Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Yıl 2021, Cilt 2, Sayı 1, 17 - 24, 30.06.2021

Öz

Kaynakça

  • [1] J. S. Morse, T. Lalonde, S. Xu, W. R. Liu, “Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV,” Chembiochem, vol. 21, no. 5, pp. 730-738, Mar. 2020. doi: 10.1002/cbic.202000047.
  • [2] R. N. Kirchdoerfer, A. B. Ward, “Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors,” Nat Commun. vol. 10, no. 1, pp. 2342-2351, May. 2019. doi: 10.1038/s41467-019-10280-3.
  • [3] C. Drosten, S. Günther, W. Preiser, S. Werf, H. R. Brodt et. al.,”Identification of a novel coronavirus in patients with severe acute respiratory syndrome,” N Engl J Med, vol. 348, no. 20, pp. 1967-1976, May. 2003. doi: 10.1056/NEJMoa030747.
  • [4] X. Y. Ge, N. Wang, W. Zhang, B. Hu, B. Li et. al.,”Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft,” Virol Sin, vol. 31, no. 1, pp. 31-40, Feb. 2016. doi: 10.1007/s12250-016-3713-9.
  • [5] Y. Yin and R. G. Wunderink, “MERS, SARS and other coronaviruses as causes of pneumonia,” Respirology, vol. 23, no. 2, pp.130-137, Feb. 2018. doi: 10.1111/resp.13196.
  • [6] A. M. Zaki, S. Boheemen, T. M. Bestebroer, A. D. Osterhaus, R. A. Fouchier, “Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia,” N Engl J Med, vol. 367, no. 19, pp. 1814-1820, Nov. 2012. doi: 10.1056/NEJMoa1211721.
  • [7] S. K. Lau, K. S. Li, A. K. Tsang, C. S. Lam, S. Ahmed et. al.,”Genetic Characterization of Betacoronavirus Lineage C Viruses in Bats Reveals Marked Sequence Divergence in the Spike Protein of Pipistrellus Bat Coronavirus HKU5 in Japanese Pipistrelle: Implications for the Origin of the Novel Middle East Respiratory Syndrome Coronavirus,” J Virol, vol. 287, no. 15, pp. 8638-8650, Aug. 2013. doi: 10.1128/JVI.01055-13.
  • [8] K. Pyrc, B. Berkhout, L. van der Hoek, “The novel human coronaviruses NL63 and HKU1,” J Virol, vol. 81, no. 7, pp. 3051-3057, Apr. 2007. doi: 10.1128/JVI.01466-06.
  • [9] L. Tingting, L. Dongxia, Y. Yang, J. Guo, Y. Feng, X. Zhang, S. Cheng, J Feng, “ Phylogenetic supertree reveals detailed evolution of SARS-CoV-2,” Scientific Reports, vol. 10:22366 |Dec. 2020. doi: 10.1038/s41598-020-79484-8.
  • [10] B. A. Arslan and A. C. Timucin, “Immunotherapy approaches on innate immunity for SARS-Cov-2”. Acta Virol. vol. 64, no. 4, pp. 389-395,Jul. 2020. doi: 10.4149/av_2020_401.
  • [11] P. C. Woo, S. K. Lau, C. S. Lam, C. C. Lau, A. K. Tsang et. al.,”DisCoVery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus,” J Virol, vol. 86, no. 7, pp. 3995-4008, Apr. 2012. doi: 10.1128/JVI.06540-11.
  • [12] K. Owczarek, A. Szczepanski, A. Milewska, Z. Baster, Z. Rajfur, “Early Events During Human Coronavirus OC43 Entry to the Cell,” Sci Rep, vol. 8, no. 1, pp. 7124, May. 2018. doi: 10.1038/s41598-018-25640-0.
  • [13] J. J. Breslin, I. Mork, M. K. Smith, L. K. Vogel, E. M. Hemmila, A. Bonavia et. al., “Human Coronavirus 229E: Receptor Binding Domain and Neutralization by Soluble Receptor at 37°C,” J Virol, vol. 77 no. 7. pp. 4435-4443, Apr. 2003. doi: 10.4149/av_2020_401.
  • [14] A. S. Hansen, O. Norén, H. Sjöström, O. Werdelin, “A mouse aminopeptidase N is a marker for antigen-presenting cells and appears to be co-expressed with major histocompatibility complex class II molecules,” Eur J Immunol, vol. 23, no. 9, pp. 2358-2364, Sep. 1993. doi: 10.1002/eji.1830230946.
  • [15] W. Li, J. Sui, I. C. Huang, J. H. Kuhn, S. R. Radoshitzky et. al.,”The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2,” Virology, vol. 367, no. 2, pp. 367-374, Oct. 2007. doi: 10.1016/j.virol.2007.04.035
  • [16] S. K. Lau, P. C. Woo, C. C. Yip, H. Tse, H. W. Tsoi et. al.,”Coronavirus HKU1 and other coronavirus infections in Hong Kong,” J Clin Microbiol, vol. 44, pp. 2063–2071, Jun. 2006. doi: 10.1128/JCM.02614-05
  • [17] P. C. Woo, S. K. Lau, C. M. Chu, K. H. Chan, H. W. Tsoi et. al.,”Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia,” J Virol, vol. 79, pp. 884–895, Jan. 2005. doi: 10.1128/JVI.79.2.884-895.2005
  • [18] F. Esper, C. Weibel, D. Ferguson, M. L. Landry, J. S. Kahn, “Coronavirus HKU1 infection in the United States,” Emerg. Infect Dis, vol. 12, pp. 775–779, May. 2006. doi: 10.3201/eid1205.051316.
  • [19] A. Vabret, J. Dina, S. Gouarin, J. Petitjean, S. Corbet, F. Freymuth, “Detection of the new human coronavirus HKU1: a report of 6 cases,” Clin Infect Dis, vol. 42, pp. 634–639, Nov. 2006. doi: 10.1086/500136
  • [20] L. J. van Elden, A. M. van Loon, F. van Alphen, K. A. Hendriksen, A. I. Hoepelman et. al.,”Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction,” J Infect Dis, vol. 189, pp. 652–657, Feb. 2004. doi: 10.1086/381207
  • [21] P. S. Masters, “The molecular biology of coronaviruses,” Adv.Virus Res, vol. 66, pp. 193–292, Jul. 2006. doi: 10.1016/S0065-3527(06)66005-3.
  • [22] T. L. Tsai, C. H. Lin, C. N. Lin, C. Y. Lo, H. Y. Wu, “Interplay between the Poly(A) Tail, Poly(A)-Binding Protein, and Coronavirus Nucleocapsid Protein Regulates Gene Expression of Coronavirus and the Host Cell,” J Virol, vol. 92, no. 23, pp. 1-20, Nov. 2018. doi: 10.1128/JVI.01162-18
  • [23] A. A. Elfiky, S.M. Mahdy, W. M. Elshemey, “Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses,” J Med Virol, vol. 89, no. 6, pp. 1040-1047, Jun. 2017. doi: 10.1002/jmv.24736.
  • [24] A. E. Gorbalenya, L. Enjuanes, J. Ziebuhr, E. J. Snijder, “Nidovirales: evolving the largest RNA virus genome,” Virus Res, vol. 117, pp. 17–37, Apr. 2006. doi:10.1016/j.virusres.2006.01.017
  • [25] E. J. Snijder, E. Decroly, J. Ziebuhr, “The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing,” Adv Virus Res, vol. 96, pp. 59-126, Sep. 2016. doi:10.1016/bs.aivir.2016.08.008
  • [26] L. Zhang, L. Li, L. Yan, Z. Ming, Z. Jia et. al.,”Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus,” J Virol, vol.92, no. 22, pp. 1-16, Oct. 2018. doi:10.1128/JVI.00893-18
  • [27] A. Shannon, N. T. Le, B. Selisko, C. Eydoux, K. Alvarez, “Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites,” Antiviral Res, vol. 178, pp. 1-9, Apr. 2020. doi: 10.1016/j.antiviral.2020.104793
  • [28] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, Fast, “Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega,” Mol Syst Biol. vol. 7, pp. 539, Sep. 2011. doi: 10.1038/msb.2011.75
  • [29] N. P. Brown, C. Leroy, C. Sander, “MView: a web-compatible database search or multiple alignment viewer,” Bioinformatics, vol. 14, no. 4, pp. 380-381, May. 1998. doi: 10.1093/bioinformatics/14.4.380.
  • [30] H. C. Song, M. Y. Seo, K. Stadler, B. J. Yoo, Q. L. Choo QL et. al., “Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein,” J Virol, vol. 78, no. 19, pp. 10328-10335, Oct. 2004. doi: 10.1128/JVI.78.19.10328-10335.2004.
  • [31] R. N. Kirchdoerfer, C. A. Cottrell, N. Wang, J. Pallesen, H. M. Yassine et. al.,” Turner Pre-fusion Structure of a Human Coronavirus Spike Protein” Nature, vol. 531, no. 7592, pp. 118-121, Mar. 2016. doi: 10.1038/nature17200
  • [32] S. Abraham, T.E. Kienzle, W. Lapps, D. A. Brian, “Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site,”. Virology, vol. 176, no. 1, pp. 296-301, May. 1990. doi:10.1016/0042-6822(90)90257-r.
  • [33] S. C. S. Chow, C. Y. S. Ho, T. T. Y. Tam, C. Wu, T. Cheung et. al., “Specific Epitopes of the Structural and Hypothetical Proteins Elicit Variable Humoral Responses in SARS Patients,” J Clin Pathol, vol. 59, no. 5, pp. 468-476, May. 2006. doi: 10.1136/jcp.2005.029868.
  • [34] M. Pachetti, B. Marini, F. Benedetti, F. Giudici, E. Mauro et. al., “Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant,” J Transl Med. vol. 22, no. 18, pp. :179-188, Apr. 2020. doi:10.1186/s12967-020-02344-6.

Conserved amino acids in HCoV-HKU1 and SARS-Cov2 at RNA-dependent RNA polymerase (RdRp) motifs

Yıl 2021, Cilt 2, Sayı 1, 17 - 24, 30.06.2021

Öz

A novel and related to severe acute respiratory syndrome associated coronavirus (SARS-CoV2) has been identified as an infectious coronavirus originating from a Wuhan seafood market and rapidly spreading into and beyond China. While non-conserved regions of viral genome can lead to novel coronavirus subtypes, conserved regions are also very important for drug and vaccine researches. In our study, together with SARS-CoV showing high sequence similarity with SARS-Cov2, also genome and protein sequence alignments of non-lethal OC43 and HCoV-HKU1 viruses for SARS-CoV2 were performed in the regions shown as drug targets. The genomic sequence similarities of SARS-CoV2 with SARS-CoV are 79% between 6-1923 bp, 82% between 3956-21577 bp, 80% between 22539-27910 bp and 90% between 28257-29894 bp, respectively. Major similar region of OC43 spike protein with SARS-Cov2 is located in the C terrminus, 2 other conserved regions with lower similarity were detected in N- terminus of S protein. HCoV-HKU1, has a 73% similarity between 14348-15992 bp in the genomic sequence of SARS-CoV2 RNA-dependent RNA polymerase (RdRp). Similar regions of relatively harmless HCoV-HKU1 with SARS-CoV2 for RdRp can contribute understanding active sites of RdRp and developing a specific drug target. Antiviral approaches to the conserved regions of the RdRp protein have the potential to protect against existing and possible novel coronavirus species. Although lethal coronaviruses contain a large number of non-conserved regions compared to relatively harmless respiratory pathogens, existance of the conserved regions for replication and understanding functional importance of these regions may be vital to develop effective treatment methods.

Kaynakça

  • [1] J. S. Morse, T. Lalonde, S. Xu, W. R. Liu, “Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV,” Chembiochem, vol. 21, no. 5, pp. 730-738, Mar. 2020. doi: 10.1002/cbic.202000047.
  • [2] R. N. Kirchdoerfer, A. B. Ward, “Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors,” Nat Commun. vol. 10, no. 1, pp. 2342-2351, May. 2019. doi: 10.1038/s41467-019-10280-3.
  • [3] C. Drosten, S. Günther, W. Preiser, S. Werf, H. R. Brodt et. al.,”Identification of a novel coronavirus in patients with severe acute respiratory syndrome,” N Engl J Med, vol. 348, no. 20, pp. 1967-1976, May. 2003. doi: 10.1056/NEJMoa030747.
  • [4] X. Y. Ge, N. Wang, W. Zhang, B. Hu, B. Li et. al.,”Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft,” Virol Sin, vol. 31, no. 1, pp. 31-40, Feb. 2016. doi: 10.1007/s12250-016-3713-9.
  • [5] Y. Yin and R. G. Wunderink, “MERS, SARS and other coronaviruses as causes of pneumonia,” Respirology, vol. 23, no. 2, pp.130-137, Feb. 2018. doi: 10.1111/resp.13196.
  • [6] A. M. Zaki, S. Boheemen, T. M. Bestebroer, A. D. Osterhaus, R. A. Fouchier, “Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia,” N Engl J Med, vol. 367, no. 19, pp. 1814-1820, Nov. 2012. doi: 10.1056/NEJMoa1211721.
  • [7] S. K. Lau, K. S. Li, A. K. Tsang, C. S. Lam, S. Ahmed et. al.,”Genetic Characterization of Betacoronavirus Lineage C Viruses in Bats Reveals Marked Sequence Divergence in the Spike Protein of Pipistrellus Bat Coronavirus HKU5 in Japanese Pipistrelle: Implications for the Origin of the Novel Middle East Respiratory Syndrome Coronavirus,” J Virol, vol. 287, no. 15, pp. 8638-8650, Aug. 2013. doi: 10.1128/JVI.01055-13.
  • [8] K. Pyrc, B. Berkhout, L. van der Hoek, “The novel human coronaviruses NL63 and HKU1,” J Virol, vol. 81, no. 7, pp. 3051-3057, Apr. 2007. doi: 10.1128/JVI.01466-06.
  • [9] L. Tingting, L. Dongxia, Y. Yang, J. Guo, Y. Feng, X. Zhang, S. Cheng, J Feng, “ Phylogenetic supertree reveals detailed evolution of SARS-CoV-2,” Scientific Reports, vol. 10:22366 |Dec. 2020. doi: 10.1038/s41598-020-79484-8.
  • [10] B. A. Arslan and A. C. Timucin, “Immunotherapy approaches on innate immunity for SARS-Cov-2”. Acta Virol. vol. 64, no. 4, pp. 389-395,Jul. 2020. doi: 10.4149/av_2020_401.
  • [11] P. C. Woo, S. K. Lau, C. S. Lam, C. C. Lau, A. K. Tsang et. al.,”DisCoVery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus,” J Virol, vol. 86, no. 7, pp. 3995-4008, Apr. 2012. doi: 10.1128/JVI.06540-11.
  • [12] K. Owczarek, A. Szczepanski, A. Milewska, Z. Baster, Z. Rajfur, “Early Events During Human Coronavirus OC43 Entry to the Cell,” Sci Rep, vol. 8, no. 1, pp. 7124, May. 2018. doi: 10.1038/s41598-018-25640-0.
  • [13] J. J. Breslin, I. Mork, M. K. Smith, L. K. Vogel, E. M. Hemmila, A. Bonavia et. al., “Human Coronavirus 229E: Receptor Binding Domain and Neutralization by Soluble Receptor at 37°C,” J Virol, vol. 77 no. 7. pp. 4435-4443, Apr. 2003. doi: 10.4149/av_2020_401.
  • [14] A. S. Hansen, O. Norén, H. Sjöström, O. Werdelin, “A mouse aminopeptidase N is a marker for antigen-presenting cells and appears to be co-expressed with major histocompatibility complex class II molecules,” Eur J Immunol, vol. 23, no. 9, pp. 2358-2364, Sep. 1993. doi: 10.1002/eji.1830230946.
  • [15] W. Li, J. Sui, I. C. Huang, J. H. Kuhn, S. R. Radoshitzky et. al.,”The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2,” Virology, vol. 367, no. 2, pp. 367-374, Oct. 2007. doi: 10.1016/j.virol.2007.04.035
  • [16] S. K. Lau, P. C. Woo, C. C. Yip, H. Tse, H. W. Tsoi et. al.,”Coronavirus HKU1 and other coronavirus infections in Hong Kong,” J Clin Microbiol, vol. 44, pp. 2063–2071, Jun. 2006. doi: 10.1128/JCM.02614-05
  • [17] P. C. Woo, S. K. Lau, C. M. Chu, K. H. Chan, H. W. Tsoi et. al.,”Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia,” J Virol, vol. 79, pp. 884–895, Jan. 2005. doi: 10.1128/JVI.79.2.884-895.2005
  • [18] F. Esper, C. Weibel, D. Ferguson, M. L. Landry, J. S. Kahn, “Coronavirus HKU1 infection in the United States,” Emerg. Infect Dis, vol. 12, pp. 775–779, May. 2006. doi: 10.3201/eid1205.051316.
  • [19] A. Vabret, J. Dina, S. Gouarin, J. Petitjean, S. Corbet, F. Freymuth, “Detection of the new human coronavirus HKU1: a report of 6 cases,” Clin Infect Dis, vol. 42, pp. 634–639, Nov. 2006. doi: 10.1086/500136
  • [20] L. J. van Elden, A. M. van Loon, F. van Alphen, K. A. Hendriksen, A. I. Hoepelman et. al.,”Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction,” J Infect Dis, vol. 189, pp. 652–657, Feb. 2004. doi: 10.1086/381207
  • [21] P. S. Masters, “The molecular biology of coronaviruses,” Adv.Virus Res, vol. 66, pp. 193–292, Jul. 2006. doi: 10.1016/S0065-3527(06)66005-3.
  • [22] T. L. Tsai, C. H. Lin, C. N. Lin, C. Y. Lo, H. Y. Wu, “Interplay between the Poly(A) Tail, Poly(A)-Binding Protein, and Coronavirus Nucleocapsid Protein Regulates Gene Expression of Coronavirus and the Host Cell,” J Virol, vol. 92, no. 23, pp. 1-20, Nov. 2018. doi: 10.1128/JVI.01162-18
  • [23] A. A. Elfiky, S.M. Mahdy, W. M. Elshemey, “Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses,” J Med Virol, vol. 89, no. 6, pp. 1040-1047, Jun. 2017. doi: 10.1002/jmv.24736.
  • [24] A. E. Gorbalenya, L. Enjuanes, J. Ziebuhr, E. J. Snijder, “Nidovirales: evolving the largest RNA virus genome,” Virus Res, vol. 117, pp. 17–37, Apr. 2006. doi:10.1016/j.virusres.2006.01.017
  • [25] E. J. Snijder, E. Decroly, J. Ziebuhr, “The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing,” Adv Virus Res, vol. 96, pp. 59-126, Sep. 2016. doi:10.1016/bs.aivir.2016.08.008
  • [26] L. Zhang, L. Li, L. Yan, Z. Ming, Z. Jia et. al.,”Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus,” J Virol, vol.92, no. 22, pp. 1-16, Oct. 2018. doi:10.1128/JVI.00893-18
  • [27] A. Shannon, N. T. Le, B. Selisko, C. Eydoux, K. Alvarez, “Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites,” Antiviral Res, vol. 178, pp. 1-9, Apr. 2020. doi: 10.1016/j.antiviral.2020.104793
  • [28] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, Fast, “Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega,” Mol Syst Biol. vol. 7, pp. 539, Sep. 2011. doi: 10.1038/msb.2011.75
  • [29] N. P. Brown, C. Leroy, C. Sander, “MView: a web-compatible database search or multiple alignment viewer,” Bioinformatics, vol. 14, no. 4, pp. 380-381, May. 1998. doi: 10.1093/bioinformatics/14.4.380.
  • [30] H. C. Song, M. Y. Seo, K. Stadler, B. J. Yoo, Q. L. Choo QL et. al., “Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein,” J Virol, vol. 78, no. 19, pp. 10328-10335, Oct. 2004. doi: 10.1128/JVI.78.19.10328-10335.2004.
  • [31] R. N. Kirchdoerfer, C. A. Cottrell, N. Wang, J. Pallesen, H. M. Yassine et. al.,” Turner Pre-fusion Structure of a Human Coronavirus Spike Protein” Nature, vol. 531, no. 7592, pp. 118-121, Mar. 2016. doi: 10.1038/nature17200
  • [32] S. Abraham, T.E. Kienzle, W. Lapps, D. A. Brian, “Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site,”. Virology, vol. 176, no. 1, pp. 296-301, May. 1990. doi:10.1016/0042-6822(90)90257-r.
  • [33] S. C. S. Chow, C. Y. S. Ho, T. T. Y. Tam, C. Wu, T. Cheung et. al., “Specific Epitopes of the Structural and Hypothetical Proteins Elicit Variable Humoral Responses in SARS Patients,” J Clin Pathol, vol. 59, no. 5, pp. 468-476, May. 2006. doi: 10.1136/jcp.2005.029868.
  • [34] M. Pachetti, B. Marini, F. Benedetti, F. Giudici, E. Mauro et. al., “Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant,” J Transl Med. vol. 22, no. 18, pp. :179-188, Apr. 2020. doi:10.1186/s12967-020-02344-6.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Belkis ATASEVER ARSLAN (Sorumlu Yazar)
USKUDAR UNIVERSITY
0000-0001-5827-8484
Türkiye


Gamze GÜNAL SADIK
ÜSKÜDAR ÜNİVERSİTESİ
0000-0003-0610-0726
Türkiye


Ahmet Can TİMUÇİN
ÜSKÜDAR ÜNİVERSİTESİ
0000-0002-9483-3593
Türkiye


Seda KUŞOĞLU GÜLTEKİN
ÜSKÜDAR ÜNİVERSİTESİ
0000-0003-0674-1582
Türkiye


Ayşegül YANIK
ÜSKÜDAR ÜNİVERSİTESİ
0000-0002-6989-9355
Türkiye

Yayımlanma Tarihi 30 Haziran 2021
Yayınlandığı Sayı Yıl 2021, Cilt 2, Sayı 1

Kaynak Göster

EndNote %0 Anatolian Journal of Biology Conserved amino acids in HCoV-HKU1 and SARS-Cov2 at RNA-dependent RNA polymerase (RdRp) motifs %A Belkis Atasever Arslan , Gamze Günal Sadık , Ahmet Can Timuçin , Seda Kuşoğlu Gültekin , Ayşegül Yanık %T Conserved amino acids in HCoV-HKU1 and SARS-Cov2 at RNA-dependent RNA polymerase (RdRp) motifs %D 2021 %J Anatolian Journal of Biology %P 2687-444X- %V 2 %N 1 %R %U