/molecules20011610.
  • [180] Y. Cai, Y. Zheng, J. Gu, S. Wang, N. Wang et. al., “Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78,” Cell Death Dis., vol. 9, no. 6, p. 636, May 2018. doi: 10.1038/s41419-018-0669-8.
  • [181] X.-K. Zhan, J.-L. Li, S. Zhang, P.-Y. Xing, M.-F. Xia, “Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis,” Oncol. Lett., vol. 16, no. 3, pp. 3628-3634, Sept. 2018. doi: 10.3892/ol.2018.9097.
  • [182] X. Jin, J. Zhou, Z. Zhang, H. Lv, “Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment,” Int. J. Pharm., vol. 571, p. 118751, Nov. 2019. doi: 10.1016/j.ijpharm.2019.118751.
  • [183] Y. J. Lee, S.-Y. Kim, C. Lee, “Axl is a novel target of celastrol that inhibits cell proliferation and migration, and increases the cytotoxicity of gefitinib in EGFR mutant non‑small cell lung cancer cells,” Mol. Med. Rep., vol. 19, no. 4, pp. 3230-3236, Apr. 2019. doi: 10.3892/mmr.2019.9957.
  • [184] Y. Wang, Q. Liu, H. Chen, J. You, B. Peng et. al., “Celastrol improves the therapeutic efficacy of EGFR-TKIs for non-small-cell lung cancer by overcoming EGFR T790M drug resistance,” Anticancer Drugs, vol. 29, no. 8, pp. 748-755, Sept. 2018. doi: 10.1097/CAD.0000000000000647.
  • [185] S. H. Kim, J. G. Kang, C. S. Kim, S.-H. Ihm, M. G. Choi et. al., “Cytotoxic effect of celastrol alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells,” Tumour Biol., vol. 39, no. 5, p. 1010428317698369, May 2017. doi: 10.1177/1010428317698369.
  • [186] F.-Z. Lin, S.-C. Wang, Y.-T. Hsi, Y.-S. Lo, C.-C. Lin et. al., “Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway,” Phytomedicine, vol. 54, pp. 1-8, Feb. 2019. doi: 10.1016/j.phymed.2018.09.181.
  • [187] M. K. Shanmugam, K. S. Ahn, J. H. Lee, R. Kannaiyan, N. Mustafa et. al., “Celastrol Attenuates the Invasion and Migration and Augments the Anticancer Effects of Bortezomib in a Xenograft Mouse Model of Multiple Myeloma,” Front. Pharmacol., vol. 9, p. 365, May 2018. doi: 10.3389/fphar.2018.00365.
  • [188] R. Zhang, Z. Chen, S.-S. Wu, J. Xu, L.-C. Kong et. al., “Celastrol Enhances the Anti-Liver Cancer Activity of Sorafenib,” Med. Sci. Monit., vol. 25, pp. 4068-4075, Jun. 2019. doi: 10.12659/MSM.914060.
  • [189] H. O. Nyaboke, M. Moraa, L. K. Omosa, A. T. Mbaveng, N.-N. Vaderament-Alexe et. al., “Cytotoxicity of Lupeol from the Stem Bark of Zanthoxylum gilletii against Multi-factorial Drug Resistant Cancer Cell Lines,” Invest. Med. Chem. Pharmacol., vol. 1, no. 1, p. 10, May 2018.
  • [190] M.-C. Chen, H.-H. Hsu, Y.-Y. Chu, S.-F. Cheng, C.-Y. Shen et. al., “Lupeol alters ER stress-signaling pathway by downregulating ABCG2 expression to induce Oxaliplatin-resistant LoVo colorectal cancer cell apoptosis,” Environ. Toxicol., vol. 33, no. 5, pp. 587-593, May 2018. doi: 10.1002/tox.22544.
  • [191] C. Gao, X. Li, S. Yu, L. Liang, “Inhibition of cancer cell growth by oleanolic acid in multidrug resistant liver carcinoma is mediated via suppression of cancer cell migration and invasion, mitochondrial apoptosis, G2/M cell cycle arrest and deactivation of JNK/p38 signalling pathway,” J. BUON., vol. 24, no. 5, pp. 1964-1969, Sept. 2019.
  • [192] A. T. Mbaveng, G. F. Chi, I. N. Bonsou, S. Abdelfatah, A. N. Tamfu et. al., “N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death,” Phytomedicine, vol. 76, p. 153261, Jun. 2020. doi: 10.1016/j.phymed.2020.153261.
  • [193] L. Zong, G. Cheng, S. Liu, Z. Pi, Z. Liu et. al., “Reversal of multidrug resistance in breast cancer cells by a combination of ursolic acid with doxorubicin,” J. Pharm. Biomed. Anal., vol. 165, pp. 268-275, Feb. 2019. doi: 10.1016/j.jpba.2018.11.057.
  • [194] S. Prasad, V. R. Yadav, B. Sung, S. C. Gupta, A. K. Tyagi et. al., “Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment,” Oncotarget, vol. 7, no. 11, pp. 13182-13196, Mar. 2016. doi: 10.18632/oncotarget.7537.
  • [195] C. Ramalhete, S. Mulhovo, H. Lage, M.-J. U Ferreira, “Triterpenoids from Momordica balsamina with a Collateral Sensitivity Effect for Tackling Multidrug Resistance in Cancer Cells,” Planta Med., vol. 84, no. 18, pp. 1372-1379, Dec. 2018. doi: 10.1055/a-0651-8141.
  • [196] A. Gupta, B. S. Kumar, A. S. Negi, “Current status on development of steroids as anticancer agents,” J. Steroid Biochem. Mol. Biol., vol. 137, pp. 242-270, Sept. 2013. doi: 10.1016/j.jsbmb.2013.05.011.
  • [197] J. Xiao, M. Gao, B. Fei, G. Huang, Q. Diao, “Nature-derived anticancer steroids outside cardica glycosides,” Fitoterapia., vol. 147, p. 104757, Oct. 2020. doi: 10.1016/j.fitote.2020.104757.
  • [198] J. N. Kong, Q. He, G. Wang, S. Dasgupta, M. B. Dinkins et. al., “Guggulsterone and bexarotene induce secretion of exosome-associated breast cancer resistance protein and reduce doxorubicin resistance in MDA-MB-231 cells,” Int. J. Cancer, vol. 137, no. 7, pp. 1610-1620, Oct. 2015. doi: 10.1002/ijc.29542.
  • [199] A. A. Bhat, K. S. Prabhu, S. Kuttikrishnan, R. Krishnankutty, J. Babu et. al., “Potential therapeutic targets of Guggulsterone in cancer,” Nutr. Metab. (Lond), vol. 14, p. 23, Feb. 2017. doi: 10.1186/s12986-017-0180-8.
  • [200] J. M. Ku, S. R. Kim, S. H. Hong, H.-S. Choi, H. S. Seo et. al., “Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells,” Mol. Cell Biochem., vol. 409, no. 1-2, pp. 33-43, Nov. 2015. doi: 10.1007/s11010-015-2509-9.
  • [201] C. J. Henrich, A. D. Brooks, K. L. Erickson, C. L. Thomas, H. R. Bokesch et. al., “Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation,” Cell Death Dis., vol. 6, no. 2, p. e1666, Feb. 2015. doi: 10.1038/cddis.2015.38.
  • [202] G. Eksi, S. Kurbanoglu, S. A. Ozkan, “Fortification of Functional and Medicinal Beverages with Botanical Products and Their Analysis,” in Engineering Tools in the Beverage Industry, A. M. Grumezescu and A. M. Holban, Eds. Netherlands: Elsevier, 2019, pp. 351-404.
  • [203] F. Yang, F. Wang, Y. Liu, S. Wang, X. Li et. al., “Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells,” Life Sci., vol. 213, pp. 149-157, Nov. 2018. doi: 10.1016/j.lfs.2018.10.034.
  • [204] A. Pawlik, M. Słomińska-Wojewódzka, A. Herman-Antosiewicz, “Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants,” Eur. J. Nutr., vol. 55, no. 3, pp. 1165-1180, Apr. 2016. doi: 10.1007/s00394-015-0930-1.
  • [205] J. Gu, Y. Gui, L. Chen, G. Yuan, H.-Z. Lu et. al., “Use of natural products as chemical library for drug discovery and network pharmacology,” PLoS One, vol. 8, no. 4, p. e62839, Apr. 2013. doi: 10.1371/journal.pone.0062839.
  • [206] P. M. Cheuka, G. Mayoka, P. Mutai, K. Chibale, “The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases,” Molecules, vol. 22, no. 1, p. 58, Dec. 2016. doi: 10.3390/molecules22010058.
  • [207] J. de Oliveira Viana, M. B. Félix, M. dos Santos Maia, V. de Lima Serafim, L. Scotti, “Drug discovery and computational strategies in the multitarget drugs era,” Braz. J. Pharm. Sci., vol. 54, p. e01010, Nov. 2018. doi: 10.1590/s2175-97902018000001010.
  • [208] Z. Liao, S. W. Wong, H. L. Yeo, Y. Zhao, “Smart nanocarriers for cancer treatment: Clinical impact and safety,” NanoImpact, vol. 20, p. 100253, Sept. 2020. doi: 10.1016/j.impact.2020.100253.
  • [209] C. Zhang, M. Yang, A. C. Ericsson, “Antimicrobial Peptides: Potential Application in Liver Cancer,” Front. Microbiol., vol. 10, p. 1257, Jun. 2019. doi: 10.3389/fmicb.2019.01257.
  • [210] X. Luo, Q.-X. Teng, J.-Y. Dong, D.-H. Yang, M. Wang et. al., “Antimicrobial Peptide Reverses ABCB1-Mediated Chemotherapeutic Drug Resistance,” Front. Pharmacol., vol. 11, p. 1208, Aug. 2020. doi: 10.3389/fphar.2020.01208.
  • [211] S. E. B. Ambjørner, M. Wiese, S. Christoph Köhler, J. Svindt, X. L. Lund et. al., “The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP,” Cells, vol. 9, no. 3, p. 613, Mar. 2020. doi: 10.3390/cells9030613.
  • [212] R. Punia, K. Raina, R. Agarwal, R. P. Singh, “Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells,” PLoS One, vol. 12, no. 8, p. E0182870, Aug. 2017. doi: 10.1371/journal.pone.0182870.
  • [213] V. Kuete, A. T. Mbaveng, L. P. Sandjo, M. Zeino, T. Efferth, “Cytotoxicity and mode of action of a naturally occurring naphthoquinone, 2-acetyl-7-methoxynaphtho[2,3-b]furan-4,9-quinone towards multi-factorial drug-resistant cancer cells,” Phytomedicine, vol. 33, pp. 62-68, Sept. 2017. doi: 10.1016/j.phymed.2017.07.010.
  • [214] V. Kuete, A. T. Mbaveng, E. C. N. Nono, C. C. Simo, Maen Zeino et. al., “Cytotoxicity of seven naturally occurring phenolic compounds towards multi-factorial drug-resistant cancer cells,” Phytomedicine, vol. 23, no. 8, pp. 856-863, Jul. 2016. doi: 10.1016/j.phymed.2016.04.007.
  • [215] J. Li, B. Duan, Y. Guo, R. Zhou, J. Sun et. al., “Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity,” Biomed. Pharmacother., vol. 98, pp. 806-812, Feb. 2018. doi: 10.1016/j.biopha.2018.01.002.
  • [216] Y. Zhang, F.-L. An, S.-S. Huang, L. Yang, Y.-C. Gu et. al., “Diverse tritepenoids from the fruits of Walsura robusta and their reversal of multidrug resistance phenotype in human breast cancer cells,” Phytochemistry, vol. 136, pp. 108-118, Apr. 2017. doi: 10.1016/j.phytochem.2017.01.008.
  • [217] S. Darzi, S. A. Mirzaei, F. Elahian, S. Shirian, A. Peymani et. al., “Enhancing the Therapeutic Efficacy of Daunorubicin and Mitoxantrone with Bavachinin, Candidone, and Tephrosin,” Evid. Based Complement. Alternat. Med., vol. 2019, p. 3291737, Nov. 2019. doi: 10.1155/2019/3291737.
  • [218] F. A. Adem, V. Kuete, A. T. Mbaveng, M. Heydenreich, A. Ndakala et. al., “Cytotoxic benzylbenzofuran derivatives from Dorstenia kameruniana,” Fitoterapia, vol. 128, pp. 26-30, Jul. 2018. doi: 10.1016/j.fitote.2018.04.019.
  • [219] S. K. Jung, M.-H. Lee, D. Y. Lim, S. Y. Lee, C.-H. Jeong et. al., “Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung cancer growth,” Mol. Carcinog., vol. 54, no. 4, pp. 322-331, Apr. 2015. doi: 10.1002/mc.22191.
  • [220] G. Hou, X. Yuan, Y. Li, G. Hou, X. Liu, “Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway,” Invest. New Drugs, vol. 38, no. 2, pp. 329-339, Apr. 2020. doi: 10.1007/s10637-019-00781-9.
  • [221] E. Heidarian and M. Keloushadi, “Antiproliferative and Anti-invasion Effects of Carvacrol on PC3 Human Prostate Cancer Cells through Reducing pSTAT3, pAKT, and pERK1/2 Signaling Proteins,” Int. J. Prev. Med., vol. 10, p. 156, Oct. 2019. doi: 10.4103/ijpvm.IJPVM_292_17.
  • [222] A. Mari, G. Mani, S. N. Nagabhishek, G. Balaraman, N. Subramanian et. al., “Carvacrol Promotes Cell Cycle Arrest and Apoptosis through PI3K/AKT Signaling Pathway in MCF-7 Breast Cancer Cells,” Chin. J. Integr. Med., Jun. 2020. doi: 10.1007/s11655-020-3193-5.
  • [223] Y.-M. Lin, C.-I. Chen, Y.-P. Hsiang, Y.-C. Hsu, K.-C. Cheng et. al., “Chrysin Attenuates Cell Viability of Human Colorectal Cancer Cells through Autophagy Induction Unlike 5-Fluorouracil/Oxaliplatin,” Int. J. Mol. Sci., vol. 19, no. 6, p. 1763, Jun. 2018. doi: 10.3390/ijms19061763.
  • [224] W. Wei, J. He, H. Ruan, Y. Wang, “In vitro and in vivo cytotoxic effects of chrysoeriol in human lung carcinoma are facilitated through activation of autophagy, sub-G1/G0 cell cycle arrest, cell migration and invasion inhibition and modulation of MAPK/ERK signalling pathway,” J. BUON., vol. 24, no. 3, pp. 936-942, May-Jun. 2019.
  • [225] S. S. S. Boyanapalli and A.-N. T. Kong, “"Curcumin, the King of Spices": Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases,” Curr. Pharmacol. Rep., vol. 1, no. 2, pp. 129-139, Apr. 2015. doi: 10.1007/s40495-015-0018-x.
  • [226] L. Piao, S. Mukherjee, Q. Chang, X. Xie, H. Li et. al., “TriCurin, a novel formulation of curcumin, epicatechin gallate, and resveratrol, inhibits the tumorigenicity of human papillomavirus-positive head and neck squamous cell carcinoma,” Oncotarget, vol. 8, no. 36, pp. 60025-60035, Jul. 2016. doi: 10.18632/oncotarget.10620.
  • [227] K. Mortezaee, M. Najafi, B. Farhood, A. Ahmadi, D. Shabeeb et. al., “NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity,” J. Cell Physiol., vol. 234, no. 10, pp. 17187-17204, Aug. 2019. doi: 10.1002/jcp.28504.
  • [228] A. Niedzwiecki, M. W. Roomi, T. Kalinovsky, M. Rath, “Anticancer Efficacy of Polyphenols and Their Combinations,” Nutrients, vol. 8, no. 9, p. 552, Sept. 2016. doi: 10.3390/nu8090552.
  • [229] M. Sanaei and F. Kavoosi, “Effect of Curcumin and Trichostatin A on the Expression of DNA Methyltransfrase 1 in Hepatocellular Carcinoma Cell Line Hepa 1-6,” Iran J. Ped. Hematol. Oncol., vol. 8, no. 4, pp. 193-201, Oct. 2018.
  • [230] S. Mapoung, P. Pitchakarn, S. Yodkeeree, C. Ovatlarnporn, N. Sakorn et. al., “Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells,” Chem. Biol. Interact., vol. 244, pp. 140-148, Jan. 2016. doi: 10.1016/j.cbi.2015.12.001.
  • [231] D.-S. Popa and M. E. Rusu, “Isoflavones: Vegetable Sources, Biological Activity, and Analytical Methods for Their Assessment,” in Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine, N. Shiomi and V. Waisundara, Eds. United Kingdom: IntechOpen, 2017, pp. 133-153.
  • [232] J. P. Rigalli, P. N. Scholz, G. N. Tocchetti, M. L. Ruiz, J. Weiss, “The phytoestrogens daidzein and equol inhibit the drug transporter BCRP/ABCG2 in breast cancer cells: potential chemosensitizing effect,” Eur. J. Nutr., vol. 58, no. 1, pp. 139-150, Feb. 2019. doi: 10.1007/s00394-017-1578-9.
  • [233] A. T. Mbaveng, F. Damen, M.-G. F. Guefack, S. B. Tankeo, S. Abdelfatah et. al., “8,8-bis-(Dihydroconiferyl)-diferulate displayed impressive cytotoxicity towards a panel of human and animal cancer cells,” Phytomedicine, vol. 70, p. 153215, Apr. 2020. doi: 10.1016/j.phymed.2020.
  • [234] Z. Wang, X. Sun, Y. Feng, Y. Wang, L. Zhang et. al., “Dihydromyricetin reverses MRP2-induced multidrug resistance by preventing NF-κB-Nrf2 signaling in colorectal cancer cell,” Phytomedicine, p. 153414, Nov. 2020. doi: 10.1016/j.phymed.2020.153414.
  • [235] M. Wu, M. Jiang, T. Dong, L. X, J. Lv et. al., “Reversal Effect of Dihydromyricetin on Multiple Drug Resistance in SGC7901/5-FU Cells,” Asian Pac. J. Cancer Prev., vol. 21, no. 5, pp. 1269-1274, May 2020. doi: 10.31557/APJCP.2020.21.5.1269.
  • [236] A. Maruszewska and J. Tarasiuk, “Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells,” Phytother. Res., vol. 33, no. 4, pp. 1208-1221, Apr. 2019. doi: 10.1002/ptr.6317.
  • [237] H.-N. Jiang, Z.-G. Liu, R. Hu, “[Embelin Reverses the Multi-drug Resistance of K562/D to Daunorubicin Independently of P-gp and MDR1 mRNA],” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 25, no. 5, pp. 1342-1349, Oct. 2017. doi: 10.7534/j.issn.1009-2137.2017.05.011.
  • [238] K. S. Prabhu, K. S. Siveen, S. Kuttikrishnan, A. Iskandarani, M. Tsakou et. al., “Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells,” PLoS One, vol. 12, no. 7, p. e0180895, Jul. 2017. doi: 10.1371/journal.pone.0180895.
  • [239] A. K. Siraj, P. Pratheeshkumar, S. K. Parvathareddy, S. P. Divya, F. Al-Dayel et. al., “Overexpression of PARP is an independent prognostic marker for poor survival in Middle Eastern breast cancer and its inhibition can be enhanced with embelin co-treatment,” Oncotarget, vol. 9, no. 99, pp. 37319-37332, Dec. 2018. doi: 10.18632/oncotarget.26470.
  • [240] H. Guo, F. Liu, S. Yang, T. Xue, “Emodin alleviates gemcitabine resistance in pancreatic cancer by inhibiting MDR1/P-glycoprotein and MRPs expression,” Oncol. Lett., vol. 20, no. 5, p. 167, Nov. 2020. doi: 10.3892/ol.2020.12030.
  • [241] Wikipedia. “Fisetin”. Wikipedia.org. https://en.wikipedia.org/wiki/Fisetin (accessed December 10, 2020).
  • [242] E. Mukhtar, V. M. Adhami, I. A. Siddiqui, A. K. Verma, H. Mukhtar, “Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells,” Mol. Cancer Ther., vol. 15, no. 12, pp. 2863-2874, Dec. 2016. doi: 10.1158/1535-7163.MCT-16-0515.
  • [243] H. C. Pal, A. C. Diamond, L. R. Strickland, J. C. Kappes, S. K. Katiyar et. al., “Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma,” Oncotarget., vol. 7, no. 2, pp. 1227-1241, Jan. 2016. doi: 10.18632/oncotarget.6237.
  • [244] S. Yu, L.-S. Gong, N.-F. Li, Y.-F. Pan, L. Zhang, “Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways,” Biomed. Pharmacother., vol. 97, pp. 213-224, Jan. 2018. doi: 10.1016/j.biopha.2017.10.059.
  • [245] Y. Wang, Y. Sui, Y. Tao, “Gambogic acid increases the sensitivity to paclitaxel in drug‑resistant triple‑negative breast cancer via the SHH signaling pathway,” Mol. Med. Rep., vol. 20, no. 5, pp. 4515-4522, Nov. 2019. doi: 10.3892/mmr.2019.10697.
  • [246] G. Xia, H. Wang, Z. Song, Q. Meng, X. Huang et. al., “Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2),” J. Exp. Clin. Cancer Res., vol. 36, no. 1, p. 107, Aug. 2017. doi: 10.1186/s13046-017-0579-0.
  • [247] Wikipedia. “Gambogic acid”. Wikipedia.org. https://en.wikipedia.org/wiki/Gambogic_acid (accessed December 10, 2020).
  • [248] S. Wang, L. Wang, M. Chen, Y. Wang, “Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression,” Chem. Biol. Interact., vol. 235, pp. 76-84, Jun. 2015. doi: 10.1016/j.cbi.2015.03.017.
  • [249] W. Kong, X. Ling, Y. Chen, X. Wu, Z. Zhao et. al., “Hesperetin reverses P‑glycoprotein‑mediated cisplatin resistance in DDP‑resistant human lung cancer cells via modulation of the nuclear factor‑κB signaling pathway,” Int. J. Mol. Med., vol. 45, no. 4, pp. 1213-1224, Apr. 2020. doi: 10.3892/ijmm.2020.4485.
  • [250] C. T. Scoparo, G. Valdameri, P. R. Worfel, F. A. L. B. Guterres, G. R. Martinez et. al., “Dual properties of hispidulin: antiproliferative effects on HepG2 cancer cells and selective inhibition of ABCG2 transport activity,” Mol. Cell Biochem., vol. 409, no. 1-2, pp. 123-133, Nov. 2015. doi: 10.1007/s11010-015-2518-8.
  • [251] H. Gao, J. Xie, J. Peng, Y. Han, Q. Jiang et. al., “Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α,” Exp. Cell Res., vol. 332, no. 2, pp. 236-246, Mar. 2015. doi: 10.1016/j.yexcr.2014.11.021.
  • [252] H. E. Pearson, M. Iida, R. A. Orbuch, N. K McDaniel, K. P. Nickel et. al., “Overcoming Resistance to Cetuximab with Honokiol, A Small-Molecule Polyphenol,” Mol. Cancer Ther., vol. 17, no. 1, pp. 204-214, Jan. 2018. doi: 10.1158/1535-7163.MCT-17-0384.
  • [253] W. Songjang and A. Jiraviriyakul, “Honokiol and Magnolol Inhibit Growth, Metastasis and Induce Apoptosis in Human Cholangiocarcinoma,” Biomed. Pharmacol. J., vol. 12, no.2, pp. 759-773, Jun. 2019.
  • [254] Z.-D. Wang, R.-Z. Wang, Y.-Z. Xia, L.-Y. Kong, L. Yang, “Reversal of multidrug resistance by icaritin in doxorubicin-resistant human osteosarcoma cells,” Chin. J. Nat. Med., vol. 16, no. 1, pp. 20-28, Jan. 2018. doi: 10.1016/S1875-5364(18)30026-8.
  • [255] H. Han, B. Xu, P. Hou, C. Jiang, L. Liu, “Icaritin Sensitizes Human Glioblastoma Cells to TRAIL-Induced Apoptosis,” Cell Biochem. Biophys., vol. 72, no. 2, pp. 533-542, Jun. 2015. doi: 10.1007/s12013-014-0499-y.
  • [256] L.-C. Lin, C.-H. Wu, T.-M. Shieh, H.-Y. Chen, T.-C. Huang et. al., “The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling,” J. Funct. Foods, vol. 33, pp. 332-344, Apr. 2017. doi: 10.1016/j.jff.2017.03.061.
  • [257] B.-Y. Zhang, Y.-M. Wang, H. Gong, H. Zhao, X.-Y. Lv et. al., “Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC),” Int. J. Clin. Exp. Pathol., vol. 8, no. 1, pp. 25-37, Jan. 2015.
  • [258] J. Bai, S. Zhao, X. Fan, Y. Chen, X. Zou et. al., “Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure-activity relationships,” Toxicol. Appl. Pharmacol., vol. 369, pp. 49-59, Apr. 2019. doi: 10.1016/j.taap.2019.02.010.
  • [259] Q. Liu, D. Zhu, B. Hao, Z. Zhang, Y. Tian, “Luteolin promotes the sensitivity of cisplatin in ovarian cancer by decreasing PRPA1-medicated autophagy,” Cell Mol. Biol. (Noisy-le-grand), vol. 64, no. 6, pp. 17-22, May 2018. doi: 10.14715/cmb/2018.64.6.4.
  • [260] T. Takeda, M. Tsubaki, T. Kino, A. Kawamura, S. Isoyama et. al., “Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway,” Int. J. Oncol., vol. 48, no. 6, pp. 2704-2712, Jun. 2016. doi: 10.3892/ijo.2016.3470.
  • [261] P. Sadhukhan, S. Saha, S. Dutta, P. C. Sil, “Mangiferin Ameliorates Cisplatin Induced Acute Kidney Injury by Upregulating Nrf-2 via the Activation of PI3K and Exhibits Synergistic Anticancer Activity With Cisplatin,” Front. Pharmacol., vol. 9, p. 638, Jun. 2018. doi: 10.3389/fphar.2018.00638.
  • [262] G. Gatouillat, A. A. Magid, E. Bertin, H. El btaouri, H. Morjani et. al., “Medicarpin and millepurpan, two flavonoids isolated from Medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia P388 cells,” Phytomedicine, vol. 22, no. 13, pp. 1186-1194, Dec. 2015. doi: 10.1016/j.phymed.2015.09.005.
  • [263] Wikipedia. “Myricetin”. Wikipedia.org. https://en.wikipedia.org/wiki/Myricetin (accessed December 11, 2020).
  • [264] A.-W. Zheng, Y.-Q. Chen, L.-Q. Zhao, J.-G. Feng, “Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells,” Oncol. Lett., vol. 13, no. 6, pp. 4974-4978, Jun. 2017. doi: 10.3892/ol.2017.6031.
  • [265] B. B. Chandrika, M. Steephan, T. R. S. Kumar, A. Sabu, M. Haridas, “Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors,” Life Sci., vol. 160, pp. 47-56, Sept. 2016. doi: 10.1016/j.lfs.2016.07.007.
  • [266] H.-L. Chang, Y.-M. Chang, S.-C. Lai, K.-M. Chen, K.-C. Wang et. al., “Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9,” Exp. Ther. Med., vol. 13, no. 2, pp. 739-744, Feb. 2017. doi: 10.3892/etm.2016.3994.
  • [267] L. Eanes and Y. M. Patel, “Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells,” Biochim. Open, vol. 3, pp. 64-71, Nov. 2016. doi: 10.1016/j.biopen.2016.09.004.
  • [268] W. Ma, S. Feng, X. Yao, Z. Yuan, L. Liu et. al., “Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells,” Sci. Rep., vol. 5, p. 18789, Dec. 2015. doi: 10.1038/srep18789.
  • [269] S.-L. Feng, Y. Tian, S. Huo, B. Qu, R.-M. Liu et. al., “Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: Pharmacokinetic and pharmacological study,” Phytomedicine, vol. 67, p. 153141, Feb. 2020. doi: 10.1016/j.phymed.2019.153141.
  • [270] R. Zhang, Z. Wang, W. You, F. Zhou, Z. Guo Liu et. al., “Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT,” Cancer Cell Int., vol. 20, p. 520, Oct. 2020. doi: 10.1186/s12935-020-01607-y.
  • [271] S. Li, Q. Zhao, B. Wang, S. Yuan, X. Wang et. al., “Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation,” Phytother. Res., vol. 32, no. 8, pp. 1530-1536, Aug. 2018. doi: 10.1002/ptr.6081.
  • [272] Z. Zhang, Z. Liu, J. Chen, J. Yi, J. Cheng Wang et. al., “Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells,” Exp. Ther. Med., vol. 15, no. 3, pp. 3012-3019, Mar. 2018. doi: 10.3892/etm.2018.5742.
  • [273] C.-H. Chang, C.-Y. Lee, C.-C. Lu, F.-J. Tsai, Y.-M. Hsu et. al., “Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling,” Int. J. Oncol., vol. 50, no. 3, pp. 873-882, Mar. 2017. doi: 10.3892/ijo.2017.3866.
  • [274] C. Buhrmann, M. Yazdi, B. Popper, P. Shayan, A. Goel et. al., “Resveratrol Chemosensitizes TNF-β-Induced Survival of 5-FU-Treated Colorectal Cancer Cells,” Nutrients, vol. 10, no. 7, p. 888, Jul. 2018. doi: 10.3390/nu10070888.
  • [275] X.-Z. Liao, Y. Gao, L.-L. Sun, J.-H. Liu, H.-R. Chen et. al., “Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway,” Phytother. Res., vol. 34, no. 5, pp. 1142-1153, May 2020. doi: 10.1002/ptr.6584.
  • [276] S. Mohana, M. Ganesan, N. R. Prasad, D. Ananthakrishnan, D. Velmurugan, “Flavonoids modulate multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines,” BMC Cancer, vol. 18, no. 1, p. 1168, Nov. 2018. doi: 10.1186/s12885-018-5103-1.
  • [277] M. Iriti, R. Kubina, A. Cochis, R. Sorrentino, E. M. Varoni et. al., “Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells,” Phytother. Res., vol. 31, no. 10, pp. 1529-1538, Oct. 2017. doi: 10.1002/ptr.5878.
  • [278] C. Gao, Y. Zhou, Z. Jiang, Y. Zhao, D. Zhang et. al., “Cytotoxic and chemosensitization effects of Scutellarin from traditional Chinese herb Scutellaria altissima L. in human prostate cancer cells,” Oncol. Rep., vol. 38, no. 3, pp. 1491-1499, Sept. 2017. doi: 10.3892/or.2017.5850.
  • [279] G. He, G. He, R. Zhou, Z. Pi, T. Zhu et. al., “Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo,” Biochem. Biophys. Res. Commun., vol. 469, no. 4, pp. 1075-1082, Jan. 2016. doi: 10.1016/j.bbrc.2015.12.100.
  • [280] S. Dobiasová, K. Řehořová, D. Kučerová, D. Biedermann, K. Káňová et. al., “Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential,” Antioxidants (Basel), vol. 9, no. 5, p. 455, May 2020. doi: 10.3390/antiox9050455.
  • [281] C. Eroğlu, E. Avcı, H. Vural, E. Kurar, “Anticancer mechanism of Sinapic acid in PC-3 and LNCaP human prostate cancer cell lines,” Gene, vol. 671, pp. 127-134, Sept. 2018. doi: 10.1016/j.gene.2018.05.049.
  • [282] H.-J. Chen, Y.-L. Chung, C.-Y. Li, Y.-T. Chang, C. C. N. Wang et. al., “Taxifolin Resensitizes Multidrug Resistance Cancer Cells via Uncompetitive Inhibition of P-Glycoprotein Function,” Molecules, vol. 23, no. 12, p. 3055, Nov. 2018. doi: 10.3390/molecules23123055.
  • [283] Y.-H. Tseng, S.-S. Chiou, J.-P. Weng, P.-C. Lin, “Curcumin and tetrahydrocurcumin induce cell death in Ara-C-resistant acute myeloid leukemia,” Phytother. Res., vol. 33, no. 4, pp. 1199-1207, Apr. 2019. doi: 10.1002/ptr.6316.
  • [284] Q. Zeng, Y. Che, Y. Zhang, M. Chen, Q. Guo et. al., “ Thymol Isolated from Thymus vulgaris L. Inhibits Colorectal Cancer Cell Growth and Metastasis by Suppressing the Wnt/β-Catenin Pathway,” Drug Des. Devel. Ther., vol. 14, pp. 2535-2547, Jul. 2020. doi: 10.2147/DDDT.S254218.
  • [285] D. J. Balan, T. Rajavel, M. Das, S. Sathya, M. Jeyakumar et. al., “Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells,” Pharmacol. Rep., Oct. 2020. doi: 10.1007/s43440-020-00171-6.
  • [286] T. Jamali, G. Kavoosi, M. Safavi, S. K. Ardestani, “In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA,” Sci. Rep., vol. 8, no. 1, p. 15787, Oct. 2018. doi: 10.1038/s41598-018-34055-w.
  • [287] Wikipedia. “Tocotrienol”. Wikipedia.org. https://en.wikipedia.org/wiki/Tocotrienol (accessed December 12, 2020).
  • [288] M. Bhardwaj, H. J. Cho, S. Paul, R. Jakhar, I. Khan et. al., “Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells,” Oncotarget, vol. 9, no. 3, pp. 3278-3291, Dec. 2017. doi: 10.18632/oncotarget.22890.
  • [289] M. Lv, J.-G. Qiu, W.-J. Zhang, Q.-W. Jiang, W.-M. Qin et. al., “Wallichinine reverses ABCB1-mediated cancer multidrug resistance,” Am. J. Transl. Res., vol. 8, no. 7, pp. 2969-2980, Jul. 2016.
  • [290] X. Xu, X. Zhang, Y. Zhang, L. Yang, Y. Liu et. al., “Wogonin reversed resistant human myelogenous leukemia cells via inhibiting Nrf2 signaling by Stat3/NF-κB inactivation,” Sci. Rep., vol. 7, p. 39950, Feb. 2017. doi: 10.1038/srep39950.
  • [291] F. Liu, H. Hoag, C. Wu, H. Liu, H. Yin et. al., “Experimental and Simulation Identification of Xanthohumol as an Inhibitor and Substrate of ABCB1,” Appl. Sci., vol. 8, p. 681, Apr. 2018. doi: 10.3390/app8050681.
  • [292] Z.-F. Hong, W.-X. Zhao, Z.-Y. Yin, C.-R. Xie, Y.-P. Xu et. al., “Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy,” PLoS One, vol. 10, no. 5, p. e0121538, May 2015. doi: 10.1371/journal.pone.0121538.
  • [293] H. Li, S. Krsti, S. Wang, M. Wink, “Capsaicin and Piperine Can Overcome Multidrug Resistance in Cancer Cells to Doxorubicin,” Molecules, vol. 23, no. 3, p. 557, Mar. 2018. doi: 10.3390/molecules23030557.
  • [294] Y. Wang, X. Deng, C. Yu, G. Zhao, J. Zhou et. al., “Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts,” J. Exp. Clin. Cancer Res., vol. 37, no. 1, p. 251, Oct. 2018. doi: 10.1186/s13046-018-0922-0.
  • [295] G. Sánchez, A. Bort, P. A. Mateos-Gómez, N. Rodríguez-Henche, I. Díaz-Laviada et. al., “Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase,” Cancer Cell Int., vol. 19, p. 54, Mar. 2019. doi: 10.1186/s12935-019-0769-2.
  • [296] N. Dai, R. Ye, Q. He, P. Guo, H. Chen et. al., “Capsaicin and sorafenib combination treatment exerts synergistic anti‑hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling,” Oncol. Rep., vol. 40, no. 6, pp. 3235-3248, Dec. 2018. doi: 10.3892/or.2018.6754.
  • [297] Z.-H. Tang, W.-X. Cao, X. Guo, X.-Y. Dai, J.-H. Lu et. al., “Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cell lung cancer,” Cancer Lett., vol. 412, pp. 1-9, Jan. 2018. doi: 10.1016/j.canlet.2017.10.001.
  • [298] S. Lanza-Jacoby and G. Cheng, “3,3'-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species,” Pharm. Biol., vol. 56, no. 1, pp. 407-414, Dec. 2018. doi: 10.1080/13880209.2018.
  • [299] D. C. Hao and L. Yang, “Drug metabolism and disposition diversity of Ranunculales phytometabolites: a systems perspective,” Expert Opin. Drug Metab. Toxicol., vol. 12, no. 9, pp. 1047-1065, Sept. 2016. doi: 10.1080/17425255.2016.1201068.
  • [300] B. Y. K. Law, S. W. F. Mok, W. K. Chan, S. W. Xu, A. G. Wu et. al., “Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers,” Oncotarget, vol. 7, no. 7, pp. 8090-8104, Feb. 2016. doi: 10.18632/oncotarget.6980.
  • [301] G. Perez-Chacon, C. Martinez-Laperche, N. Rebolleda, B. Somovilla-Crespo, C. Muñoz-Calleja et. al., “Indole-3-Carbinol Synergizes with and Restores Fludarabine Sensitivity in Chronic Lymphocytic Leukemia Cells Irrespective of p53 Activity and Treatment Resistances,” Clin. Cancer Res., vol. 22, no. 1, pp. 134-145, Jan. 2016. doi: 10.1158/1078-0432.CCR-15-0736.
  • [302] M. M. Abdelmageed, R. N. El-Naga, E. El-Demerdash, M. M. Elmazar, “Indole-3- carbinol enhances sorafenib cytotoxicity in hepatocellular carcinoma cells: A mechanistic study,” Sci. Rep., vol. 6, p. 32733, Sept. 2016. doi: 10.1038/srep32733.
  • [303] A. Kundu, J. G. Quirit, M. G. Khouri, G. L. Firestone, “Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation,” Mol. Carcinog., vol. 56, no. 1, pp. 349-361, Jan. 2017. doi: 10.1002/mc.22472.
  • [304] J. Zhou, G. Li, Y. Zheng, H.-M. Shen, X. Hu et. al., “A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission,” Autophagy, vol. 11, no. 8, pp. 1259-1279, Jun. 2015. doi: 10.1080/15548627.2015.1056970.
  • [305] O. Kadioglu, B. Y. K. Law, S. W. F. Mok, S.-W. Xu, T. Efferth et. al., “Mode of Action Analyses of Neferine, a Bisbenzylisoquinoline Alkaloid of Lotus (Nelumbo nucifera) against Multidrug-Resistant Tumor Cells,” Front. Pharmacol., vol. 8, p. 238, May 2017. doi: 10.3389/fphar.2017.00238.
  • [306] C. Zhang, L.-J. He, Y.-B. Zhu, Q.-Z. Fan, D.-D. Miao et. al., “Piperlongumine Inhibits Akt Phosphorylation to Reverse Resistance to Cisplatin in Human Non-Small Cell Lung Cancer Cells via ROS Regulation,” vol. 10, p. 1178, Oct. 2019. doi: 10.3389/fphar.2019.01178.
  • [307] W. Chen, W. Lian, Y. Yuan, M. Li, “The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress,” Cell Death Dis., vol. 10, no. 8, p. 600, Aug. 2019. doi: 10.1038/s41419-019-1824-6.
  • [308] S. Akhtar, I. W. Achkar, K. S. Siveen, S. Kuttikrishnan, K. S. Prabhu et. al., “Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling,” Front. Oncol., vol. 9, p. 285, Apr. 2019. doi: 10.3389/fonc.2019.00285.
  • [309] R. Sarkhosh-Inanlou, M. Molaparast, A. Mohammadzadeh, V. Shafiei-Irannejad, “Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin-resistant ovarian cancer (A2780) cells,” Chem. Biol. Drug. Des., vol. 95, no. 2, pp. 215-223, Feb. 2020. doi: 10.1111/cbdd.13621.
  • [310] M. E. M. Saeed, N. Mahmoud, Y. Sugimoto, T. Efferth, H. Abdel-Aziz, “Molecular Determinants of Sensitivity or Resistance of Cancer Cells Toward Sanguinarine,” Front. Pharmacol., vol. 9, p. 136, Feb. 2018. doi: 10.3389/fphar.2018.00136.
  • [311] Y.-Q. Liu, S.-K. Wang, Q.-Q. Xu, H.-Q. Yuan, Y.-X. Guo et. al., “Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties,” Acta Pharmacol. Sin., vol. 40, no. 5, pp. 689-698, May 2019. doi: 10.1038/s41401-018-0157-9.
  • [312] L. Jin, W. Yingchun, S. Zhujun, W. Yinan, W. Dongchen et. al., “3-acetyl-11-keto-beta-boswellic acid decreases the malignancy of taxol resistant human ovarian cancer by inhibiting multidrug resistance (MDR) proteins function,” Biomed. Pharmacother., vol. 116, p. 108992, Aug. 2019. doi: 10.1016/j.biopha.2019.108992.
  • [313] X. Xue, F. Chen, A. Liu, D. Sun, J. Wu et. al., “Reversal of the multidrug resistance of human ileocecal adenocarcinoma cells by acetyl-11-keto-β-boswellic acid via downregulation of P-glycoprotein signals,” Biosci. Trends, vol. 10, no. 5, pp. 392-399, Nov. 2016. doi: 10.5582/bst.2016.01115.
  • [314] C. Formisano, C. Sirignano, D. Rigano, G. Chianese, G. Zengin et. al., “Antiproliferative activity against leukemia cells of sesquiterpene lactones from the Turkish endemic plant Centaurea drabifolia subsp. Detonsa,” Fitoterapia, vol. 120, pp. 98-102, Jul. 2017. doi: 10.1016/j.fitote.2017.05.016.
  • [315] M. E. M. Saeed, N. Mahmoud, Y. Sugimoto, T. Efferth, H. Abdel-Aziz, “Betulinic Acid Exerts Cytotoxic Activity Against Multidrug-Resistant Tumor Cells via Targeting Autocrine Motility Factor Receptor (AMFR),” Front. Pharmacol., vol. 9, p. 481, May 2018. doi: 10.3389/fphar.2018.00481.
  • [316] N.-H. Yim, Y. P. Jung, A. Kim, T. Kim, J. Y. Ma, “Induction of apoptotic cell death by betulin in multidrug-resistant human renal carcinoma cells,” Oncol. Rep., vol. 34, no. 2, pp. 1058-1064, Aug. 2015. doi: 10.3892/or.2015.4045.
  • [317] K. S. Snima, R. S. Nair, S. V. Nair, C. R. Kamath, V.-K. Lakshmanan, “Combination of Anti-Diabetic Drug Metformin and Boswellic Acid Nanoparticles: A Novel Strategy for Pancreatic Cancer Therapy,” J. Biomed. Nanotechnol., vol. 11, no. 1, pp. 93-104, Jan. 2015. doi: 10.1166/jbn.2015.1877.
  • [318] S. Toden, Y. Okugawa, C. Buhrmann, D. Nattamai, E. Anguiano et. al., “Novel Evidence for Curcumin and Boswellic Acid-Induced Chemoprevention through Regulation of miR-34a and miR-27a in Colorectal Cancer,” Cancer Prev. Res., vol. 8, no. 5, pp. 431-443, May 2015. doi: 10.1158/1940-6207.CAPR-14-0354.
  • [319] N. Yao, C. Wang, N. Hu, Y. Li, M. Liu et. al., “Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog,” Cell Death Dis., vol. 10, no. 3, p. 232, Mar. 2019. doi: 10.1038/s41419-019-1470-z.
  • [320] F.-Z. Lin, S.-C. Wang, Y.-T. Hsi, Y.-S. Lo, C.-C. Lin et. al., “Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway,” Phytomedicine, vol. 54, pp. 1-8, Feb. 2019. doi: 10.1016/j.phymed.2018.09.181.
  • [321] S.-W. Xu, B. Y. K. Law, S. L. Q. Qu, S. Hamdoun, J. Chen et. al., “SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells,” Pharmacol. Res., vol. 153, p. 104660, Mar. 2020. doi: 10.1016/j.phrs.2020.104660.
  • [322] Y.-Y. Yan, H. Bi, W. Zhang, Q. Wen, H. Liu et. al., “Downregulation and subcellular distribution of HER2 involved in MDA-MB-453 breast cancer cell apoptosis induced by lapatinib/celastrol combination,” J. BUON., vol. 23, no. 3, pp. 644-651, May-Jun. 2017.
  • [323] Y. Xiao, J. Liu, M. Guo, H. Zhou, J. Jin et. al., “Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance,” Nanoscale, vol. 10, no. 26, pp. 12639-12649, Jul. 2018. doi: 10.1039/c8nr02700e.
  • [324] F. Cai, L. Zhang, X. Xiao, C. Duan, Q. Huang et. al., “Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/adriamycin cells,” Oncol. Rep., vol. 36, no. 2, pp. 1180-1186, Aug. 2016. doi: 10.3892/or.2016.4892.
  • [325] Y.-Z. Liu, C.-M. Yang, J.-Y. Chen, J.-W. Liao, M.-L. Hu, “Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice,” J. Nutr. Biochem., vol. 26, no. 6, pp. 607-615, Jun. 2015. doi: 10.1016/j.jnutbio.2014.12.012.
  • [326] Y. Zhang, X. Zhu, T. Huang, L. Chen, Y. Liu et. al., “β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro,” Toxicol. Lett., vol. 261, pp. 49-58, Nov. 2016. doi: 10.1016/j.toxlet.2016.08.010.
  • [327] S. Mahdizadeh, G. Karimi, J. Behravan, S. Arabzadeh, H. Lage et. al., “Crocin suppresses multidrug resistance in MRP overexpressing ovarian cancer cell line,” Daru, vol. 24, no. 1, p. 17, Jun. 2016. doi: 10.1186/s40199-016-0155-8.
  • [328] M. Deng, B. Liu, H. Song, R. Yu, D. Zou et. al., “β-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway,” Phytomedicine, vol. 69, p. 153184, Apr. 2020. doi: 10.1016/j.phymed.2020.153184.
  • [329] R. Mazrouei, E. Raeisi, Y. Lemoigne, E. Heidarian, “Activation of p53 Gene Expression and Synergistic Antiproliferative Effects of 5-Fluorouracil and β-escin on MCF7 Cells,” J. Med. Signals Sens., vol. 9, no. 3, pp. 196-203, Aug. 2019. doi: 10.4103/jmss.JMSS_44_18.
  • [330] S.-L. Feng, H.-B. Luo, L. Cai, J. Zhang, D. Wang et. al., “Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study,” J. Ginseng Res., vol. 44, no. 2, pp. 247-257, Mar. 2020. doi: 10.1016/j.jgr.2018.10.007.
  • [331] M.-E. F. Hegazy, M. Dawood, N. Mahmoud, M. Elbadawi, Y. Sugimoto et. al., “2α-Hydroxyalantolactone from Pulicaria undulata: activity against multidrug-resistant tumor cells and modes of action,” Phytomedicine, p. 153409, Nov. 2020. doi: 10.1016/j.phymed.2020.153409.
  • [332] S. Abdelfatah, M. Böckers, M. Asensio, O. Kadioglu, A. Klinger et. al., “Isopetasin and S-isopetasin as novel P-glycoprotein inhibitors against multidrug-resistant cancer cells,” Phytomedicine, p. 153196, Mar. 2020. doi: 10.1016/j.phymed.2020.153196.
  • [333] Y.-T. Chang, C. C. N. Wang, J.-Y. Wang, T.-E. Lee, Y.-Y. Cheng et. al., “Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells,” Phytomedicine, vol. 53, pp. 252-262, Feb. 2019. doi: 10.1016/j.phymed.2018.09.008.
  • [334] Y. Liu, T. Bi, W. Dai, G. Wang, L. Qian et. al., “Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells,” Naunyn Schmiedebergs Arch Pharmacol., vol. 389, no. 5, pp. 477-484, May 2016. doi: 10.1007/s00210-016-1221-y.
  • [335] M. Kayouka, A. Hamade, E. Saliba, F. Najjar, D. Landy et. al., “P-glycoprotein modulates oleanolic acid effects in hepatocytes cancer cells and zebrafish embryos,” Chem. Biol. Interact., vol. 315, p. 108892, Jan. 2020. doi: 10.1016/j.cbi.2019.108892.
  • [336] X. Zhao, M. Liu, D. Li, “Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis,” Mol. Cell Biochem., vol. 400, no. 1-2, pp. 1-7, Feb. 2015. doi: 10.1007/s11010-014-2228-7.
  • [337] R.-P. Ye and Z.-D. Chen, “Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells,” Xenobiotica, vol. 47, no. 2, pp. 176-184, Feb. 2017. doi: 10.3109/00498254.2016.1171932.
  • [338] H. A. Bashmail, A. A. Alamoudi, A. Noorwali, G. A. Hegazy, G. M. Ajabnoor et. al., “Thymoquinone Enhances Paclitaxel Anti-Breast Cancer Activity via Inhibiting Tumor-Associated Stem Cells Despite Apparent Mathematical Antagonism,” Molecules, vol. 25, no. 2, p. 426, Jan. 2020. doi: 10.3390/molecules25020426.
  • [339] L. H. Odeh, W. H. Talib, I. A. Basheti, “Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice,” J. Cancer Res. Ther., vol. 14, pp. S324-S330, Jun. 2018. doi: 10.4103/0973-1482.235349.
  • [340] A. Al-Mutairi, A. Rahman, M. S. Rao, “Low Doses of Thymoquinone and Ferulic Acid in Combination Effectively Inhibit Proliferation of Cultured MDA-MB 231 Breast Adenocarcinoma Cells,” Nutr. Cancer, pp. 1-8, Mar. 2020. doi: 10.1080/01635581.2020.1743869.
  • [341] F. Xiang, Y. Fan, Z. Ni, Q. Liu, Z. Zhu et. al., “Ursolic Acid Reverses the Chemoresistance of Breast Cancer Cells to Paclitaxel by Targeting MiRNA-149-5p/MyD88,” Front. Oncol., vol. 9, p. 501, Jun. 2019. doi: 10.3389/fonc.2019.00501.
  • [342] J. Zheng, T. Asakawa, Y. Chen, Z. Zheng, B. Chen et. al., “Synergistic Effect of Baicalin and Adriamycin in Resistant HL-60/ADM Leukaemia Cells,” Cell Physiol. Biochem., vol. 43, no. 1, pp. 419-430, Sept. 2017. doi: 10.1159/000480420.
  • [343] J. H-M. Hsu, P. M-H. Chang, T.-S. Cheng, Y.-L. Kuo, A. T-H. Wu et. al., “Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer,” Cancers (Basel), vol. 11, no. 7, p. 1003, Jul. 2019. doi: 10.3390/cancers11071003.
  • [344] X. Li, F. Zhu, J. Jiang, C. Sun, X. Wang et. al., “Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells,” Cancer Lett., vol. 357, no. 1, pp. 219-230, Feb. 2015. doi: 10.1016/j.canlet.2014.11.026.
  • [345] C.-C. Huang, C.-M. Lin, Y.-J. Huang, L. Wei, L.-L. Ting et. al., “Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells,” Biotechnol. Appl. Biochem., vol. 64, no. 2, pp. 165-173, Mar. 2017. doi: 10.1002/bab.1446.
  • [346] M. Farhan, A. Malik, M. F. Ullah, S. Afaq, M. Faisal et. al., “Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs,” Int. J. Mol. Sci., vol. 20, no. 4, p. 800, Feb. 2019. doi: 10.3390/ijms20040800.
  • [347] S.-H. Tu, Y.-S. Chiou, N. Kalyanam, C.-T. Ho, L.-C. Chen et. al., “Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model,” Food Funct., vol. 8, no. 3, pp. 1067-1079, Mar. 2017. doi: 10.1039/c6fo01588c.
  • [348] Y. Li, Z. Xi, X. Chen, S. Cai, C. Liang et. al., “Natural compound Oblongifolin C confers gemcitabine resistance in pancreatic cancer by downregulating Src/MAPK/ERK pathways,” Cell Death Dis., vol. 9, no. 5, p. 538, May 2018. doi: 10.1038/s41419-018-0574-1.
  • [349] H.-N. Oh, A.-W. Kwak, M.-H. Lee, E. Kim, G. Yoon et. al., “Targeted inhibition of c-MET by podophyllotoxin promotes caspase-dependent apoptosis and suppresses cell growth in gefitinib-resistant non-small cell lung cancer cells,” Phytomedicine, vol. 80, p. 153355, Jan. 2021. doi: 10.1016/j.phymed.2020.153355.
  • [350] B. Cao, S. Yang, W. Li, H. Chen, Y. Chen et. al., “GMZ-1 is a podophyllotoxin derivative that suppresses growth and induces apoptosis in adriamycin-resistant K562/A02 cells through modulation of MDR1 expression,” Mol. Med. Rep., vol. 17, no. 1, pp. 474-478, Jan. 2018. doi: 10.3892/mmr.2017.7862.

Plant-Derived Natural Products as Multidrug Resistance Modulators in Cancer Therapy

Yıl 2020, Cilt: 1 Sayı: 2, 1 - 51, 31.12.2020

Öz

Background: Cancer is the second leading cause of death worldwide and each year tens of millions of people are lost their lives due to different types of cancer. Despite all efforts in the treatment of cancer, the mortality and morbidity rates are still in high levels. Multidrug resistance (MDR) is one of the main impediments in the cancer treatment. MDR might result in tumor metastasis and recurrence, which is responsible for 90% of cancer-related deaths. Many intrinsic and extrinsic factors such as genetic and epigenetic modifications, drug efflux systems, DNA repair mechanisms, apoptotic and autophagic processes contribute drug resistance in cancer cells. To date, various types of molecules have been tested in vitro and in vivo, for MDR modulating activity but there is still no effective anticancer drug to completely overcome MDR. Phytochemicals, in alone or in combination with other chemotherapeutics, are potentially able to sensitize the cancer cells to conventional anticancer drugs in cancer patients with fewer side effects. In this review, we aimed to provide a general perspective about MDR-related mechanisms and novel therapeutic approaches including RNA interference (RNAi) therapy, nanotherapy and cancer stem cell treatments to combat MDR and to highlight the latest MDR reversing agents of plant origin based on their modulating effects on various proteins, enzymes, transcription factors, cell cycle regulators and survival and oncogenic pathways.

Conclusion: Plant-derived secondary metabolites may improve the therapeutic efficacy of anticancer drugs through targeting different MDR-related mechanisms and they serve as lead compounds to elicit better pharmacological results in the development of novel anticancer agents.

Kaynakça

  • [1] World Health Organization. “Cancer”. Who.int. https://www.who.int/health-topics/cancer#tab=tab_1 (accessed November 27, 2020).
  • [2] D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell, vol. 144, no. 5, pp. 646-674, Mar. 2011, doi: 10.1016/j.cell.2011.02.013.
  • [3] Z. Abbas and S. Rehman, “An Overview of Cancer Treatment Modalities,” in Neoplasm, H. N. Shahzad, Ed. United Kingdom: IntechOpen, 2018, pp. 139-157.
  • [4] P. Kanavos, “The rising burden of cancer in the developing world,” Ann. Oncol., vol. 17, no. 8, pp. viii15-viii23, Jul. 2006, doi: 10.1093/annonc/mdl983.
  • [5] National Cancer Institute. “Cancer Statistics”. Cancer.gov. https://www.cancer.gov/about-cancer/understanding/statistics (accessed November 28, 2020).
  • [6] American Cancer Society, “Cancer Facts & Figures 2020,” 2020. [Online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020 (accessed November 28, 2020).
  • [7] A. Kumar and V. Jaitak, “Natural products as multidrug resistance modulators in cancer,” Eur. J. Med. Chem., vol. 176, pp. 268-291, May 2019, doi: 10.1016/j.ejmech.2019.05.027.
  • [8] I. Valle, D. Tramalloni, N. L. Bragazzi, “Cancer prevention: state of the art and future prospects,” J. Rev. Med. Hyg., vol. 56, no. 1, pp. E21-E27, Mar. 2015.
  • [9] M. F. Ullah, “Cancer Multidrug Resistance (MDR): A Major Impediment to Effective Chemotherapy,” Asian Pac. J. Cancer Prev., vol. 9, no. 1, pp. 1-6, Jan.-Mar. 2008.
  • [10] R. Briffa, S. P. Langdon, G. Grech, D. J. Harrison, “Acquired and Intrinsic Resistance to Colorectal Cancer Treatment”, in Colorectal Cancer-Diagnosis, Screening and Management, J. Chen, Ed. United Kingdom: IntechOpen, 2017, pp. 57-81.
  • [11] S. K. Gupta, P. Singh, V. Ali, M. Verma, “Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy,” Oncol. Rev., vol. 14, no. 2, p. 448, Jul. 2020. doi: 10.4081/oncol.2020.448.
  • [12] R-J. Ju, L-M. Mu, W.-L. Lu, “Targeting drug delivery systems for circumventing multidrug resistance of cancers,” Ther. Deliv. vol. 4, no. 6, pp. 667-671, Jun. 2013. doi: 10.4155/tde.13.39.
  • [13] M. Saraswathy and S. Gong, “Different strategies to overcome multidrug resistance in cancer,” Biotechnol. Adv., vol. 31, no. 8, pp. 1397-1407, Dec. 2013. doi: 10.1016/j.biotechadv.2013.06.004.
  • [14] T. H. Lippert, H.-J. Ruoff, M. Volm, “Intrinsic and Acquired Drug Resistance in Malignant Tumors,” Arzneimittelforschung, vol. 58, no. 6, pp. 261-264, Feb. 2008. doi: 10.1055/s-0031-1296504.
  • [15] A. Rose-James, T. T. Sreelekha, S. K. George, “Nano strategies in the war against multidrug resistance in leukemia,” OncoDrugs, vol. 1, no. 1, pp. 3e-9e, Dec. 2013.
  • [16] J. Wang, N. Seebacher, H. Shi, Q. Kan, Z. Duan, “Novel strategies to prevent the development of multidrug resistance (MDR) in cancer,” Oncotarget, vol. 8, no. 48, pp. 84559-84571, Jul. 2017. doi: 10.18632/oncotarget.19187.
  • [17] S. Tuncer, “Drug Delivery With Nanoparticles To Multi-Drug Resistance Cancer Cell Line,” M.Sc. dissertation, Dept. Nanotechnology and Nanomedicine, Hacettepe Univ., Ankara, 2014.
  • [18] O. Fapohunda and D. C. Ajayi, “Cancer cell metabolism resulting in multidrug resistance to chemotherapy and possible ways out,” J. Cancer Prev. Curr. Res., vol. 11, no. 3, pp. 64-70, Jun. 2020. doi: 10.15406/jcpcr.2020.11.00429.
  • [19] A. Zargar, S. Chang, A. Kothari, A. M. Snijders, J.-H. Mao et. al., “Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy,” CDTM, vol. 5, no. 4, pp. 258-266, Dec. 2019. doi: 10.1016/j.cdtm.2019.11.001.
  • [20] X.-J. Liang, C. Chen, Y. Zhao, P. C. Wang, “Circumventing Tumor Resistance to Chemotherapy by Nanotechnology,” Methods Mol Biol., vol. 596, pp. 467-488, Mar. 2010. doi: 10.1007/978-1-60761-416-6_21.
  • [21] V. Schirrmacher, “From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review),” Int. J. Oncol., vol. 54, no. 2, pp. 407-419, Dec. 2019. doi: 10.3892/ijo.2018.4661.
  • [22] S. A. Mirzaei, S. Reiisi, P. G. Tabari, A. Shekari, F. Aliakbari et. al., “Broad blocking of MDR efflux pumps by acetylshikonin and acetoxyisovalerylshikonin to generate hypersensitive phenotype of malignant carcinoma cells,” Sci. Rep., vol. 8, no. 1, p. 3446, Feb. 2018. doi: 10.1038/s41598-018-21710-5.
  • [23] Z. Chen, T. Shi, L. Zhang, M. Deng, C. Huang, “Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade,” Cancer Lett., vol. 370, no. 1, pp. 153-164, Jan. 2016. doi: 10.1016/j.canlet.2015.10.010.
  • [24] T. Haider, V. Pandey, N. Banjare, P. N. Gupta, V. Soni, “Drug resistance in cancer: mechanisms and tackling strategies,” Pharmacol. Rep., vol. 72, pp. 1125-1151, Jul. 2020. doi: 10.1007/s43440-020-00138-7.
  • [25] C. S. Chambers, J. Viktorová, K. Řehořová, D. Biedermann, L. Turková, “Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans,” J. Agric. Food Chem., vol. 68, no. 7, pp. 1763-1779, Feb. 2020. doi: 10.1021/acs.jafc.9b00694.
  • [26] K. Bukowski, M. Kciuk, R. Kontek, “Mechanisms of Multidrug Resistance in Cancer Chemotherapy,” Int. J. Mol. Sci., vol. 21, no. 9, p. 3233, May 2020. doi: 10.3390/ijms21093233.
  • [27] S. Wu and L. Fu, “Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells,” Mol. Cancer, vol. 17, no. 1, p. 25, Feb. 2018. doi: 10.1186/s12943-018-0775-3.
  • [28] A. C. Jaramillo, F. A. Saig, J. Cloos, G. Jansen, G. J. Peters et. al., “How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance?”, Cancer Drug Resist., vol. 1, pp. 6-29, Mar. 2018. doi: 10.20517/cdr.2018.02.
  • [29] M. Liscovitch and Y. Lavie, “Cancer multidrug resistance: a review of recent drug discovery research, IDrugs, vol. 5, no. 4, pp. 349-355, Apr. 2002.
  • [30] W. An, H. Lai, Y. Zhang, M. Liu, X. Lin, “Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines,” Front. Pharmacol., vol. 10, p. 758, Jul. 2019. doi: 10.3389/fphar.2019.00758.
  • [31] S.-T. Pan, Z.-L. Li, Z.-X. He, J.-X. Qiu, S.-F. Zhou, “Molecular mechanisms for tumour resistance to chemotherapy,” Clin. Exp. Pharmacol. Physiol., vol. 43, no. 8, pp. 723-737, Apr. 2016. doi: 10.1111/1440-1681.12581.
  • [32] B. L. Y. Kwan and V. W. K. Wai, “Autophagy in Multidrug-Resistant Cancers,” in Autophagy in Current Trends in Cellular Physiology and Pathology, N. V. Gorbunov, Ed. United Kingdom: IntechOpen, 2016, pp. 435-454.
  • [33] G. Pistritto, D. Trisciuoglio, C. Ceci, A. Garufi, G. D’Orazi, “Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies,” Aging, vol. 8, no. 4, pp. 603-619, Apr. 2016. doi: 10.18632/aging.100934.
  • [34] C. M. Pfeffer and A. T. K. Singh, “Apoptosis: A Target for Anticancer Therapy,” Int. J. Mol. Sci., vol. 19, no. 2, p. 448, Feb. 2018. doi: 10.3390/ijms19020448.
  • [35] J. G. Alvarez-Meythaler, Y. Garcia-Mayea, C. Mir, H. Kondoh, M. E. LLeonart, “Autophagy Takes Center Stage as a Possible Cancer Hallmark,” Front. Oncol., vol. 10, p. 586069, Oct. 2020. doi: 10.3389/fonc.2020.586069.
  • [36] X. Hou, J. Jiang, Z. Tian, L. Wei, “Autophagy and Tumour Chemotherapy,” in Autophagy: Biology and Diseases - Clinical Science, W. Le, Ed. Singapore: Springer, 2020, pp. 351-374.
  • [37] Y.‑J. Li, Y.‑H. Lei, N. Yao, C.-R. Wang, N. Hu et. al., “Autophagy and multidrug resistance in cancer,” Chin. J. Cancer, vol. 36, p. 52, Jun. 2017. doi: 10.1186/s40880-017-0219-2.
  • [38] J. M. M. Levy and A. Thorburn, “Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients,” Cell Death Differ., vol. 27, no. 3, pp. 1-15, Dec. 2019. doi: 10.1038/s41418-019-0474-7.
  • [39] S. Nagini, P. Manikandan, R. R. Malla, “The Autophagy Conundrum in Cancer Development, Progression and Therapeutics,” in Autophagy in Tumor and Tumor Microenvironment, S. K. Bhutia, Ed. Singapore: Springer, 2020, pp. 223-247.
  • [40] H. Chang and Z. Zou, “Targeting autophagy to overcome drug resistance: further developments,” J. Hematol. Oncol., vol. 13, p. 159, Nov. 2020. doi: 10.1186/s13045-020-01000-2.
  • [41] F. Cuomo, L. Altucci, G. Cobellis, “Autophagy Function and Dysfunction: Potential Drugs as Anti-Cancer Therapy,” Cancers (Basel), vol. 11, no. 10, p. 1465, Sep. 2019. doi: 10.3390/cancers11101465.
  • [42] A. S. Rodrigues, B. C. Gomes, C. Martins, M. Gromicho, N. G. Oliveira et. al., “DNA Repair and Resistance to Cancer Therapy,” in New Research Directions in DNA Repair, C. Chen, Ed. United Kingdom: IntechOpen, 2013, pp. 489-528.
  • [43] C. J. Link Jr. and V. A. Bohr, “DNA repair in drug resistance: Studies on the repair process at the level of the gene,” in Molecular and Clinical Advances in Anticancer Drug Resistance, R. F. Ozols, Ed. New York: Springer, 1991, pp. 209-232.
  • [44] A. Torgovnick and B. Schumacher, “DNA repair mechanisms in cancer development and therapy,” Front. Genet., vol. 6, p. 157, Apr. 2015. doi: 10.3389/fgene.2015.00157.
  • [45] L. Wang, A. J. Mosel, G. G. Oakley, A. Peng, “Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer,” Mol. Cancer. Ther., vol. 11, no. 11, pp. 2401-2409, Nov. 2012. doi: 10.1158/1535-7163.MCT-12-0448.
  • [46] J.-P. Gillet and M. M. Gottesman, “Mechanisms of Multidrug Resistance in Cancer,” in Cancer, Methods in Molecular Biology, J. M. Walker, Ed. United States: Springer, 2010, pp. 47-76.
  • [47] S. Sato and H. Itamoch, “DNA Repair and Chemotherapy,” in Advances in DNA Repair, C. C. Chen, Ed. United Kingdom: IntechOpen, 2015, pp. 359-380.
  • [48] N. Hosoya and K. Miyagawa, “Targeting DNA damage response in cancer therapy,” Cancer Sci., vol. 105, pp. 370-388, Jan. 2014. doi: 10.1111/cas.12366.
  • [49] N. E. Muvarak, K. Chowdhury, L. Xia, C. Robert, E. Y. Choi et. al., “Enhancing the Cytotoxic Effects of PARP Inhibitors with DNA Demethylating Agents - A Potential Therapy for Cancer,” Cancer Cell, vol. 30, pp. 637-650, Oct. 2016. doi: 10.1016/j.ccell.2016.09.002.
  • [50] S. Liu, Y. Ge, T. Wang, H. Edwards, Q. Ren et. al., “Inhibition of ATR potentiates the cytotoxic effect of gemcitabine on pancreatic cancer cells through enhancement of DNA damage and abrogation of ribonucleotide reductase induction by gemcitabine,” Oncol. Rep., vol. 37, pp. 3377-3386, Mar. 2017. doi: 10.3892/or.2017.5580.
  • [51] X. An, C. Sarmiento, T. Tan, H. Zhu, “Regulation of multidrug resistance by microRNAs in anti-cancer therapy,” Acta Pharm. Sin. B., vol. 7, no. 1, pp. 38-51, Jul. 2017. doi: 10.1016/j.apsb.2016.09.002.
  • [52] V. S. Jones, R.-Y. Huang, L.-P. Chen, Z.-S. Chen, L. Fu et. al., “Cytokines in cancer drug resistance: Cues to new therapeutic strategies,” Biochim. Biophys. Acta, vol. 1865, pp. 255-265, Mar. 2016. doi: 10.1016/j.bbcan.2016.03.005.
  • [53] E. C. Aniogo, B. P. A. George, H. Abrahamse, “The role of photodynamic therapy on multidrug resistant breast cancer,” Cancer Cell Int., vol. 19, p. 91, Apr. 2019. doi: 10.1186/s12935-019-0815-0.
  • [54] T. Ozben, “Mechanisms and strategies to overcome multiple drug resistance in cancer,” FEBS Lett., vol. 580, pp. 2903-2909, Feb. 2006. doi: 10.1016/j.febslet.2006.02.020.
  • [55] Y. Cho and Y. K. Kim, “Cancer Stem Cells as a Potential Target to Overcome Multidrug Resistance,” Front Oncol., vol. 10, p. 764, Jun. 2020. doi: 10.3389/fonc.2020.00764.
  • [56] S. M. Stefan, “Multi-target ABC transporter modulators: what next and where to go?,” Future Med.Chem., vol. 11, no. 18, pp. 2353-2358, Sept. 2019. doi: 10.4155/fmc-2019-0185.
  • [57] M. Falasca and K. J. Linton, “Investigational ABC transporter inhibitors,” Expert Opin. Investig. Drugs, vol. 21, no. 5, pp. 657-666, May 2012. doi: 10.1517/13543784.2012.679339.
  • [58] A. K. Nanayakkara, C. A. Follit, G. Chen, N. S. Williams, P. D. Vogel et. al., “Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells,” Sci. Rep., vol. 8, p. 967, Jan. 2018. doi: 10.1038/s41598-018-19325-x.
  • [59] I. S. Mohammad, W. He, L. Yin, “Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR,” Biomed. Pharmacother., vol. 100, pp. 335-348, Apr. 2018. doi: 10.1016/j.biopha.2018.02.038.
  • [60] B. M. F. Gonçalves, D. S. P. Cardoso, M.-J. U. Ferreira, “Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators,” Molecules, vol. 25, p. 3364, Jul. 2020. doi: 10.3390/molecules25153364.
  • [61] Y. H. Choi, A.-M. Yu, “ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development,” Curr. Pharm. Des., vol. 20, no. 5, pp. 793-807, Jan. 2014.
  • [62] A. R. Hamed, N. S. Abdel-Azim, K. A. Shams, F. M. Hammouda, “Targeting multidrug resistance in cancer by natural chemosensitizers,” Bull. Natl. Res. Cent., vol. 43, p. 8, Jan. 2019. doi: 10.1186/s42269-019-0043-8.
  • [63] H. M. Coley, “Overcoming Multidrug Resistance in Cancer: Clinical Studies of P-Glycoprotein Inhibitors,” in Cancer, Methods in Molecular Biology, J. M. Walker, Ed. United States: Springer, 2010, pp. 341-358.
  • [64] X.-D. Dong, M. Zhang, X. Ma, J.-Q. Wang, Z.-N. Lei et. al., “Bruton’s Tyrosine Kinase (BTK) Inhibitor RN486 Overcomes ABCB1-Mediated Multidrug Resistance in Cancer Cells,” Front. Cell Dev. Biol., vol. 8, p. 865, Aug. 2020. doi: 10.3389/fcell.2020.00865.
  • [65] Z. Zhao, M. Ji, Q. Wang, N. He, Y. Li, “Ca2+ signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer,” Carbohydr. Polym., vol. 238, p. 116073, Feb. 2020. doi: 10.1016/j.carbpol.2020.116073.
  • [66] S. Sinha, S. Sharma, J. Vora, N. Shrivastava, “Emerging role of sirtuins in breast cancer metastasis and multidrug resistance: Implication for novel therapeutic strategies targeting sirtuins,” Pharmacol. Res., vol. 158, p. 104880, May 2020. doi: 10.1016/j.phrs.2020.104880.
  • [67] S. Pramual, K. Lirdprapamongkol, V. Jouan-Hureaux, M. Barberi-Heyob, C. Frochot et. al., “Overcoming the diverse mechanisms of multidrug resistance in lung cancer cells by photodynamic therapy using pTHPP-loaded PLGA-lipid hybrid nanoparticles,” Eur. J. Pharm. Biopharm., vol. 149, pp. 218-228, Feb. 2020. doi: 10.1016/j.ejpb.2020.02.012.
  • [68] J. Yang, D. Sontag, Y. Gong, G. Y. Minuk, “Enhanced Gemcitabine Cytotoxicity with Knockdown of Multidrug Resistance Protein Genes in Human Cholangiocarcinoma Cell Lines,” J. Gastroenterol. Hepatol., Oct. 2020. doi: 10.1111/jgh.15289.
  • [69] C. Martinelli and M. Biglietti “Nanotechnological approaches for counteracting multidrug resistance in cancer” Cancer Drug Resist., Oct. 2020. doi: 10.20517/cdr.2020.47.
  • [70] W. Lin, Y. Miao, X. Meng, Y. Huang, W. Zhao et. al., “miRNA-765 mediates multidrug resistance via targeting BATF2 in gastric cancer cells,” FEBS Open Bio., vol. 10, no. 6, pp. 1021-1030, Jun. 2020. doi: 10.1002/2211-5463.12838.
  • [71] W. Ma, Q. Chen, W, Xu, M, Yu, Y. Yang et. al., “Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer,” Nano Res., Nov. 2020. doi: 10.1007 / s12274-020-3124-y.
  • [72] M. Majidinia, M. Mirza-Aghazadeh-Attari, M. Rahimi, A. Mihanfar, A. Karimian et. al., “Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons,” IUBMB Life., vol. 72, no. 5, pp. 855-871, May 2020. doi: 10.1002/iub.2215.
  • [73] J. Yu, F. Hu, Q. Zhu, X. Li, H. Ren et. al., “ PD-L1 monoclonal antibody-decorated nanoliposomes loaded with Paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers,” Nanoscale Res. Lett., vol. 15, no. 1, p. 59, Mar. 2020. doi: 10.1186/s11671-019-3228-z.
  • [74] Q.-X. Teng, X. Luo, Z.-N. Lei, J.-Q. Wang, J. Wurpel et. al., “The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide,” Cancers (Basel), vol. 12, no. 7, p. 1963, Jul. 2020. doi: 10.3390/cancers12071963.
  • [75] J. Hong, S. Jing, Y. Zhang, R. Chen, K. G. Owusu-Ansah et. al., “Y-320, a novel immune-modulator, sensitizes multidrug-resistant tumors to chemotherapy,” Am. J. Transl. Res., vol. 12, no. 2, pp. 551-562, Feb. 2020.
  • [76] M. Lahlou, “The Success of Natural Products in Drug Discovery,” J. Pharm. Pharmacol., vol. 4, pp. 17-31, Jun. 2013. doi: 10.4236/pp.2013.43A003.
  • [77] A. A. Koparde, R. C. Doijad, C. S. Magdum, “Natural Products in Drug Discovery,” in Pharmacognosy - Medicinal Plants, S. Perveen and A. Al-Taweel, Eds. United Kingdom: IntechOpen, 2019, pp. 1-19.
  • [78] E. E. Carlson, “Natural Products as Chemical Probes”, ACS Chem. Biol., vol. 5, no. 7, pp. 639-653, Jul. 2010. doi: 10.1021/cb100105c.
  • [79] S. Dalavelle, V. Dobričić, L. Lazzarato, E. Gazzano, M. Machuqueiro et. al., “Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors,” Drug Resist. Updat., vol. 50, p. 100682, May 2020. doi: 10.1016/j.drup.2020.100682.
  • [80] V. Seidel, “Plant-Derived Chemicals: A Source of Inspiration for New Drugs,” Plants (Basel), vol. 9, no. 11, p. 1562, Nov. 2020. doi: 10.3390/plants9111562.
  • [81] S. Karthikeyan and S. L. Hoti, “Development of Fourth Generation ABC Inhibitors from Natural Products: A Novel Approach to Overcome Cancer Multidrug Resistance,” Anticancer Agents Med. Chem., vol. 15, no. 5, pp. 605-615, Jan. 2015. doi: 0.2174/1871520615666150113103439.
  • [82] A. Ramakrishna and G. A. Ravishankar, “Influence of abiotic stress signals on secondary metabolites in plants,” Plant Signal. Behav., vol. 6, no. 11, pp. 1720-1731, Nov. 2011. doi: 10.4161/psb.6.11.17613.
  • [83] A. M. L. Seca and D. C. G. A. Pinto, “Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application,” Int. J. Mol. Sci., vol. 19, no. 1, p. 263, Jan. 2018. doi: 10.3390/ijms19010263.
  • [84] X. Xue, J.-L. Yu, D.-Q. Sun, W. Zou, F. Kong et. al., “Curcumin as a multidrug resistance modulator - A quick review,” Biomed. Prev. Nutr., vol. 3, no. 2, pp. 173-176, Apr. 2013. doi: 10.1016/j.bionut.2012.12.001.
  • [85] L. Pan, H. Hu, X. Wang, L. Yu, H. Jiang, “Inhibitory Effects of Neochamaejasmin B on P-Glycoprotein in MDCK-hMDR1 Cells and Molecular Docking of NCB Binding in P-Glycoprotein,” Molecules, vol. 20, pp. 2931-2948, Feb. 2015. doi: 10.3390/molecules20022931.
  • [86] M. M. Jucá, F. M. S. C. Filho, J. C. de Almeida, D. da Silva Mesquita, J. R. de Moraes Barriga et. al., “Flavonoids: biological activities and therapeutic potential,” Nat. Prod. Res., vol. 34, no. 5, pp. 692-705, Mar. 2020. doi: 10.1080/14786419.2018.1493588.
  • [87] J. Dinic, A. Podolski-Renic, T. Stankovic, J. Bankovic, M. Pesic, “New Approaches With Natural Product Drugs for Overcoming Multidrug Resistance in Cancer,” Curr. Pharm. Des., vol. 21, no. 38, pp. 5589-5604, Oct. 2015. doi: 10.2174/1381612821666151002113546.
  • [88] A. Ferreira, M. Rodrigues, A. Fortuna, A. Falcão, G. Alves, “Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs,” Food Res. Int., vol. 103, pp. 110-120, Jan. 2018. doi: 10.1016/j.foodres.2017.10.010.
  • [89] M. Saeed, O. Kadioglu, H. Khalid, Y. Sugimoto, T. Efferth, “Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking,” J. Nutr. Biochem., vol. 26, no. 1, pp. 44-56, Jan. 2015. doi: 10.1016/j.jnutbio.2014.09.008.
  • [90] Z. Chen, D. Tian, X. Liao, Y. Zhang, J. Xiao, “Apigenin Combined With Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells,” Front. Pharmacol., vol. 10, p. 260, Mar. 2019. doi: 10.3389/fphar.2019.00260.
  • [91] S. Erdogan, K. Turkekul, R. Serttas, Z. Erdogan, “The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy,” Biomed. Pharmacother., vol. 88, pp. 210-217, Apr. 2017. doi: 10.1016/j.biopha.2017.01.056.
  • [92] A.-M. Gao, X.-Y. Zhang, J.-N. Hu, Z.-P. Ke, “Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis,” Chem. Biol. Interact., vol. 280, pp. 45-50, Jan. 2018. doi: 10.1016/j.cbi.2017.11.020.
  • [93] R. B. Semwal, D. K. Semwal, S. Combrinck, A. Viljoen, “Butein: From ancient traditional remedy to modern nutraceutical,” Phytochem. Lett., vol. 11, pp. 188-201, Dec. 2014. doi: 10.1016/j.phytol.2014.12.014.
  • [94] L. Zhang, X. Yang, X. Li, C. Li, L. Z. Barriga et. al., “Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a,” Int. J. Mol. Med., vol. 36, no. 4, pp. 957-966, Oct. 2015. doi: 10.3892/ijmm.2015.2324.
  • [95] S. J. Hewlings and D. S. Kalman, “Curcumin: A Review of Its Effects on Human Health,” Foods., vol. 6, no. 10, p. 92, Oct. 2017. doi: 10.3390/foods6100092.
  • [96] E. Khatoon, K. Banik, C. Harsha, B. L. Sailo, K. K. Thakur et. al., “Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives,” Semin. Cancer Biol., vol. 28, p. S1044-579X(20)30150-4, Jun. 2020. doi: 10.1016/j.semcancer.2020.06.014.
  • [97] H. Mahammedi, E. Planchat, M. Pouget, X. Durando, H. Curé et. al., “The New Combination Docetaxel, Prednisone and Curcumin in Patients with Castration-Resistant Prostate Cancer: A Pilot Phase II Study,” Oncology, vol. 90, no. 2, pp. 69-78, Jan. 2016. doi: 10.1159/000441148.
  • [98] S. H. Shahcheraghi, M. Zangui, M. Lotfi, M. Ghayour-Mobarhan, A. Ghorbani et. al., “Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme,” Curr. Pharm. Des., vol. 25, no. 3, pp. 333-342, Jan. 2019. doi: 10.2174/1381612825666190313123704.
  • [99] K. S. Park, S. Y. Yoon, S. H. Park, J. H. Hwang, “Anti-Migration and Anti-Invasion Effects of Curcumin via Suppression of Fascin Expression in Glioblastoma Cells,” Brain Tumor Res. Treat., vol. 7, no. 1, pp. 16-24, Apr. 2019. doi: 10.14791/btrt.2019.7.e28.
  • [100] W. Li, W. Yang, Y. Liu, S. Chen, S. Chin et. al., “MicroRNA-378 enhances inhibitory effect of curcumin on glioblastoma,” Oncotarget, vol. 8, no. 43, pp. 73938-73946, May 2017. doi: 10.18632/oncotarget.17881.
  • [101] Z. C. Gersey, G. A. Rodriguez, E. Barbarite, A. Sanchez, W. M. Walters et. al., “Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species,” BMC Cancer, vol. 17, no. 1, p. 99, Feb. 2017. doi: 10.1186/s12885-017-3058-2.
  • [102] J. Shen, Y.-J. Chen, Y.-W. Jia, W.-Y. Zhao, G.-H. Chen et. al., “Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell,” Asian Pac. J. Trop. Med., vol. 10, no. 12, pp. 1190-1196, Dec. 2017. doi: 10.1016/j.apjtm.2017.10.028.
  • [103] S. Keyvani-Ghamsari, K. Khorsandi, A. Gul, “Curcumin effect on cancer cells' multidrug resistance: An update,” Phytother. Res., vol. 34, no. 10, pp. 2534-2556, Oct. 2020. doi: 10.1002/ptr.6703.
  • [104] B. Wang, X. Liu, Y. Teng, T. Yu, J. Chen et. al., “Improving anti-melanoma effect of curcumin by biodegradable nanoparticles,” Oncotarget, vol. 8, no. 65, pp. 108624-108642, Aug. 2017. doi: 10.18632/oncotarget.20585.
  • [105] Y. Li, S. M. Meeran, T. O. Tollefsbol, “Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression,” Sci. Rep., vol. 7, no. 1, p. 9345, Aug. 2017. doi: 10.1038/s41598-017-09764-3.
  • [106] B. N. Prashanth Kumar, N. Puvvada, S. Rajput, S. Sarkar, M. K. Mahto et. al., “Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica-Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer,” Mol. Pharm., vol. 15, no. 7, pp. 2698-2713, Jul. 2018. doi: 10.1021/acs.molpharmaceut.8b00218.
  • [107] W. Zhang, W. Zhang, L. Sun, L. Xiang, X. Lai et. al., “The effects and mechanisms of epigallocatechin-3-gallate on reversing multidrug resistance in cancer,” Trends Food Sci. Technol., vol. 93, pp. 221-233, Sept. 2019. doi: 10.1016/j.tifs.2019.09.017.
  • [108] C. T. Le, W. P. J. Leenders, R. J. Molenaar, C. J. F. van Noorden et. al., “Effects of the Green Tea Polyphenol Epigallocatechin-3-Gallate on Glioma: A Critical Evaluation of the Literature,” Nutr. Cancer, vol. 70, no. 3, pp. 317-333, Apr. 2018. doi: 10.1080/01635581.2018.1446090.
  • [109] N. Khan, D. N. Syed, N. Ahmad, H. Mukhtar, “Fisetin: a dietary antioxidant for health promotion,” Antioxid. Redox Signal., vol. 19, no. 2, pp. 151-162, Jul. 2013. doi: 10.1089/ars.2012.4901.
  • [110] M.-T. Lin, C.-L. Lin, T.-Y. Lin, C.-W. Cheng, S.-F. Yang et. al., “Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway,” Tumour Biol., vol. 37, no. 5, pp. 6987-6996, May 2016. doi: 10.1007/s13277-015-4526-4.
  • [111] L.-B. Jeng, B. K. Velmurugan, M.-C. Chen, H.-H. Hsu, T.-J. Ho et. al., “Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo,” J. Cell Physiol., vol. 233, no. 9, pp. 7134-7142, Sept. 2018. doi: 10.1002/jcp.26532.
  • [112] A. A. Ganai and H. Farooqi, “Bioactivity of genistein: A review of in vitro and in vivo studies,” Biomed. Pharmacother., vol. 76, pp. 30-38, Dec. 2015. doi: 10.1016/j.biopha.2015.
  • [113] S. Pintova, S. Dharmupari, E. Moshier, N. Zubizarreta, C. Ang et. al., “Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: phase I/II pilot study,” Cancer Chemother. Pharmacol., vol. 84, no.3, pp. 591-598, Sept. 2019. doi: 10.1007/s00280-019-03886-3.
  • [114] S.-L. Huang, T.-C. Chang, C. C. K. Chao, N.-K. Sun, “Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells,” Biochem. Pharmacol., vol. 177, p. 113965, Jul. 2020. doi: 10.1016/j.bcp.2020.113965.
  • [115] S. Kandakumar and V. Manju, “Pharmacological Applications of Isorhamnetin: A Short Review,” Int. J. Trend Res. Dev., vol. 1, no. 4, pp. 672-678, Jun. 2017.
  • [116] K. A. Manu, M. K. Shanmugam, L. Ramachandran, F. Li, K. S. Siveen et. al., “Corrigendum on "Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-κB signaling cascade in gastric cancer,” Cancer Lett., vol. 28, no. 420, p. 259, Apr. 2018. doi: 10.1016/j.canlet.2018.01.003.
  • [117] J. Wang, X. Fang, L. Ge, F. Cao, L. Zhao et. al., “Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol,” PLoS One, vol. 13, no. 5, p. e0197563, May 2018. doi: 10.1371/journal.pone.0197563.
  • [118] M. Moradzadeh, A. Tabarraei, H. R. Sadeghnia, A. Ghorbani, A. Mohamadkhani et. al., “Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes,” J. Cell Biochem., vol. 119, no. 2, pp. 2288-2297, Feb. 2018. doi: 10.1002/jcb.26391.
  • [119] B. Nair, R. J. Anto, S. M. L. R. Nath, “Kaempferol-Mediated Sensitization Enhances Chemotherapeutic Efficacy of Sorafenib Against Hepatocellular Carcinoma: An In Silico and In Vitro Approach,” Adv. Pharm. Bull., vol. 10, no. 3, pp. 472-476, Jul. 2020. doi: 10.34172/apb.2020.058.
  • [120] C.-P. Wu, S. Lusvarghi, S.-H. Hsiao, T.-C. Liu, Y.-Q. Li et. al., “Licochalcone A Selectively Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs,” J. Nat. Prod., vol. 83, no. 5, pp. 1461-1472, May 2020. doi: 10.1021/acs.jnatprod.9b01022.
  • [121] A. V. A. David, R. Arulmoli, S. Parasuraman, “Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid,” Pharmacogn. Rev., vol. 10, no. 20, pp. 84-89, Jul.-Dec. 2016. doi: 10.4103/0973-7847.194044.
  • [122] H. G. Ulusoy and N. Sanlier, “A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities,” Crit. Rev. Food Sci. Nutr., vol. 60, no. 19, pp. 3290-3303, Nov. 2020. doi: 10.1080/10408398.2019.1683810.
  • [123] S. Sun, F. Gong, P. Liu, Q. Miao, “Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway,” Gene, vol. 664, pp. 50-57, Jul. 2018. doi: 10.1016/j.gene.2018.04.045.
  • [124] A. Maruszewska and J. Tarasiuk, “Quercetin Triggers Induction of Apoptotic and Lysosomal Death of Sensitive and Multidrug Resistant Leukaemia HL60 Cells,” Nutr. Cancer, pp. 1-18, Apr. 2020. doi: 10.1080/01635581.2020.1752745.
  • [125] Y. Zhou, J. Zhang, K. Wang, W. Han, X. Wang et. al., “Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter,” Eur. J. Pharmacol., vol. 881, p. 173185, Aug. 2020. doi: 10.1016/j.ejphar.2020.173185.
  • [126] J. Cao, J. Han, H. Xiao, J. Qiao, M. Han, “Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics,” Nutrients, vol. 8, no. 12, p. 762, Dec. 2016. doi: 10.3390/nu8120762.
  • [127] J. Shen, T. Yang, Y. Xu, Y. Luo, X. Zhong, “δ-Tocotrienol, Isolated from Rice Bran, Exerts an Anti-Inflammatory Effect via MAPKs and PPARs Signaling Pathways in Lipopolysaccharide-Stimulated Macrophages,” Int. J. Mol. Sci., vol. 19, no. 10, p. 3022, Oct. 2018. doi: 10.3390/ijms19103022.
  • [128] C. B. Thomsen, R. F. Andersen, K. D. Steffensen, P. Adimi, A. Jakobsen, “Delta tocotrienol in recurrent ovarian cancer. A phase II trial,” Pharmacol. Res., vol. 141, pp. 392-396, Mar. 2019. doi: 10.1016/j.phrs.2019.01.017.
  • [129] I. B. Abubakar, S.-W. Lim, H.-S. Loh, “Synergistic Apoptotic Effects of Tocotrienol Isomers and Acalypha wilkesiana on A549 and U87MG Cancer Cells,” Trop. Life Sci. Res., vol. 29, no. 1, pp. 229-238, Mar. 2018. doi: 10.21315/tlsr2018.29.1.15.
  • [130] J. Saguez, J. Attoumbré, P. Giordanengo, S. Baltora-Rosset, “Biological activities of lignans and neolignans on the aphid Myzus persicae (Sulzer),” Arthropod Plant Interact., vol. 7, pp. 225-233, Nov. 2013. doi: 10.1007/s11829-012-9236-x.
  • [131] S. Su, X. Cheng, M. Wink, “Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells,” Phytomedicine, vol. 22, no. 2, pp. 301-307, Feb. 2015. doi: 10.1016/j.phymed.2014.12.009.
  • [132] A. Rauf, S. Patel, M. Imran, A. Maalik, M. U. Arshad et. al., “Honokiol: An anticancer lignan,” Biomed. Pharmacother., vol. 107, pp. 555-562, Nov. 2018. doi: 10.1016/j.biopha.2018.08.054.
  • [133] C. P. Ong, W. L. Lee, Y. Q. Tang, W. H. Yap, “Honokiol: A Review of Its Anticancer Potential and Mechanisms,” Cancers (Basel), vol. 12, no. 1, pp. 48, Dec. 2019. doi: 10.3390/cancers12010048.
  • [134] S. Kiokias, C. Proestos, V. Oreopoulou, “Phenolic Acids of Plant Origin-A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties,” Foods, vol. 9, no. 4, p. 534, Apr. 2020. doi: 10.3390/foods9040534.
  • [135] Y.-N. Teng, C. C. N. Wang, W.-C. Liao, Y.-H. Lan, C.-C. Hung, “Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein, Molecules, vol. 25, no. 2, p. 247, Jan. 2020. doi: 10.3390/molecules25020247.
  • [136] B. C. Akinwumi, K.-A. M. Bordun, H. D. Anderson, “Biological Activities of Stilbenoids,” Int. J. Mol. Sci., vol. 19, no. 3, p. 792, Mar. 2018. doi: 10.3390/ijms19030792.
  • [137] B. Salehi, A. P. Mishra, M. Nigam, B. Sener, M. Kilic, “Resveratrol: A Double-Edged Sword in Health Benefits,” Biomedicines, vol. 6, no. 3, p. 91, Sept. 2018. doi: 10.3390/biomedicines6030091.
  • [138] X. Guo, Z. Zhao, D. Chen, M. Qiao, F. Wan, “Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors,” Asian J. Pharm. Sci., vol. 14, no. 1, pp. 78-85, Jan. 2019. doi: 10.1016/j.ajps.2018.03.002.
  • [139] E. Sameiyan, A. W. Hayes, G. Karimi, “The effect of medicinal plants on multiple drug resistance through autophagy: A review of in vitro studies,” Eur. J. Pharmacol., vol. 852, pp. 244-253, Jun. 2019. doi: 10.1016/j.ejphar.2019.04.001.
  • [140] N. S. Alamolhodaei, A. M. Tsatsakis, M. Ramezan, A. W. Hayes, G. Karim, “Resveratrol as MDR reversion molecule in breast cancer: An overview,” Food Chem. Toxicol., vol. 103, pp. 223-232, May 2017. doi: 10.1016/j.fct.2017.03.024.
  • [141] L.-Y. Wang, S. Zhao, G.-J. Lv, X.-J. Ma, J.-B. Zhang, “Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer,” World J. Clin. Cases, vol. 8, no. 12, pp. 2425-2437, Jun. 2020. doi: 10.12998/wjcc.v8.i12.2425.
  • [142] H. N. Matsuura and A. G. Fett-Neto, “Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action,” in Plant Toxins, P. Gopalakrishnakone, C. R. Carlini, R. Ligabue-Braun, Eds. Switzerland: Springer, 2017, pp. 243-261.
  • [143] B. Debnath, W. S. Singh, M. Das, S. Goswami, M. K. Singh et. al., “Role of plant alkaloids on human health: A review of biological activities,” Mater. Today Chem., vol. 9, pp. 56-72, May 2018. doi: 10.1016/j.mtchem.2018.05.001.
  • [144] Y. Pan, F. Zhang, Y. Zhao, D. Shao, X. Zheng et. al., “Berberine Enhances Chemosensitivity and Induces Apoptosis Through Dose-orchestrated AMPK Signaling in Breast Cancer,” J. Cancer, vol. 8, no. 9, pp. 1679-1689, Jun. 2017. doi: 10.7150/jca.19106.
  • [145] X. Liu, Q, Ji, N, Ye, H, Sui, L. Zhou et. al., “Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE2 Mediated JAK2/STAT3 Signaling Pathway,” PLoS One, vol. 10, no. 5, p. e0123478, May 2015. doi: 10.1371/journal.pone.0123478.
  • [146] T. Zhu, L.-L. Li, G.-F. Xiao, Q.-Z. Luo, Q.-Z. Liu et. al., “Berberine Increases Doxorubicin Sensitivity by Suppressing STAT3 in Lung Cancer,” Am. J. Chin. Med., vol. 43, no. 7, pp. 1487-1502, Oct. 2015. doi: 10.1142/S0192415X15500846.
  • [147] L. Liu, J. Fan, G. Ai, J. Liu, N. Luo et. al., “Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells,” Biol. Res., vol. 52, no. 1, p. 37, Jul. 2019. doi: 10.1186/s40659-019-0243-6.
  • [148] Y. Pan, D. Shao, Y. Zhao, F. Zhang, X. Zheng et. al., “Berberine Reverses Hypoxia-induced Chemoresistance in Breast Cancer through the Inhibition of AMPK-HIF-1α,” Int. J. Biol. Sci., vol. 13, no. 6, pp. 794-803, Jul. 2017. doi: 10.7150/ijbs.18969.
  • [149] P. P. Kushwaha, A. K. Singh, K. S. Prajapati, M. Shuaib, S. Fayez et. al., “Induction of apoptosis in breast cancer cells by naphthylisoquinoline alkaloids,” Toxicol. Appl. Pharmacol., vol. 409, p. 115297, Dec. 2020. doi: 10.1016/j.taap.2020.115297.
  • [150] D. S. P. Cardoso, A. Kincses, M. Nové, G. Spengler, S. Mulhovo et. al., “Alkylated monoterpene indole alkaloid derivatives as potent P-glycoprotein inhibitors in resistant cancer cells,” Eur. J. Med. Chem., p. 112985, Nov. 2020. doi: 10.1016/j.ejmech.2020.112985.
  • [151] R.-M. Liu, P. Xu, Q. Chen, S.-L. Feng, Y. Xie, “A multiple-targets alkaloid nuciferine overcomes paclitaxel-induced drug resistance in vitro and in vivo,” Phytomedicine, vol. 79, p. 153342, Dec. 2020. doi: 10.1016/j.phymed.2020.153342.
  • [152] S.-Z. Han, H.-X. Liu, L.-Q. Yang, L. de Cui, Y. Xu, “Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB,” Biomed. Pharmacother., vol. 96, pp. 1403-1410, Dec. 2017. doi: 10.1016/j.biopha.2017.11.022.
  • [153] Y.-J. Chen, C.-C. Kuo, L.-L. Ting, L.-S. Lu, Y.-C. Lu et. al., “Piperlongumine inhibits cancer stem cell properties and regulates multiple malignant phenotypes in oral cancer,” Oncol. Lett., vol. 15, no. 2, pp. 1789-1798, Feb. 2018. doi: 10.3892/ol.2017.7486.
  • [154] S. A. A. Abdelfatah and T. Efferth, “Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells,” Phytomedicine, vol. 22, no. 2, pp. 308-318, Feb. 2015. doi: 10.1016/j.phymed.2015.01.002.
  • [155] T. Liu, X. Liu, W. Li, “Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy,” Oncotarget, vol. 7, no. 26, pp. 40800-40815, Jun. 2016. doi: 10.18632/oncotarget.8315.
  • [156] Y.-T. Chang, Y.-C. Lin, L. Sun, W.-C. Liao, C. C. N. Wang et. al., “Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein,” Phytomedicine, vol. 71, p. 153239, Jun. 2020. doi: 10.1016/j.phymed.2020.153239.
  • [157] W.-Y. Tong, “Biotransformation of Terpenoids and Steroids,” in Natural Products, K.G. Ramawat and J. M. Mérillon, Eds. Germany: Springer, 2013, pp. 2733-2759.
  • [158] M. Biradi and K. Hullatti, “Bioactivity guided isolation of cytotoxic terpenoids and steroids from Premna serratifolia,” Pharm. Biol., vol. 55, no. 1, pp. 1375-1379, Dec. 2017. doi: 10.1080/13880209.2017.1301491.
  • [159] N. Gyémánt, M. Tanaka, P. Molnár, J. Deli, L. Mándoky et. al., “Reversal of multidrug resistance of cancer cells in vitro: modification of drug resistance by selected carotenoids,” Anticancer Res., vol. 26, no. 1A, pp. 367-374, Jan.-Feb. 2006.
  • [160] S. Y. Eid, M. Z. El-Readi, M. Wink, “Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters,” Phytomedicine, vol. 19, no. 11, pp. 977-987, Aug. 2012. doi: 10.1016/j.phymed.2012.05.010.
  • [161] S. Y. Eid, M. A. lthubiti, M. E. Abdallah, M. Wink, M. Z. El-Readi, “The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes,” Phytomedicine, vol. 77, p. 153280, Oct. 2020. doi: 10.1016/j.phymed.2020.153280.
  • [162] Y.-N. Teng, M.-J. Sheu, Y.-W. Hsieh, R.-Y. Wang, Y.-C. Chiang et. al., “β-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function,” Phytomedicine, vol. 23, no. 3, pp. 316-323, Mar. 2016. doi: 10.1016/j.phymed.2016.01.008.
  • [163] S. Mafu and P. Zerbe, “Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges,” Phytochem. Rev., vol. 17, pp. 113-130, May 2017. doi: 10.1007/s11101-017-9513-5.
  • [164] S. Shaker, J. Sang, X.-L. Yan, R.-Z. Fan, G.-H. Tang et. al., “Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells,” Phytochemistry, vol. 176, p. 112395, Aug. 2020. doi: 10.1016/j.phytochem.2020.112395.
  • [165] T. Yang, S. Wang, H. Li, Q. Zhao, S. Yan et. al., “Lathyrane diterpenes from Euphorbia lathyris and the potential mechanism to reverse the multi-drug resistance in HepG2/ADR cells,” Biomed. Pharmacother., vol. 121, p. 109663, Jan. 2020. doi: 10.1016/j.biopha.2019.109663.
  • [166] Q. Liu, P. Cai, S. Guo, J. Shi, H. Sun, “Identification of a lathyrane-type diterpenoid EM-E-11-4 as a novel paclitaxel resistance reversing agent with multiple mechanisms of action,” Aging (Albany NY), vol. 12, no. 4, pp. 3713-3729, Feb. 2020. doi: 10.18632/aging.102842.
  • [167] J. Zhu, R. Wang, L. Lou, W. Li, G. Tang et. al., “Jatrophane Diterpenoids as Modulators of P-Glycoprotein-Dependent Multidrug Resistance (MDR): Advances of Structure-Activity Relationships and Discovery of Promising MDR Reversal Agents,” J. Med. Chem., vol. 59, no. 13, pp. 6353-6369, Jul. 2016. doi: 10.1021/acs.jmedchem.6b00605.
  • [168] G. Krstić, M. Jadranin, N. M. Todorović, M. Pešić, T. Stanković et. al., “Jatrophane diterpenoids with multidrug-resistance modulating activity from the latex of Euphorbia nicaeensis,” Phytochemistry, vol. 148, pp. 104-112, Apr. 2018. doi: 10.1016/j.phytochem.2018.01.016.
  • [169] D. Rédei, N. Kúsz, G. Sátori, A. Kincses, G. Spengler et. al., “Bioactive Segetane, Ingenane, and Jatrophane Diterpenes from Euphorbia taurinensis,” Planta Med., vol. 84, no. 9-10, pp. 729-735, Jul. 2018. doi: 10.1055/a-0589-0525.
  • [170] M. A. Reis, A. M. Matos, N. Duarte, O. B. Ahmed, R. J. Ferreira et. al., “Epoxylathyrane Derivatives as MDR-Selective Compounds for Disabling Multidrug Resistance in Cancer,” Front. Pharmacol., vol. 8, no. 11, p. 599, May 2020. doi: 10.3389/fphar.2020.00599.
  • [171] C. Garcia, V. M. S. Isca, F. Pereir, C. M. Monteiro, E. Ntungwe et. al., “Royleanone Derivatives From Plectranthus spp. as a Novel Class of P-Glycoprotein Inhibitors,” Front. Pharmacol., vol. 11, p. 557789, Nov. 2020. doi: 10.3389/fphar.2020.557789.
  • [172] A. Ahuja, J. H. Kim, J.-H. Kim, Y.-S. Yi, J. Y. Cho, “Functional role of ginseng-derived compounds in cancer,” J. Ginseng Res., vol. 42, no. 3, pp. 248-254, Jul. 2018. doi: 10.1016/j.jgr.2017.04.009.
  • [173] Y.-J. Kim, J.-N. Jeon, M.-G. Jang, J. Y. Oh, W.-S. Kwon et. al., “Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer,” J. Ginseng Res., vol. 38, no. 1, pp. 66-72, Jan. 2014. doi: 10.1016/j.jgr.2013.11.001.
  • [174] P. Zhang, Z. Cui, S. Wei, Y. Li, Y. Yin et. al., “Diverse limonoids from barks of Toona ciliata var. yunnanensis and their biological activities,” Ind. Crops Prod., vol. 148, p. 112275, Feb. 2020. doi: 10.1016/j.indcrop.2020.112275.
  • [175] Y. Li, Y.-Z. Xia, S.-M. Hu, L.-Y. Kong, L. Yang, “Tooniliatone A sensitizes multidrug resistant cancer cells by decreasing Bcl-xL via activation of JNK MAPK signaling,” Phytomedicine, vol. 62, p. 152947, Sept. 2019. doi: 10.1016/j.phymed.2019.152947.
  • [176] M. Zielińska-Błajet and J. Feder-Kubis, “Monoterpenes and Their Derivatives-Recent Development in Biological and Medical Applications,” Int. J. Mol. Sci., vol. 21, no. 19, p. 7078, Sept. 2020. doi: 10.3390/ijms21197078.
  • [177] J. Ma, X. Hu, J. Li, D. Wu, Q. Lan et. al., “Enhancing conventional chemotherapy drug cisplatin-induced anti-tumor effects on human gastric cancer cells both in vitro and in vivo by Thymoquinone targeting PTEN gene,” Oncotarget, vol. 8, no. 49, pp. 85926-85939, Sept. 2017. doi: 10.18632/oncotarget.20721.
  • [178] Ç. Şakalar, K. İzgi, B. İskender, S. Sezen, H. Aksu et. al., “The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer,” Tumour Biol., vol. 37, no. 4, pp. 4467-4477, Apr. 2016. doi: 10.1007/s13277-015-4307-0.
  • [179] M. Chudzik, I. Korzonek-Szlacheta, W. Król, “Triterpenes as Potentially Cytotoxic Compounds,” Molecules, vol. 20, pp. 1610-1625, Jan. 2015. doi: 10.3390/molecules20011610.
  • [180] Y. Cai, Y. Zheng, J. Gu, S. Wang, N. Wang et. al., “Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78,” Cell Death Dis., vol. 9, no. 6, p. 636, May 2018. doi: 10.1038/s41419-018-0669-8.
  • [181] X.-K. Zhan, J.-L. Li, S. Zhang, P.-Y. Xing, M.-F. Xia, “Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis,” Oncol. Lett., vol. 16, no. 3, pp. 3628-3634, Sept. 2018. doi: 10.3892/ol.2018.9097.
  • [182] X. Jin, J. Zhou, Z. Zhang, H. Lv, “Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment,” Int. J. Pharm., vol. 571, p. 118751, Nov. 2019. doi: 10.1016/j.ijpharm.2019.118751.
  • [183] Y. J. Lee, S.-Y. Kim, C. Lee, “Axl is a novel target of celastrol that inhibits cell proliferation and migration, and increases the cytotoxicity of gefitinib in EGFR mutant non‑small cell lung cancer cells,” Mol. Med. Rep., vol. 19, no. 4, pp. 3230-3236, Apr. 2019. doi: 10.3892/mmr.2019.9957.
  • [184] Y. Wang, Q. Liu, H. Chen, J. You, B. Peng et. al., “Celastrol improves the therapeutic efficacy of EGFR-TKIs for non-small-cell lung cancer by overcoming EGFR T790M drug resistance,” Anticancer Drugs, vol. 29, no. 8, pp. 748-755, Sept. 2018. doi: 10.1097/CAD.0000000000000647.
  • [185] S. H. Kim, J. G. Kang, C. S. Kim, S.-H. Ihm, M. G. Choi et. al., “Cytotoxic effect of celastrol alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells,” Tumour Biol., vol. 39, no. 5, p. 1010428317698369, May 2017. doi: 10.1177/1010428317698369.
  • [186] F.-Z. Lin, S.-C. Wang, Y.-T. Hsi, Y.-S. Lo, C.-C. Lin et. al., “Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway,” Phytomedicine, vol. 54, pp. 1-8, Feb. 2019. doi: 10.1016/j.phymed.2018.09.181.
  • [187] M. K. Shanmugam, K. S. Ahn, J. H. Lee, R. Kannaiyan, N. Mustafa et. al., “Celastrol Attenuates the Invasion and Migration and Augments the Anticancer Effects of Bortezomib in a Xenograft Mouse Model of Multiple Myeloma,” Front. Pharmacol., vol. 9, p. 365, May 2018. doi: 10.3389/fphar.2018.00365.
  • [188] R. Zhang, Z. Chen, S.-S. Wu, J. Xu, L.-C. Kong et. al., “Celastrol Enhances the Anti-Liver Cancer Activity of Sorafenib,” Med. Sci. Monit., vol. 25, pp. 4068-4075, Jun. 2019. doi: 10.12659/MSM.914060.
  • [189] H. O. Nyaboke, M. Moraa, L. K. Omosa, A. T. Mbaveng, N.-N. Vaderament-Alexe et. al., “Cytotoxicity of Lupeol from the Stem Bark of Zanthoxylum gilletii against Multi-factorial Drug Resistant Cancer Cell Lines,” Invest. Med. Chem. Pharmacol., vol. 1, no. 1, p. 10, May 2018.
  • [190] M.-C. Chen, H.-H. Hsu, Y.-Y. Chu, S.-F. Cheng, C.-Y. Shen et. al., “Lupeol alters ER stress-signaling pathway by downregulating ABCG2 expression to induce Oxaliplatin-resistant LoVo colorectal cancer cell apoptosis,” Environ. Toxicol., vol. 33, no. 5, pp. 587-593, May 2018. doi: 10.1002/tox.22544.
  • [191] C. Gao, X. Li, S. Yu, L. Liang, “Inhibition of cancer cell growth by oleanolic acid in multidrug resistant liver carcinoma is mediated via suppression of cancer cell migration and invasion, mitochondrial apoptosis, G2/M cell cycle arrest and deactivation of JNK/p38 signalling pathway,” J. BUON., vol. 24, no. 5, pp. 1964-1969, Sept. 2019.
  • [192] A. T. Mbaveng, G. F. Chi, I. N. Bonsou, S. Abdelfatah, A. N. Tamfu et. al., “N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death,” Phytomedicine, vol. 76, p. 153261, Jun. 2020. doi: 10.1016/j.phymed.2020.153261.
  • [193] L. Zong, G. Cheng, S. Liu, Z. Pi, Z. Liu et. al., “Reversal of multidrug resistance in breast cancer cells by a combination of ursolic acid with doxorubicin,” J. Pharm. Biomed. Anal., vol. 165, pp. 268-275, Feb. 2019. doi: 10.1016/j.jpba.2018.11.057.
  • [194] S. Prasad, V. R. Yadav, B. Sung, S. C. Gupta, A. K. Tyagi et. al., “Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment,” Oncotarget, vol. 7, no. 11, pp. 13182-13196, Mar. 2016. doi: 10.18632/oncotarget.7537.
  • [195] C. Ramalhete, S. Mulhovo, H. Lage, M.-J. U Ferreira, “Triterpenoids from Momordica balsamina with a Collateral Sensitivity Effect for Tackling Multidrug Resistance in Cancer Cells,” Planta Med., vol. 84, no. 18, pp. 1372-1379, Dec. 2018. doi: 10.1055/a-0651-8141.
  • [196] A. Gupta, B. S. Kumar, A. S. Negi, “Current status on development of steroids as anticancer agents,” J. Steroid Biochem. Mol. Biol., vol. 137, pp. 242-270, Sept. 2013. doi: 10.1016/j.jsbmb.2013.05.011.
  • [197] J. Xiao, M. Gao, B. Fei, G. Huang, Q. Diao, “Nature-derived anticancer steroids outside cardica glycosides,” Fitoterapia., vol. 147, p. 104757, Oct. 2020. doi: 10.1016/j.fitote.2020.104757.
  • [198] J. N. Kong, Q. He, G. Wang, S. Dasgupta, M. B. Dinkins et. al., “Guggulsterone and bexarotene induce secretion of exosome-associated breast cancer resistance protein and reduce doxorubicin resistance in MDA-MB-231 cells,” Int. J. Cancer, vol. 137, no. 7, pp. 1610-1620, Oct. 2015. doi: 10.1002/ijc.29542.
  • [199] A. A. Bhat, K. S. Prabhu, S. Kuttikrishnan, R. Krishnankutty, J. Babu et. al., “Potential therapeutic targets of Guggulsterone in cancer,” Nutr. Metab. (Lond), vol. 14, p. 23, Feb. 2017. doi: 10.1186/s12986-017-0180-8.
  • [200] J. M. Ku, S. R. Kim, S. H. Hong, H.-S. Choi, H. S. Seo et. al., “Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells,” Mol. Cell Biochem., vol. 409, no. 1-2, pp. 33-43, Nov. 2015. doi: 10.1007/s11010-015-2509-9.
  • [201] C. J. Henrich, A. D. Brooks, K. L. Erickson, C. L. Thomas, H. R. Bokesch et. al., “Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation,” Cell Death Dis., vol. 6, no. 2, p. e1666, Feb. 2015. doi: 10.1038/cddis.2015.38.
  • [202] G. Eksi, S. Kurbanoglu, S. A. Ozkan, “Fortification of Functional and Medicinal Beverages with Botanical Products and Their Analysis,” in Engineering Tools in the Beverage Industry, A. M. Grumezescu and A. M. Holban, Eds. Netherlands: Elsevier, 2019, pp. 351-404.
  • [203] F. Yang, F. Wang, Y. Liu, S. Wang, X. Li et. al., “Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells,” Life Sci., vol. 213, pp. 149-157, Nov. 2018. doi: 10.1016/j.lfs.2018.10.034.
  • [204] A. Pawlik, M. Słomińska-Wojewódzka, A. Herman-Antosiewicz, “Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants,” Eur. J. Nutr., vol. 55, no. 3, pp. 1165-1180, Apr. 2016. doi: 10.1007/s00394-015-0930-1.
  • [205] J. Gu, Y. Gui, L. Chen, G. Yuan, H.-Z. Lu et. al., “Use of natural products as chemical library for drug discovery and network pharmacology,” PLoS One, vol. 8, no. 4, p. e62839, Apr. 2013. doi: 10.1371/journal.pone.0062839.
  • [206] P. M. Cheuka, G. Mayoka, P. Mutai, K. Chibale, “The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases,” Molecules, vol. 22, no. 1, p. 58, Dec. 2016. doi: 10.3390/molecules22010058.
  • [207] J. de Oliveira Viana, M. B. Félix, M. dos Santos Maia, V. de Lima Serafim, L. Scotti, “Drug discovery and computational strategies in the multitarget drugs era,” Braz. J. Pharm. Sci., vol. 54, p. e01010, Nov. 2018. doi: 10.1590/s2175-97902018000001010.
  • [208] Z. Liao, S. W. Wong, H. L. Yeo, Y. Zhao, “Smart nanocarriers for cancer treatment: Clinical impact and safety,” NanoImpact, vol. 20, p. 100253, Sept. 2020. doi: 10.1016/j.impact.2020.100253.
  • [209] C. Zhang, M. Yang, A. C. Ericsson, “Antimicrobial Peptides: Potential Application in Liver Cancer,” Front. Microbiol., vol. 10, p. 1257, Jun. 2019. doi: 10.3389/fmicb.2019.01257.
  • [210] X. Luo, Q.-X. Teng, J.-Y. Dong, D.-H. Yang, M. Wang et. al., “Antimicrobial Peptide Reverses ABCB1-Mediated Chemotherapeutic Drug Resistance,” Front. Pharmacol., vol. 11, p. 1208, Aug. 2020. doi: 10.3389/fphar.2020.01208.
  • [211] S. E. B. Ambjørner, M. Wiese, S. Christoph Köhler, J. Svindt, X. L. Lund et. al., “The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP,” Cells, vol. 9, no. 3, p. 613, Mar. 2020. doi: 10.3390/cells9030613.
  • [212] R. Punia, K. Raina, R. Agarwal, R. P. Singh, “Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells,” PLoS One, vol. 12, no. 8, p. E0182870, Aug. 2017. doi: 10.1371/journal.pone.0182870.
  • [213] V. Kuete, A. T. Mbaveng, L. P. Sandjo, M. Zeino, T. Efferth, “Cytotoxicity and mode of action of a naturally occurring naphthoquinone, 2-acetyl-7-methoxynaphtho[2,3-b]furan-4,9-quinone towards multi-factorial drug-resistant cancer cells,” Phytomedicine, vol. 33, pp. 62-68, Sept. 2017. doi: 10.1016/j.phymed.2017.07.010.
  • [214] V. Kuete, A. T. Mbaveng, E. C. N. Nono, C. C. Simo, Maen Zeino et. al., “Cytotoxicity of seven naturally occurring phenolic compounds towards multi-factorial drug-resistant cancer cells,” Phytomedicine, vol. 23, no. 8, pp. 856-863, Jul. 2016. doi: 10.1016/j.phymed.2016.04.007.
  • [215] J. Li, B. Duan, Y. Guo, R. Zhou, J. Sun et. al., “Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity,” Biomed. Pharmacother., vol. 98, pp. 806-812, Feb. 2018. doi: 10.1016/j.biopha.2018.01.002.
  • [216] Y. Zhang, F.-L. An, S.-S. Huang, L. Yang, Y.-C. Gu et. al., “Diverse tritepenoids from the fruits of Walsura robusta and their reversal of multidrug resistance phenotype in human breast cancer cells,” Phytochemistry, vol. 136, pp. 108-118, Apr. 2017. doi: 10.1016/j.phytochem.2017.01.008.
  • [217] S. Darzi, S. A. Mirzaei, F. Elahian, S. Shirian, A. Peymani et. al., “Enhancing the Therapeutic Efficacy of Daunorubicin and Mitoxantrone with Bavachinin, Candidone, and Tephrosin,” Evid. Based Complement. Alternat. Med., vol. 2019, p. 3291737, Nov. 2019. doi: 10.1155/2019/3291737.
  • [218] F. A. Adem, V. Kuete, A. T. Mbaveng, M. Heydenreich, A. Ndakala et. al., “Cytotoxic benzylbenzofuran derivatives from Dorstenia kameruniana,” Fitoterapia, vol. 128, pp. 26-30, Jul. 2018. doi: 10.1016/j.fitote.2018.04.019.
  • [219] S. K. Jung, M.-H. Lee, D. Y. Lim, S. Y. Lee, C.-H. Jeong et. al., “Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung cancer growth,” Mol. Carcinog., vol. 54, no. 4, pp. 322-331, Apr. 2015. doi: 10.1002/mc.22191.
  • [220] G. Hou, X. Yuan, Y. Li, G. Hou, X. Liu, “Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway,” Invest. New Drugs, vol. 38, no. 2, pp. 329-339, Apr. 2020. doi: 10.1007/s10637-019-00781-9.
  • [221] E. Heidarian and M. Keloushadi, “Antiproliferative and Anti-invasion Effects of Carvacrol on PC3 Human Prostate Cancer Cells through Reducing pSTAT3, pAKT, and pERK1/2 Signaling Proteins,” Int. J. Prev. Med., vol. 10, p. 156, Oct. 2019. doi: 10.4103/ijpvm.IJPVM_292_17.
  • [222] A. Mari, G. Mani, S. N. Nagabhishek, G. Balaraman, N. Subramanian et. al., “Carvacrol Promotes Cell Cycle Arrest and Apoptosis through PI3K/AKT Signaling Pathway in MCF-7 Breast Cancer Cells,” Chin. J. Integr. Med., Jun. 2020. doi: 10.1007/s11655-020-3193-5.
  • [223] Y.-M. Lin, C.-I. Chen, Y.-P. Hsiang, Y.-C. Hsu, K.-C. Cheng et. al., “Chrysin Attenuates Cell Viability of Human Colorectal Cancer Cells through Autophagy Induction Unlike 5-Fluorouracil/Oxaliplatin,” Int. J. Mol. Sci., vol. 19, no. 6, p. 1763, Jun. 2018. doi: 10.3390/ijms19061763.
  • [224] W. Wei, J. He, H. Ruan, Y. Wang, “In vitro and in vivo cytotoxic effects of chrysoeriol in human lung carcinoma are facilitated through activation of autophagy, sub-G1/G0 cell cycle arrest, cell migration and invasion inhibition and modulation of MAPK/ERK signalling pathway,” J. BUON., vol. 24, no. 3, pp. 936-942, May-Jun. 2019.
  • [225] S. S. S. Boyanapalli and A.-N. T. Kong, “"Curcumin, the King of Spices": Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases,” Curr. Pharmacol. Rep., vol. 1, no. 2, pp. 129-139, Apr. 2015. doi: 10.1007/s40495-015-0018-x.
  • [226] L. Piao, S. Mukherjee, Q. Chang, X. Xie, H. Li et. al., “TriCurin, a novel formulation of curcumin, epicatechin gallate, and resveratrol, inhibits the tumorigenicity of human papillomavirus-positive head and neck squamous cell carcinoma,” Oncotarget, vol. 8, no. 36, pp. 60025-60035, Jul. 2016. doi: 10.18632/oncotarget.10620.
  • [227] K. Mortezaee, M. Najafi, B. Farhood, A. Ahmadi, D. Shabeeb et. al., “NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity,” J. Cell Physiol., vol. 234, no. 10, pp. 17187-17204, Aug. 2019. doi: 10.1002/jcp.28504.
  • [228] A. Niedzwiecki, M. W. Roomi, T. Kalinovsky, M. Rath, “Anticancer Efficacy of Polyphenols and Their Combinations,” Nutrients, vol. 8, no. 9, p. 552, Sept. 2016. doi: 10.3390/nu8090552.
  • [229] M. Sanaei and F. Kavoosi, “Effect of Curcumin and Trichostatin A on the Expression of DNA Methyltransfrase 1 in Hepatocellular Carcinoma Cell Line Hepa 1-6,” Iran J. Ped. Hematol. Oncol., vol. 8, no. 4, pp. 193-201, Oct. 2018.
  • [230] S. Mapoung, P. Pitchakarn, S. Yodkeeree, C. Ovatlarnporn, N. Sakorn et. al., “Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells,” Chem. Biol. Interact., vol. 244, pp. 140-148, Jan. 2016. doi: 10.1016/j.cbi.2015.12.001.
  • [231] D.-S. Popa and M. E. Rusu, “Isoflavones: Vegetable Sources, Biological Activity, and Analytical Methods for Their Assessment,” in Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine, N. Shiomi and V. Waisundara, Eds. United Kingdom: IntechOpen, 2017, pp. 133-153.
  • [232] J. P. Rigalli, P. N. Scholz, G. N. Tocchetti, M. L. Ruiz, J. Weiss, “The phytoestrogens daidzein and equol inhibit the drug transporter BCRP/ABCG2 in breast cancer cells: potential chemosensitizing effect,” Eur. J. Nutr., vol. 58, no. 1, pp. 139-150, Feb. 2019. doi: 10.1007/s00394-017-1578-9.
  • [233] A. T. Mbaveng, F. Damen, M.-G. F. Guefack, S. B. Tankeo, S. Abdelfatah et. al., “8,8-bis-(Dihydroconiferyl)-diferulate displayed impressive cytotoxicity towards a panel of human and animal cancer cells,” Phytomedicine, vol. 70, p. 153215, Apr. 2020. doi: 10.1016/j.phymed.2020.
  • [234] Z. Wang, X. Sun, Y. Feng, Y. Wang, L. Zhang et. al., “Dihydromyricetin reverses MRP2-induced multidrug resistance by preventing NF-κB-Nrf2 signaling in colorectal cancer cell,” Phytomedicine, p. 153414, Nov. 2020. doi: 10.1016/j.phymed.2020.153414.
  • [235] M. Wu, M. Jiang, T. Dong, L. X, J. Lv et. al., “Reversal Effect of Dihydromyricetin on Multiple Drug Resistance in SGC7901/5-FU Cells,” Asian Pac. J. Cancer Prev., vol. 21, no. 5, pp. 1269-1274, May 2020. doi: 10.31557/APJCP.2020.21.5.1269.
  • [236] A. Maruszewska and J. Tarasiuk, “Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells,” Phytother. Res., vol. 33, no. 4, pp. 1208-1221, Apr. 2019. doi: 10.1002/ptr.6317.
  • [237] H.-N. Jiang, Z.-G. Liu, R. Hu, “[Embelin Reverses the Multi-drug Resistance of K562/D to Daunorubicin Independently of P-gp and MDR1 mRNA],” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 25, no. 5, pp. 1342-1349, Oct. 2017. doi: 10.7534/j.issn.1009-2137.2017.05.011.
  • [238] K. S. Prabhu, K. S. Siveen, S. Kuttikrishnan, A. Iskandarani, M. Tsakou et. al., “Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells,” PLoS One, vol. 12, no. 7, p. e0180895, Jul. 2017. doi: 10.1371/journal.pone.0180895.
  • [239] A. K. Siraj, P. Pratheeshkumar, S. K. Parvathareddy, S. P. Divya, F. Al-Dayel et. al., “Overexpression of PARP is an independent prognostic marker for poor survival in Middle Eastern breast cancer and its inhibition can be enhanced with embelin co-treatment,” Oncotarget, vol. 9, no. 99, pp. 37319-37332, Dec. 2018. doi: 10.18632/oncotarget.26470.
  • [240] H. Guo, F. Liu, S. Yang, T. Xue, “Emodin alleviates gemcitabine resistance in pancreatic cancer by inhibiting MDR1/P-glycoprotein and MRPs expression,” Oncol. Lett., vol. 20, no. 5, p. 167, Nov. 2020. doi: 10.3892/ol.2020.12030.
  • [241] Wikipedia. “Fisetin”. Wikipedia.org. https://en.wikipedia.org/wiki/Fisetin (accessed December 10, 2020).
  • [242] E. Mukhtar, V. M. Adhami, I. A. Siddiqui, A. K. Verma, H. Mukhtar, “Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells,” Mol. Cancer Ther., vol. 15, no. 12, pp. 2863-2874, Dec. 2016. doi: 10.1158/1535-7163.MCT-16-0515.
  • [243] H. C. Pal, A. C. Diamond, L. R. Strickland, J. C. Kappes, S. K. Katiyar et. al., “Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma,” Oncotarget., vol. 7, no. 2, pp. 1227-1241, Jan. 2016. doi: 10.18632/oncotarget.6237.
  • [244] S. Yu, L.-S. Gong, N.-F. Li, Y.-F. Pan, L. Zhang, “Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways,” Biomed. Pharmacother., vol. 97, pp. 213-224, Jan. 2018. doi: 10.1016/j.biopha.2017.10.059.
  • [245] Y. Wang, Y. Sui, Y. Tao, “Gambogic acid increases the sensitivity to paclitaxel in drug‑resistant triple‑negative breast cancer via the SHH signaling pathway,” Mol. Med. Rep., vol. 20, no. 5, pp. 4515-4522, Nov. 2019. doi: 10.3892/mmr.2019.10697.
  • [246] G. Xia, H. Wang, Z. Song, Q. Meng, X. Huang et. al., “Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2),” J. Exp. Clin. Cancer Res., vol. 36, no. 1, p. 107, Aug. 2017. doi: 10.1186/s13046-017-0579-0.
  • [247] Wikipedia. “Gambogic acid”. Wikipedia.org. https://en.wikipedia.org/wiki/Gambogic_acid (accessed December 10, 2020).
  • [248] S. Wang, L. Wang, M. Chen, Y. Wang, “Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression,” Chem. Biol. Interact., vol. 235, pp. 76-84, Jun. 2015. doi: 10.1016/j.cbi.2015.03.017.
  • [249] W. Kong, X. Ling, Y. Chen, X. Wu, Z. Zhao et. al., “Hesperetin reverses P‑glycoprotein‑mediated cisplatin resistance in DDP‑resistant human lung cancer cells via modulation of the nuclear factor‑κB signaling pathway,” Int. J. Mol. Med., vol. 45, no. 4, pp. 1213-1224, Apr. 2020. doi: 10.3892/ijmm.2020.4485.
  • [250] C. T. Scoparo, G. Valdameri, P. R. Worfel, F. A. L. B. Guterres, G. R. Martinez et. al., “Dual properties of hispidulin: antiproliferative effects on HepG2 cancer cells and selective inhibition of ABCG2 transport activity,” Mol. Cell Biochem., vol. 409, no. 1-2, pp. 123-133, Nov. 2015. doi: 10.1007/s11010-015-2518-8.
  • [251] H. Gao, J. Xie, J. Peng, Y. Han, Q. Jiang et. al., “Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α,” Exp. Cell Res., vol. 332, no. 2, pp. 236-246, Mar. 2015. doi: 10.1016/j.yexcr.2014.11.021.
  • [252] H. E. Pearson, M. Iida, R. A. Orbuch, N. K McDaniel, K. P. Nickel et. al., “Overcoming Resistance to Cetuximab with Honokiol, A Small-Molecule Polyphenol,” Mol. Cancer Ther., vol. 17, no. 1, pp. 204-214, Jan. 2018. doi: 10.1158/1535-7163.MCT-17-0384.
  • [253] W. Songjang and A. Jiraviriyakul, “Honokiol and Magnolol Inhibit Growth, Metastasis and Induce Apoptosis in Human Cholangiocarcinoma,” Biomed. Pharmacol. J., vol. 12, no.2, pp. 759-773, Jun. 2019.
  • [254] Z.-D. Wang, R.-Z. Wang, Y.-Z. Xia, L.-Y. Kong, L. Yang, “Reversal of multidrug resistance by icaritin in doxorubicin-resistant human osteosarcoma cells,” Chin. J. Nat. Med., vol. 16, no. 1, pp. 20-28, Jan. 2018. doi: 10.1016/S1875-5364(18)30026-8.
  • [255] H. Han, B. Xu, P. Hou, C. Jiang, L. Liu, “Icaritin Sensitizes Human Glioblastoma Cells to TRAIL-Induced Apoptosis,” Cell Biochem. Biophys., vol. 72, no. 2, pp. 533-542, Jun. 2015. doi: 10.1007/s12013-014-0499-y.
  • [256] L.-C. Lin, C.-H. Wu, T.-M. Shieh, H.-Y. Chen, T.-C. Huang et. al., “The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling,” J. Funct. Foods, vol. 33, pp. 332-344, Apr. 2017. doi: 10.1016/j.jff.2017.03.061.
  • [257] B.-Y. Zhang, Y.-M. Wang, H. Gong, H. Zhao, X.-Y. Lv et. al., “Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC),” Int. J. Clin. Exp. Pathol., vol. 8, no. 1, pp. 25-37, Jan. 2015.
  • [258] J. Bai, S. Zhao, X. Fan, Y. Chen, X. Zou et. al., “Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure-activity relationships,” Toxicol. Appl. Pharmacol., vol. 369, pp. 49-59, Apr. 2019. doi: 10.1016/j.taap.2019.02.010.
  • [259] Q. Liu, D. Zhu, B. Hao, Z. Zhang, Y. Tian, “Luteolin promotes the sensitivity of cisplatin in ovarian cancer by decreasing PRPA1-medicated autophagy,” Cell Mol. Biol. (Noisy-le-grand), vol. 64, no. 6, pp. 17-22, May 2018. doi: 10.14715/cmb/2018.64.6.4.
  • [260] T. Takeda, M. Tsubaki, T. Kino, A. Kawamura, S. Isoyama et. al., “Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway,” Int. J. Oncol., vol. 48, no. 6, pp. 2704-2712, Jun. 2016. doi: 10.3892/ijo.2016.3470.
  • [261] P. Sadhukhan, S. Saha, S. Dutta, P. C. Sil, “Mangiferin Ameliorates Cisplatin Induced Acute Kidney Injury by Upregulating Nrf-2 via the Activation of PI3K and Exhibits Synergistic Anticancer Activity With Cisplatin,” Front. Pharmacol., vol. 9, p. 638, Jun. 2018. doi: 10.3389/fphar.2018.00638.
  • [262] G. Gatouillat, A. A. Magid, E. Bertin, H. El btaouri, H. Morjani et. al., “Medicarpin and millepurpan, two flavonoids isolated from Medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia P388 cells,” Phytomedicine, vol. 22, no. 13, pp. 1186-1194, Dec. 2015. doi: 10.1016/j.phymed.2015.09.005.
  • [263] Wikipedia. “Myricetin”. Wikipedia.org. https://en.wikipedia.org/wiki/Myricetin (accessed December 11, 2020).
  • [264] A.-W. Zheng, Y.-Q. Chen, L.-Q. Zhao, J.-G. Feng, “Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells,” Oncol. Lett., vol. 13, no. 6, pp. 4974-4978, Jun. 2017. doi: 10.3892/ol.2017.6031.
  • [265] B. B. Chandrika, M. Steephan, T. R. S. Kumar, A. Sabu, M. Haridas, “Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors,” Life Sci., vol. 160, pp. 47-56, Sept. 2016. doi: 10.1016/j.lfs.2016.07.007.
  • [266] H.-L. Chang, Y.-M. Chang, S.-C. Lai, K.-M. Chen, K.-C. Wang et. al., “Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9,” Exp. Ther. Med., vol. 13, no. 2, pp. 739-744, Feb. 2017. doi: 10.3892/etm.2016.3994.
  • [267] L. Eanes and Y. M. Patel, “Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells,” Biochim. Open, vol. 3, pp. 64-71, Nov. 2016. doi: 10.1016/j.biopen.2016.09.004.
  • [268] W. Ma, S. Feng, X. Yao, Z. Yuan, L. Liu et. al., “Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells,” Sci. Rep., vol. 5, p. 18789, Dec. 2015. doi: 10.1038/srep18789.
  • [269] S.-L. Feng, Y. Tian, S. Huo, B. Qu, R.-M. Liu et. al., “Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: Pharmacokinetic and pharmacological study,” Phytomedicine, vol. 67, p. 153141, Feb. 2020. doi: 10.1016/j.phymed.2019.153141.
  • [270] R. Zhang, Z. Wang, W. You, F. Zhou, Z. Guo Liu et. al., “Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT,” Cancer Cell Int., vol. 20, p. 520, Oct. 2020. doi: 10.1186/s12935-020-01607-y.
  • [271] S. Li, Q. Zhao, B. Wang, S. Yuan, X. Wang et. al., “Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation,” Phytother. Res., vol. 32, no. 8, pp. 1530-1536, Aug. 2018. doi: 10.1002/ptr.6081.
  • [272] Z. Zhang, Z. Liu, J. Chen, J. Yi, J. Cheng Wang et. al., “Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells,” Exp. Ther. Med., vol. 15, no. 3, pp. 3012-3019, Mar. 2018. doi: 10.3892/etm.2018.5742.
  • [273] C.-H. Chang, C.-Y. Lee, C.-C. Lu, F.-J. Tsai, Y.-M. Hsu et. al., “Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling,” Int. J. Oncol., vol. 50, no. 3, pp. 873-882, Mar. 2017. doi: 10.3892/ijo.2017.3866.
  • [274] C. Buhrmann, M. Yazdi, B. Popper, P. Shayan, A. Goel et. al., “Resveratrol Chemosensitizes TNF-β-Induced Survival of 5-FU-Treated Colorectal Cancer Cells,” Nutrients, vol. 10, no. 7, p. 888, Jul. 2018. doi: 10.3390/nu10070888.
  • [275] X.-Z. Liao, Y. Gao, L.-L. Sun, J.-H. Liu, H.-R. Chen et. al., “Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway,” Phytother. Res., vol. 34, no. 5, pp. 1142-1153, May 2020. doi: 10.1002/ptr.6584.
  • [276] S. Mohana, M. Ganesan, N. R. Prasad, D. Ananthakrishnan, D. Velmurugan, “Flavonoids modulate multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines,” BMC Cancer, vol. 18, no. 1, p. 1168, Nov. 2018. doi: 10.1186/s12885-018-5103-1.
  • [277] M. Iriti, R. Kubina, A. Cochis, R. Sorrentino, E. M. Varoni et. al., “Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells,” Phytother. Res., vol. 31, no. 10, pp. 1529-1538, Oct. 2017. doi: 10.1002/ptr.5878.
  • [278] C. Gao, Y. Zhou, Z. Jiang, Y. Zhao, D. Zhang et. al., “Cytotoxic and chemosensitization effects of Scutellarin from traditional Chinese herb Scutellaria altissima L. in human prostate cancer cells,” Oncol. Rep., vol. 38, no. 3, pp. 1491-1499, Sept. 2017. doi: 10.3892/or.2017.5850.
  • [279] G. He, G. He, R. Zhou, Z. Pi, T. Zhu et. al., “Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo,” Biochem. Biophys. Res. Commun., vol. 469, no. 4, pp. 1075-1082, Jan. 2016. doi: 10.1016/j.bbrc.2015.12.100.
  • [280] S. Dobiasová, K. Řehořová, D. Kučerová, D. Biedermann, K. Káňová et. al., “Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential,” Antioxidants (Basel), vol. 9, no. 5, p. 455, May 2020. doi: 10.3390/antiox9050455.
  • [281] C. Eroğlu, E. Avcı, H. Vural, E. Kurar, “Anticancer mechanism of Sinapic acid in PC-3 and LNCaP human prostate cancer cell lines,” Gene, vol. 671, pp. 127-134, Sept. 2018. doi: 10.1016/j.gene.2018.05.049.
  • [282] H.-J. Chen, Y.-L. Chung, C.-Y. Li, Y.-T. Chang, C. C. N. Wang et. al., “Taxifolin Resensitizes Multidrug Resistance Cancer Cells via Uncompetitive Inhibition of P-Glycoprotein Function,” Molecules, vol. 23, no. 12, p. 3055, Nov. 2018. doi: 10.3390/molecules23123055.
  • [283] Y.-H. Tseng, S.-S. Chiou, J.-P. Weng, P.-C. Lin, “Curcumin and tetrahydrocurcumin induce cell death in Ara-C-resistant acute myeloid leukemia,” Phytother. Res., vol. 33, no. 4, pp. 1199-1207, Apr. 2019. doi: 10.1002/ptr.6316.
  • [284] Q. Zeng, Y. Che, Y. Zhang, M. Chen, Q. Guo et. al., “ Thymol Isolated from Thymus vulgaris L. Inhibits Colorectal Cancer Cell Growth and Metastasis by Suppressing the Wnt/β-Catenin Pathway,” Drug Des. Devel. Ther., vol. 14, pp. 2535-2547, Jul. 2020. doi: 10.2147/DDDT.S254218.
  • [285] D. J. Balan, T. Rajavel, M. Das, S. Sathya, M. Jeyakumar et. al., “Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells,” Pharmacol. Rep., Oct. 2020. doi: 10.1007/s43440-020-00171-6.
  • [286] T. Jamali, G. Kavoosi, M. Safavi, S. K. Ardestani, “In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA,” Sci. Rep., vol. 8, no. 1, p. 15787, Oct. 2018. doi: 10.1038/s41598-018-34055-w.
  • [287] Wikipedia. “Tocotrienol”. Wikipedia.org. https://en.wikipedia.org/wiki/Tocotrienol (accessed December 12, 2020).
  • [288] M. Bhardwaj, H. J. Cho, S. Paul, R. Jakhar, I. Khan et. al., “Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells,” Oncotarget, vol. 9, no. 3, pp. 3278-3291, Dec. 2017. doi: 10.18632/oncotarget.22890.
  • [289] M. Lv, J.-G. Qiu, W.-J. Zhang, Q.-W. Jiang, W.-M. Qin et. al., “Wallichinine reverses ABCB1-mediated cancer multidrug resistance,” Am. J. Transl. Res., vol. 8, no. 7, pp. 2969-2980, Jul. 2016.
  • [290] X. Xu, X. Zhang, Y. Zhang, L. Yang, Y. Liu et. al., “Wogonin reversed resistant human myelogenous leukemia cells via inhibiting Nrf2 signaling by Stat3/NF-κB inactivation,” Sci. Rep., vol. 7, p. 39950, Feb. 2017. doi: 10.1038/srep39950.
  • [291] F. Liu, H. Hoag, C. Wu, H. Liu, H. Yin et. al., “Experimental and Simulation Identification of Xanthohumol as an Inhibitor and Substrate of ABCB1,” Appl. Sci., vol. 8, p. 681, Apr. 2018. doi: 10.3390/app8050681.
  • [292] Z.-F. Hong, W.-X. Zhao, Z.-Y. Yin, C.-R. Xie, Y.-P. Xu et. al., “Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy,” PLoS One, vol. 10, no. 5, p. e0121538, May 2015. doi: 10.1371/journal.pone.0121538.
  • [293] H. Li, S. Krsti, S. Wang, M. Wink, “Capsaicin and Piperine Can Overcome Multidrug Resistance in Cancer Cells to Doxorubicin,” Molecules, vol. 23, no. 3, p. 557, Mar. 2018. doi: 10.3390/molecules23030557.
  • [294] Y. Wang, X. Deng, C. Yu, G. Zhao, J. Zhou et. al., “Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts,” J. Exp. Clin. Cancer Res., vol. 37, no. 1, p. 251, Oct. 2018. doi: 10.1186/s13046-018-0922-0.
  • [295] G. Sánchez, A. Bort, P. A. Mateos-Gómez, N. Rodríguez-Henche, I. Díaz-Laviada et. al., “Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase,” Cancer Cell Int., vol. 19, p. 54, Mar. 2019. doi: 10.1186/s12935-019-0769-2.
  • [296] N. Dai, R. Ye, Q. He, P. Guo, H. Chen et. al., “Capsaicin and sorafenib combination treatment exerts synergistic anti‑hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling,” Oncol. Rep., vol. 40, no. 6, pp. 3235-3248, Dec. 2018. doi: 10.3892/or.2018.6754.
  • [297] Z.-H. Tang, W.-X. Cao, X. Guo, X.-Y. Dai, J.-H. Lu et. al., “Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cell lung cancer,” Cancer Lett., vol. 412, pp. 1-9, Jan. 2018. doi: 10.1016/j.canlet.2017.10.001.
  • [298] S. Lanza-Jacoby and G. Cheng, “3,3'-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species,” Pharm. Biol., vol. 56, no. 1, pp. 407-414, Dec. 2018. doi: 10.1080/13880209.2018.
  • [299] D. C. Hao and L. Yang, “Drug metabolism and disposition diversity of Ranunculales phytometabolites: a systems perspective,” Expert Opin. Drug Metab. Toxicol., vol. 12, no. 9, pp. 1047-1065, Sept. 2016. doi: 10.1080/17425255.2016.1201068.
  • [300] B. Y. K. Law, S. W. F. Mok, W. K. Chan, S. W. Xu, A. G. Wu et. al., “Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers,” Oncotarget, vol. 7, no. 7, pp. 8090-8104, Feb. 2016. doi: 10.18632/oncotarget.6980.
  • [301] G. Perez-Chacon, C. Martinez-Laperche, N. Rebolleda, B. Somovilla-Crespo, C. Muñoz-Calleja et. al., “Indole-3-Carbinol Synergizes with and Restores Fludarabine Sensitivity in Chronic Lymphocytic Leukemia Cells Irrespective of p53 Activity and Treatment Resistances,” Clin. Cancer Res., vol. 22, no. 1, pp. 134-145, Jan. 2016. doi: 10.1158/1078-0432.CCR-15-0736.
  • [302] M. M. Abdelmageed, R. N. El-Naga, E. El-Demerdash, M. M. Elmazar, “Indole-3- carbinol enhances sorafenib cytotoxicity in hepatocellular carcinoma cells: A mechanistic study,” Sci. Rep., vol. 6, p. 32733, Sept. 2016. doi: 10.1038/srep32733.
  • [303] A. Kundu, J. G. Quirit, M. G. Khouri, G. L. Firestone, “Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation,” Mol. Carcinog., vol. 56, no. 1, pp. 349-361, Jan. 2017. doi: 10.1002/mc.22472.
  • [304] J. Zhou, G. Li, Y. Zheng, H.-M. Shen, X. Hu et. al., “A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission,” Autophagy, vol. 11, no. 8, pp. 1259-1279, Jun. 2015. doi: 10.1080/15548627.2015.1056970.
  • [305] O. Kadioglu, B. Y. K. Law, S. W. F. Mok, S.-W. Xu, T. Efferth et. al., “Mode of Action Analyses of Neferine, a Bisbenzylisoquinoline Alkaloid of Lotus (Nelumbo nucifera) against Multidrug-Resistant Tumor Cells,” Front. Pharmacol., vol. 8, p. 238, May 2017. doi: 10.3389/fphar.2017.00238.
  • [306] C. Zhang, L.-J. He, Y.-B. Zhu, Q.-Z. Fan, D.-D. Miao et. al., “Piperlongumine Inhibits Akt Phosphorylation to Reverse Resistance to Cisplatin in Human Non-Small Cell Lung Cancer Cells via ROS Regulation,” vol. 10, p. 1178, Oct. 2019. doi: 10.3389/fphar.2019.01178.
  • [307] W. Chen, W. Lian, Y. Yuan, M. Li, “The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress,” Cell Death Dis., vol. 10, no. 8, p. 600, Aug. 2019. doi: 10.1038/s41419-019-1824-6.
  • [308] S. Akhtar, I. W. Achkar, K. S. Siveen, S. Kuttikrishnan, K. S. Prabhu et. al., “Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling,” Front. Oncol., vol. 9, p. 285, Apr. 2019. doi: 10.3389/fonc.2019.00285.
  • [309] R. Sarkhosh-Inanlou, M. Molaparast, A. Mohammadzadeh, V. Shafiei-Irannejad, “Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin-resistant ovarian cancer (A2780) cells,” Chem. Biol. Drug. Des., vol. 95, no. 2, pp. 215-223, Feb. 2020. doi: 10.1111/cbdd.13621.
  • [310] M. E. M. Saeed, N. Mahmoud, Y. Sugimoto, T. Efferth, H. Abdel-Aziz, “Molecular Determinants of Sensitivity or Resistance of Cancer Cells Toward Sanguinarine,” Front. Pharmacol., vol. 9, p. 136, Feb. 2018. doi: 10.3389/fphar.2018.00136.
  • [311] Y.-Q. Liu, S.-K. Wang, Q.-Q. Xu, H.-Q. Yuan, Y.-X. Guo et. al., “Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties,” Acta Pharmacol. Sin., vol. 40, no. 5, pp. 689-698, May 2019. doi: 10.1038/s41401-018-0157-9.
  • [312] L. Jin, W. Yingchun, S. Zhujun, W. Yinan, W. Dongchen et. al., “3-acetyl-11-keto-beta-boswellic acid decreases the malignancy of taxol resistant human ovarian cancer by inhibiting multidrug resistance (MDR) proteins function,” Biomed. Pharmacother., vol. 116, p. 108992, Aug. 2019. doi: 10.1016/j.biopha.2019.108992.
  • [313] X. Xue, F. Chen, A. Liu, D. Sun, J. Wu et. al., “Reversal of the multidrug resistance of human ileocecal adenocarcinoma cells by acetyl-11-keto-β-boswellic acid via downregulation of P-glycoprotein signals,” Biosci. Trends, vol. 10, no. 5, pp. 392-399, Nov. 2016. doi: 10.5582/bst.2016.01115.
  • [314] C. Formisano, C. Sirignano, D. Rigano, G. Chianese, G. Zengin et. al., “Antiproliferative activity against leukemia cells of sesquiterpene lactones from the Turkish endemic plant Centaurea drabifolia subsp. Detonsa,” Fitoterapia, vol. 120, pp. 98-102, Jul. 2017. doi: 10.1016/j.fitote.2017.05.016.
  • [315] M. E. M. Saeed, N. Mahmoud, Y. Sugimoto, T. Efferth, H. Abdel-Aziz, “Betulinic Acid Exerts Cytotoxic Activity Against Multidrug-Resistant Tumor Cells via Targeting Autocrine Motility Factor Receptor (AMFR),” Front. Pharmacol., vol. 9, p. 481, May 2018. doi: 10.3389/fphar.2018.00481.
  • [316] N.-H. Yim, Y. P. Jung, A. Kim, T. Kim, J. Y. Ma, “Induction of apoptotic cell death by betulin in multidrug-resistant human renal carcinoma cells,” Oncol. Rep., vol. 34, no. 2, pp. 1058-1064, Aug. 2015. doi: 10.3892/or.2015.4045.
  • [317] K. S. Snima, R. S. Nair, S. V. Nair, C. R. Kamath, V.-K. Lakshmanan, “Combination of Anti-Diabetic Drug Metformin and Boswellic Acid Nanoparticles: A Novel Strategy for Pancreatic Cancer Therapy,” J. Biomed. Nanotechnol., vol. 11, no. 1, pp. 93-104, Jan. 2015. doi: 10.1166/jbn.2015.1877.
  • [318] S. Toden, Y. Okugawa, C. Buhrmann, D. Nattamai, E. Anguiano et. al., “Novel Evidence for Curcumin and Boswellic Acid-Induced Chemoprevention through Regulation of miR-34a and miR-27a in Colorectal Cancer,” Cancer Prev. Res., vol. 8, no. 5, pp. 431-443, May 2015. doi: 10.1158/1940-6207.CAPR-14-0354.
  • [319] N. Yao, C. Wang, N. Hu, Y. Li, M. Liu et. al., “Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog,” Cell Death Dis., vol. 10, no. 3, p. 232, Mar. 2019. doi: 10.1038/s41419-019-1470-z.
  • [320] F.-Z. Lin, S.-C. Wang, Y.-T. Hsi, Y.-S. Lo, C.-C. Lin et. al., “Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway,” Phytomedicine, vol. 54, pp. 1-8, Feb. 2019. doi: 10.1016/j.phymed.2018.09.181.
  • [321] S.-W. Xu, B. Y. K. Law, S. L. Q. Qu, S. Hamdoun, J. Chen et. al., “SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells,” Pharmacol. Res., vol. 153, p. 104660, Mar. 2020. doi: 10.1016/j.phrs.2020.104660.
  • [322] Y.-Y. Yan, H. Bi, W. Zhang, Q. Wen, H. Liu et. al., “Downregulation and subcellular distribution of HER2 involved in MDA-MB-453 breast cancer cell apoptosis induced by lapatinib/celastrol combination,” J. BUON., vol. 23, no. 3, pp. 644-651, May-Jun. 2017.
  • [323] Y. Xiao, J. Liu, M. Guo, H. Zhou, J. Jin et. al., “Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance,” Nanoscale, vol. 10, no. 26, pp. 12639-12649, Jul. 2018. doi: 10.1039/c8nr02700e.
  • [324] F. Cai, L. Zhang, X. Xiao, C. Duan, Q. Huang et. al., “Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/adriamycin cells,” Oncol. Rep., vol. 36, no. 2, pp. 1180-1186, Aug. 2016. doi: 10.3892/or.2016.4892.
  • [325] Y.-Z. Liu, C.-M. Yang, J.-Y. Chen, J.-W. Liao, M.-L. Hu, “Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice,” J. Nutr. Biochem., vol. 26, no. 6, pp. 607-615, Jun. 2015. doi: 10.1016/j.jnutbio.2014.12.012.
  • [326] Y. Zhang, X. Zhu, T. Huang, L. Chen, Y. Liu et. al., “β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro,” Toxicol. Lett., vol. 261, pp. 49-58, Nov. 2016. doi: 10.1016/j.toxlet.2016.08.010.
  • [327] S. Mahdizadeh, G. Karimi, J. Behravan, S. Arabzadeh, H. Lage et. al., “Crocin suppresses multidrug resistance in MRP overexpressing ovarian cancer cell line,” Daru, vol. 24, no. 1, p. 17, Jun. 2016. doi: 10.1186/s40199-016-0155-8.
  • [328] M. Deng, B. Liu, H. Song, R. Yu, D. Zou et. al., “β-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway,” Phytomedicine, vol. 69, p. 153184, Apr. 2020. doi: 10.1016/j.phymed.2020.153184.
  • [329] R. Mazrouei, E. Raeisi, Y. Lemoigne, E. Heidarian, “Activation of p53 Gene Expression and Synergistic Antiproliferative Effects of 5-Fluorouracil and β-escin on MCF7 Cells,” J. Med. Signals Sens., vol. 9, no. 3, pp. 196-203, Aug. 2019. doi: 10.4103/jmss.JMSS_44_18.
  • [330] S.-L. Feng, H.-B. Luo, L. Cai, J. Zhang, D. Wang et. al., “Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study,” J. Ginseng Res., vol. 44, no. 2, pp. 247-257, Mar. 2020. doi: 10.1016/j.jgr.2018.10.007.
  • [331] M.-E. F. Hegazy, M. Dawood, N. Mahmoud, M. Elbadawi, Y. Sugimoto et. al., “2α-Hydroxyalantolactone from Pulicaria undulata: activity against multidrug-resistant tumor cells and modes of action,” Phytomedicine, p. 153409, Nov. 2020. doi: 10.1016/j.phymed.2020.153409.
  • [332] S. Abdelfatah, M. Böckers, M. Asensio, O. Kadioglu, A. Klinger et. al., “Isopetasin and S-isopetasin as novel P-glycoprotein inhibitors against multidrug-resistant cancer cells,” Phytomedicine, p. 153196, Mar. 2020. doi: 10.1016/j.phymed.2020.153196.
  • [333] Y.-T. Chang, C. C. N. Wang, J.-Y. Wang, T.-E. Lee, Y.-Y. Cheng et. al., “Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells,” Phytomedicine, vol. 53, pp. 252-262, Feb. 2019. doi: 10.1016/j.phymed.2018.09.008.
  • [334] Y. Liu, T. Bi, W. Dai, G. Wang, L. Qian et. al., “Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells,” Naunyn Schmiedebergs Arch Pharmacol., vol. 389, no. 5, pp. 477-484, May 2016. doi: 10.1007/s00210-016-1221-y.
  • [335] M. Kayouka, A. Hamade, E. Saliba, F. Najjar, D. Landy et. al., “P-glycoprotein modulates oleanolic acid effects in hepatocytes cancer cells and zebrafish embryos,” Chem. Biol. Interact., vol. 315, p. 108892, Jan. 2020. doi: 10.1016/j.cbi.2019.108892.
  • [336] X. Zhao, M. Liu, D. Li, “Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis,” Mol. Cell Biochem., vol. 400, no. 1-2, pp. 1-7, Feb. 2015. doi: 10.1007/s11010-014-2228-7.
  • [337] R.-P. Ye and Z.-D. Chen, “Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells,” Xenobiotica, vol. 47, no. 2, pp. 176-184, Feb. 2017. doi: 10.3109/00498254.2016.1171932.
  • [338] H. A. Bashmail, A. A. Alamoudi, A. Noorwali, G. A. Hegazy, G. M. Ajabnoor et. al., “Thymoquinone Enhances Paclitaxel Anti-Breast Cancer Activity via Inhibiting Tumor-Associated Stem Cells Despite Apparent Mathematical Antagonism,” Molecules, vol. 25, no. 2, p. 426, Jan. 2020. doi: 10.3390/molecules25020426.
  • [339] L. H. Odeh, W. H. Talib, I. A. Basheti, “Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice,” J. Cancer Res. Ther., vol. 14, pp. S324-S330, Jun. 2018. doi: 10.4103/0973-1482.235349.
  • [340] A. Al-Mutairi, A. Rahman, M. S. Rao, “Low Doses of Thymoquinone and Ferulic Acid in Combination Effectively Inhibit Proliferation of Cultured MDA-MB 231 Breast Adenocarcinoma Cells,” Nutr. Cancer, pp. 1-8, Mar. 2020. doi: 10.1080/01635581.2020.1743869.
  • [341] F. Xiang, Y. Fan, Z. Ni, Q. Liu, Z. Zhu et. al., “Ursolic Acid Reverses the Chemoresistance of Breast Cancer Cells to Paclitaxel by Targeting MiRNA-149-5p/MyD88,” Front. Oncol., vol. 9, p. 501, Jun. 2019. doi: 10.3389/fonc.2019.00501.
  • [342] J. Zheng, T. Asakawa, Y. Chen, Z. Zheng, B. Chen et. al., “Synergistic Effect of Baicalin and Adriamycin in Resistant HL-60/ADM Leukaemia Cells,” Cell Physiol. Biochem., vol. 43, no. 1, pp. 419-430, Sept. 2017. doi: 10.1159/000480420.
  • [343] J. H-M. Hsu, P. M-H. Chang, T.-S. Cheng, Y.-L. Kuo, A. T-H. Wu et. al., “Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer,” Cancers (Basel), vol. 11, no. 7, p. 1003, Jul. 2019. doi: 10.3390/cancers11071003.
  • [344] X. Li, F. Zhu, J. Jiang, C. Sun, X. Wang et. al., “Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells,” Cancer Lett., vol. 357, no. 1, pp. 219-230, Feb. 2015. doi: 10.1016/j.canlet.2014.11.026.
  • [345] C.-C. Huang, C.-M. Lin, Y.-J. Huang, L. Wei, L.-L. Ting et. al., “Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells,” Biotechnol. Appl. Biochem., vol. 64, no. 2, pp. 165-173, Mar. 2017. doi: 10.1002/bab.1446.
  • [346] M. Farhan, A. Malik, M. F. Ullah, S. Afaq, M. Faisal et. al., “Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs,” Int. J. Mol. Sci., vol. 20, no. 4, p. 800, Feb. 2019. doi: 10.3390/ijms20040800.
  • [347] S.-H. Tu, Y.-S. Chiou, N. Kalyanam, C.-T. Ho, L.-C. Chen et. al., “Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model,” Food Funct., vol. 8, no. 3, pp. 1067-1079, Mar. 2017. doi: 10.1039/c6fo01588c.
  • [348] Y. Li, Z. Xi, X. Chen, S. Cai, C. Liang et. al., “Natural compound Oblongifolin C confers gemcitabine resistance in pancreatic cancer by downregulating Src/MAPK/ERK pathways,” Cell Death Dis., vol. 9, no. 5, p. 538, May 2018. doi: 10.1038/s41419-018-0574-1.
  • [349] H.-N. Oh, A.-W. Kwak, M.-H. Lee, E. Kim, G. Yoon et. al., “Targeted inhibition of c-MET by podophyllotoxin promotes caspase-dependent apoptosis and suppresses cell growth in gefitinib-resistant non-small cell lung cancer cells,” Phytomedicine, vol. 80, p. 153355, Jan. 2021. doi: 10.1016/j.phymed.2020.153355.
  • [350] B. Cao, S. Yang, W. Li, H. Chen, Y. Chen et. al., “GMZ-1 is a podophyllotoxin derivative that suppresses growth and induces apoptosis in adriamycin-resistant K562/A02 cells through modulation of MDR1 expression,” Mol. Med. Rep., vol. 17, no. 1, pp. 474-478, Jan. 2018. doi: 10.3892/mmr.2017.7862.
Toplam 350 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Derlemeler
Yazarlar

Mine Isaoglu

Medine Güllüce 0000-0002-5957-8259

Mehmet Karadayı 0000-0002-2473-0409

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 2

Kaynak Göster

EndNote Isaoglu M, Güllüce M, Karadayı M (01 Aralık 2020) Plant-Derived Natural Products as Multidrug Resistance Modulators in Cancer Therapy. Anatolian Journal of Biology 1 2 1–51.