Araştırma Makalesi
BibTex RIS Kaynak Göster

Kahverengi/Bej Adipoz Doku: Obeziteyle Mücadelede Yeni Oyuncular

Yıl 2022, Cilt: 4 Sayı: 3, 129 - 152, 30.12.2022

Öz

Obezite tüm dünyada prevalansı giderek artan metabolik bir hastalıktır. Obezite ile mücadele için multidisipliner stratejiler gereklidir. Obezite tedavisinde diyetten cerrahiye kadar birçok yöntem denenmektedir. Ancak bu yöntemler obezite tedavisinde yeterince başarılı olamamıştır. Son yıllarda adipoz doku biyolojisinde çok önemli gelişmelerle yeni bir yağ doku tipinden bahsedilmektedir. Bu tip yağ dokusu beyaz yağ dokusu ve klasik kahverengi yağ dokusundan farklı olarak bej yağ dokusu olarak adlandırılmıştır. Bej adipositlerin kahverengi benzeri bir özelliğe sahip olduğu ve termojenez yeteneklerine sahip olduğu gözlemlenmiştir. Bej adipositlerin, soğuk, hormonlar, egzersiz ve diyet bileşikleri gibi çeşitli uyaranların etkisiyle kahverengileşme adı verilen bir mekanizma ile Beyaz yağ dokusunda gelişebildiği gösterilmiştir. Kahverengi/bej adipositler yeni nesil kilo verme stratejisi olmaya adaydır ve hem obeziteye hem de insülin direnci, diyabet vb. metabolik hastalıklara karşı faydaları olması muhtemeldir. Bugüne kadar soğuk maruziyeti, çeşitli ilaçlar, hormonlar ve bitki bazlı ajanlar dahil olmak üzere birçok bileşik veya yöntem deneyerek beyaz yağ dokunun kahverengileşmesini indükleyerek obeziteyle mücadele etmek için artan sayıda çalışma yapılmıştır. Yakın gelecekte yeni nesil nanoteknoloji temelli tedavilerin kullanılması ile kahverengi/bej yağ hücrelerine doğrudan bağlanabilen ve termojenik programı aktive edebilen spesifik moleküller obeziteyi tedavi edebilecektir. Bununla birlikte, önümüzdeki yıllarda obezitesi olan kişilerde kahverengileştirme ajanlarının terapötik kullanımı, daha ileri randomize kontrollü çalışmaların sonucuna bağlı olacaktır.

Kaynakça

  • Ahmad, B., Vohra, M.S., Saleemi, M.A., Serpell, C.J., Fong, I.L., Wong, E.H. (2021). Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie, 184, 26-39.
  • Altshuler-Keylin, S., Shinoda, K., Hasegawa, Y., Ikeda, K., Hong, H., Q. Kang, et al. (2016). Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell metabolism, 24(3), 402-419.
  • Azhar, Y., Parmar, A., Miller, C.N., Samuels, J.S., Rayalam, S. (2016) Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr Metab (Lond), 13, 89–016–0150-6 eCollection 2016.
  • Bargut, T.C.L., Souza-Mello, V., Aguila, M.B., and C.A., Mandarim-de-Lacerda. (2017). Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig, 31(1).
  • Bartelt, A., Bruns, O.T., Reimer, R., Hohenberg, H., Ittrich, H., K., Peldschus, et al. (2011). Brown adipose tissue activity controls triglyceride clearance. Nat Med, 17(2), 200–205. Bartelt, A., and Heeren, J. (2014). Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36
  • Bartness, T.J., Liu, Y., Shrestha, Y.B., and V. Ryu. (2014). Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol, 35, 473–493.
  • Bartness, T.J., and C.K. Song. (2007). Sympathetic and sensory innervation of white adipose tissue. J Lipid Res, 48, 1655–1672.
  • Baskaran, P., Krishnan, V,. Ren, J., and B. Thyagarajan. (2016). Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol, 173(15), 2369–2389.
  • Becerril, S., Gómez-Ambrosi, J., Martín, M., Moncada, R., Sesma, P., M.A. Burrell, et al. (2013). Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol, 28. 10.14670/HH-28.1411.
  • Berry, R., and M.S. Rodeheffer. (2013). Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 15, 302–308.
  • Berry, D.C., Stenesen, D., Zeve, D., and J.M. Graff. (2013). The developmental origins of adipose tissue. Development, 140(19), 3939–3949.
  • Bordicchia, M., Liu, D., Amri, E.Z., Ailhaud, G., Dessi-Fulgheri, P., C. Zhang, et al. (2012). Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest, 122(3), 1022–1036.
  • Bostrom, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., J.C. Lo, et al. (2012). A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468.
  • Carriere, A., Jeanson, Y., Berger-Muller, S., Andre, M., Chenouard, V., E. Arnaud, et al. (2014). Browning of white adipose cells by intermediate metabolites, an adaptive mechanism to alleviate redox pressure. Diabetes, 63(10), 3253–3265.
  • Cedikova, M., Kripnerová, M., Dvorakova, J., Pitule, P., Grundmanova, M., V. Babuska, et al. (2016). Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int, 2016, 6067349.
  • Cereijo, R., Gavaldà-Navarro, A., Cairó, M., Quesada-López, T., Villarroya, J., S. Morón-Ros, et al. (2018). CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab 28, 750–763.e6.
  • Chapman, B.J., Farquahar, D.L., Galloway, S.M., Simpson, G.K., and J.F. Munro. (1988). The effects of a new beta-adrenoceptor agonist BRL 26830A in refractory obesity. Int J Obes (Lond), 12(2), 119-123.
  • Chen, L.H., Chien, Y.W., Liang, C.T., Chan, C.H., Fan, M.H., and H.Y. Huang. (2017). Green tea extract induces genes related to browning of White adipose tissue and limits weight-gain in high energy diet-fed rat. Food Nutr Res, 61(1), 1347480.
  • Chen, Y., Ikeda, K., Yoneshiro, T., Scaramozza, A., Tajima, K., Q. Wang, et al. (2019). Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature, 565, 180–5.
  • Cheng, L., Wang, J., Dai, H., Duan, Y., An, Y., L. Shi, et al. (2021). Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 10(1), 48-65.
  • Choi, S.S., Kim, E.S., Jung, J.E., Marciano, D.P., Jo, A., J.Y. Koo, et al. (2016). PPARgamma antagonist Gleevec improves insulin sensitivity and promotes the browning of white adipose tissue. Diabetes, 65(4), 829–839.
  • Chondronikola, M., Volpi, E., Børsheim, E., Porter, C., Annamalai, P., S. Enerbäck, et al. (2014). Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes, 63(12), 4089-4099.
  • Chondronikola, M., Volpi, E., Børsheim, E., Porter, C., Saraf, M. K., P. Annamalai, et al. (2016). Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab, 23(6), 1200-1206.
  • Chouchani, E.T., Kazak, L., and B.M. Spiegelman. (2019). New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metab. 29(1), 27–37.
  • Cinti, S. (2012). The adipose organ at a glance. Dis Model Mech, 5(5), 588–594.
  • Cousin, B., Cinti, S., Morroni, M., Raimbault, S., Ricquier, D., L. Penicaud, et al. (1992). Occurrence of brown adipocytes in rat White adipose tissue: molecular and morphological characterization. J Cell Sci, 103(Pt 4), 931–942.
  • Cypess, A.M., White, A.P., Vernochet, C., Schulz, T.J., Xue, R., C.A. Sass, et al. (2013). Anatomical Localization, Gene Expression Profiling and Functional Characterization of Adult Human Neck Brown Fat. Nat Med, 19(5), 635–9.
  • Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., A.B. Goldfine, et al. (2009). Identification and importance of brown adipose tissue in adult humans. N Engl J Med, 360(15), 1509-1517.
  • Cypess, A.M., Weiner, L.S., Roberts-Toler, C., Franquet Elía, E., Kessler, S.H., P.A. Kahn, et al. (2015). Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab, 21, 33–38.
  • de Jong, J.M., Larsson, O., Cannon, B., and J. Nedergaard. (2015). A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab, 308, E1085–1105.
  • Deshmukh, A.S., Peijs, L., Beaudry, J.L., Jespersen, N.Z., Nielsen, C.H., T. Ma, et al. (2019). Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab, 30, 963–975.e7.
  • Dodd, G.T., Decherf, S., Loh, K., Simonds, S.E., Wiede, F., E. Balland, et al. (2015). Leptin and insülin act on POMC neurons to promote the browning of white fat. Cell 160(1–2), 88–104.
  • Feldmann, H.M., Golozoubova, V., Cannon, B., and J. Nedergaard. (2009). UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab, 9, 203–209.
  • Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., J. Wu, et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev, 26, 271–281.
  • Galic, S., Oakhill, J.S., and G.R. Steinberg. (2010). Adipose tissue as an endocrine organ. Mol Cell Endocrinol, 316, 129–139.
  • Garcia-Alonso, V., and J. Claria. (2014). Prostaglandin E2 signals white-tobrown adipogenic differentiation. Adipocyte, 3(4), 290–296.
  • Gaspar, R.C., Pauli, J.R., Shulman, G.I., and V.R. Muñoz. (2021). An update on brown adipose tissue biology: a discussion of recent findings. Am J Physiol Endocrinol Metab, 320(3), E488-E495.
  • Gesta, S., Blüher, M., Yamamoto, Y., Norris, A.W., Berndt, J., S. Kralisch, et al. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA, 103, 6676–6681.
  • Ghorbani, M., and J. Himms-Hagen. (1997). Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord, 21(6), 465–475.
  • Goggi, J.L., Hartimath, S., Khanapur, S., Ramasamy, B., Tang, J. R., P. Cheng, et al. (2022). Imaging Adipose Tissue Browning using Mitochondrial Complex-I Tracer [18F] BCPP-EF. Contrast Media Mol Imaging, 2022, 6113660.
  • Grundlingh, J., Dargan, P.I., El-Zanfaly, M., and D.M. Wood. (2011). 2, 4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol, 7(3), 205-212.
  • Guerra, C., Navarro, P., Valverde, A.M., Arribas, M., Brüning, J., L.P. Kozak, et al. (2001). Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest, 108(8), 1205–1213.
  • Gunawardana, S.C., and D.W. Piston. (2012). Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes, 61(3), 674–682.
  • Gunawardana, S.C., and D.W. Piston. (2015). Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab, 308(12), E1043–1055.
  • Harms, M.J., Ishibashi, J., Wang, W., Lim, H.W., Goyama, S., T. Sato, et al. (2014). Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell metabolism, 19(4), 593-604.
  • Harms, M., and P. Seale. (2013). Brown and beige fat: development, function and therapeutic potential. Nat Med. 19(10), 1252–1263.
  • Herz, C.T., and F.W. Kiefer. (2019). Adipose tissue browning in mice and humans. J Endocrinol, 241(3), R97-R109.
  • Hondares, E., Rosell, M., Diaz-Delfin, J., Olmos, Y., Monsalve, M., R. Iglesias, et al. (2011). Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem, 286, 43112–22.
  • Hondares, E., Rosell, M., Gonzalez, F.J., Giralt, M., Iglesias, R., and F. Villarroya. (2010). Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab, 11(3), 206–212.
  • Ikeda, K., Maretich, P., and S. Kajimura. (2018). The common and distinct features of brown and beige adipocytes. Trends in Endocrinology & Metabolism, 29(3), 191-200.
  • Jespersen, N.Z., Larsen, T.J., Peijs, L., Daugaard, S., Homoe, P., A. Loft, et al. (2013). A Classical Brown Adipose Tissue mRNA Signature Partly Overlaps With Brite in the Supraclavicular Region of Adult Humans. Cell Metab, 17(5), 798–805.
  • Jimenez-Aranda, A., Fernandez-Vazquez, G., Campos, D., Tassi, M., Velasco-Perez, L., D.X. Tan, et al. (2013). Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res, 55(4), 416–423.
  • Kaisanlahti, A., and T. Glumoff. (2019). Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem, 75(1), 1–10.
  • Kajimura, S., and M.A. Saito. (2014). A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol, 76, 225–249.
  • Kim, M., Goto, T., Yu, R., Uchida, K., Tominaga, M., Y. Kano, et al. (2015). Fish oil intake induces UCP1 upregulation in brown andwhite adipose tissue via the sympathetic nervous system. Sci Rep, 5, 18013.
  • Knudsen, J.G., Murholm, M., Carey, A.L., Bienso, R.S., Basse, A.L., T.L. Allen, et al. (2014). Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One, 9(1), e84910.
  • Koenen, M., Hill, M. A., Cohen, P., and J.R. Sowers. (2021). Obesity, adipose tissue and vascular dysfunction. Circ Res 128(7), 951-968.
  • Kristóf, E., Klusóczki, Á., Veress, R., Shaw, A., Combi, Z.S., K. Varga, et al. (2019). Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res, 377(1-2), 47-55.
  • Kwan, H.Y., Wu, J., Su, T., Chao, X.J., Liu, B., X. Fu, et al. (2017). Cinnamon induces browning in subcutaneous adipocytes. Sci Rep, 7(1), 2447–017–02263-5.
  • Lee, S.G., Park, J.S., and H.W. Kang. (2017). Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem, 42, 62–71.
  • Lee, Y.H., Petkova, A.P., Konkar, A.A., and J.G. Granneman. (2014). Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J, 29(1), 286–299.
  • Liu, D., Ceddia, R.P., and S. Collins. (2018). Cardiac natriuretic peptides promote adipose 'browning' through mTOR complex-1. Mol Metab, 9, 192–198.
  • Lone, J., Choi, J.H., Kim, S.W., and J.W. Yun. (2016). Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem, 27, 193–202.
  • Long, J.Z., Svensson, K.J., Tsai, L., Zeng, X., Roh, H.C., X. Kong, et al. (2014). A smooth muscle-like origin for beige adipocytes. Cell Metab, 19(5), 810–820.
  • Lopez, M., Dieguez, C., and R. Nogueiras. (2015). Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte, 4(2), 141–145.
  • Lowell, B.B., S-Susulic, V., Hamann, A., Lawitts, J.A., Himms-Hagen, J., B.B. Boyer, et al. (1993). Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature, 366(6457), 740–742.
  • Ma, P.Y., Li, X.Y., Wang, Y.L., Lang, D.Q., Liu, L., Y.K. Yi, et al. (2022). Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res, 178, 106175.
  • Markan, K.R., Boland, L.K., King-McAlpin, A.Q., Claflin, K.E., Leaman, M.P., M.K. Kemerling, et al. (2020). Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity in vivo. Mol Metab, 36, 100965.
  • Merlin, J., Evans, B.A., Dehvari, N., Sato, M., Bengtsson, T., and D.S. Hutchinson. (2016). Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Mol Nutr Food Res, 60(1), 18–42.
  • Moreno-Navarrete, J.M., and J.M. Fernandez-Real. (2019). The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Reviews in Endocrine and Metabolic Disorders, 20(4), 387-397.
  • Nedergaard, J., Bengtsson T., and B. Cannon B. (2007). Unexpected evidence for active Brown adipose tissue in adult humans, Am J Physiol Endocrinol Metab, 293, E444–E452.
  • Ng, R., Hussain, N.A., Zhang, Q., Chang, C., Li, H., Y. Fu, et al. (2017). miRNA-32 drives brown fat thermogenesis and trans-activates subcutaneous white fat browning in mice. Cell Rep 19(6), 1229–1246.
  • Ohno, H., Shinoda, K., Spiegelman, B.M., and S. Kajimura. (2012). PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell metabolism, 15(3), 395-404.
  • Ouchi, N., Parker, J.L., Lugus, J.J., and K. Walsh. (2011). Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 11(2), 85–97.
  • Pan, R., Zhu, X., Maretich, P., and Y. Chen. (2020). Combating obesity with thermogenic fat: current challenges and advancements. Frontiers in Endocrinology, 11, 185.
  • Park, A., Kim, W. K., and K.H. Bae. (2014). Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World journal of stem cells, 6(1), 33-42.
  • Patsouris, D., Qi, P., Abdullahi, A, Stanojcic, M., Chen, P., A. Parousis, et al. (2015). Burn Induces Browning of the Subcutaneous White Adipose Tissue in Mice and Humans. Cell Rep. 13, 1538e1544.
  • Petrovic, N., Walden, T.B,. Shabalina, I.G., Timmons, J.A., Cannon, B., and J. Nedergaard. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem, 285(10), 7153–7164.
  • Piantadosi, C.A., and H.B. Suliman. (2006). Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem, 281, 324–33.
  • Robidoux, J., Cao, W., Quan, H., Daniel, K.W., Moukdar, F., X. Bai, et al. (2005). Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol, 25, 5466–79.
  • Rodeheffer, M.S., Birsoy, K., and J.M. Friedman. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.
  • Rui, L. (2017). Brown and beige adipose tissues in health and disease. Compr Physiol, 7(4), 1281-1306.
  • Rui, L. (2013). Brain regulation of energy balance and body weight. Rev Endocr Metab Disord, 14(4), 387–407.
  • Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K,. Yoneshiro, T., J. Nio- Kobayashi, et al. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes, 58, 1526–31.
  • Saito, M. (2014). Human brown adipose tissue: regulation and anti-obesity potential. Endocr J, 61(5), 409–416.
  • Sanchez-Gurmaches, J., Hung, C.M., Sparks, C.A., Tang, Y., Li, H., and D.A. Guertin. (2012). PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell metabolism, 16(3), 348-362.
  • Seale, P., Kajimura, S., and B.M. Spiegelman. (2009). Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes Dev, 23(7), 788–797.
  • Segawa, M., Oh-Ishi, S., Kizaki, T, Ookawara. T., Sakurai, T., T. Izawa, et al. (1998). Effect of running training on brown adipose tissue activity in rats: a reevaluation. Res Commun Mol Pathol Pharmacol 100(1), 77–82.
  • Shamsi, F., Zhang, H., and Y.H. Tseng. (2017). MicroRNA regulation of brown adipogenesis and thermogenic energy expenditure. Front Endocrinol (Lausanne) 8, 205.
  • Shibata, H., and T. Nagasaka. (1987). The effect of forced running on heat production in brown adipose tissue in rats. Physiol Behav 39(3):377–380.
  • Shinoda, K., Luijten, I.H., Hasegawa, Y., Hong, H., Sonne, S.B., M. Kim, et al. (2015). Genetic and Functional Characterization of Clonally Derived Adult Human Brown Adipocytes. Nat Med. 21(4), 389–94.
  • Srivastava, R.K., Moliner, A., Lee, E.S., Nickles, E., Sim, E., C. Liu, et al. (2020). CD137 negatively affects “browning” of white adipose tissue during cold exposure. Journal of Biological Chemistry, 295(7), 2034-2042.
  • Srivastava, S., Kashiwaya, Y., King, M.T., Baxa, U., Tam, J., G. Niu, et al. (2012). Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J, 26, 2351–2362.
  • Suárez-Zamorano, N., Fabbiano, S., Chevalier, C., Stojanović, O., Colin, D. J., A. Stevanović, et al. (2015). Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nature medicine, 21(12), 1497-1501.
  • Tan, C.Y., Ishikawa, K., Virtue, S., and A. Vidal-Puig. (2011). Brown adipose tissue in the treatment of obesity and diabetes: Are we hot enough? J Diabetes Investig. 2(5), 341–350.
  • Than, A., He, H.L., Chua, S.H., Xu, D., Sun, L., M.K. Leow, et al. (2015). Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290, 14679–14691.
  • Thomas, S.S., and W.E. Mitch. (2017). Parathyroid hormone stimulates adipose tissue browning: a pathway to muscle wasting. Curr Opin Clin Nutr Metab Care 20(3), 153–157.
  • Tseng, Y.H., Kokkotou, E., Schulz, T.J., Huang, T.L., Winnay, J.N., C.M. Taniguchi, et al. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454(7207), 1000-1004.
  • Tsoli, M., Moore, M., Burg, D., Painter, A., Taylor, R., S.H. Lockie, et al. (2012). Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372e4382.
  • Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., T. Niemi, et al. (2009). Functional brown adipose tissue in healthy adults. New England Journal of Medicine, 360(15), 1518-1525.
  • Virtue, S., Masoodi, M., Velagapudi, V., Tan, C.Y., Dale, M., T. Suorti, et al. (2012). Lipocalin prostaglandin D synthase and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism in vivo. PLoS One, 7(7), e39512.
  • Wang, B., Fu, X., Liang, X., Deavila, J.M., Wang, Z.., L. Zhao, et al. (2017). Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRalpha(+) adipose progenitors. Cell Discov, 3, 17036.
  • Wang, W., and P. Seale. (2016). Control of brown and beige fat development, Nat Rev Mol Cell Biol, 17, 691-702.
  • Wang, G.X., Zhao, X.Y., and J.D. Lin. (2015). The brown fat secretome: metabolic functions beyond thermogenesis. Trends in Endocrinology & Metabolism, 26(5), 231-237.
  • Wang, W., Kissig, M., Rajakumari, S., Huang, L., Lim, H. W., K.J. Won, et al.(2014). Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Pro. Natl Acad Sci USA, 111(40), 14466-14471.
  • Wang, X., and R. Wahl. (2014). Responses of the insulin signaling pathways in the brown adipose tissue of rats following cold exposure. PLoS One, 9(6), e99772.
  • Wankhade, U.D., Shen, M., Yadav, H., and K.M. Thakali. (2016). Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. Biomed Res Int, 2016, 2365609.
  • Weiner, J., Hankir, M., Heiker, J.T., Fenske, W., and K. Krause. (2017). Thyroid hormones and browning of adipose tissue. Mol Cell Endocrinol 458, 156–159.
  • Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., A.H. Giang, et al (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150(2), 366–376.
  • Wu, J., Cohen, P., and B.M. Spiegelman. (2013). Adaptive thermogenesis in adipocytes: is beige the new brown?. Genes & development, 27(3), 234-250.
  • Xue, L., Sun, J., Liu, J., Hu, C., Wu, D., C. Nie, et al. (2022). Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO reports, e54132.
  • Xue, Y., Xu, X., Zhang, X. Q., Farokhzad, O. C., and R. Langer. (2016). Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proceedings of the National Academy of Sciences, 113(20), 5552-5557.
  • Yoneshiro, T., Aita, S., Matsushita, M., Kayahara, T., Kameya, T., Y. Kawai, et al. (2013). Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest, 123(8), 3404–3408.
  • Zhang, H., Guan, M., Townsend, K.L., Huang, T.L., An, D., X. Yan, et al. (2015). MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network. EMBO Rep 16(10), 1378–1393.
  • Zhang, Z., Zhang, H., Li, B., Meng, X., Wang, J., Y. Zhang, et al. (2014). Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5, 5493.
  • Zhang, W., Sheng, T., Gu, Z., and Y. Zhang. (2021). Strategies for browning agent delivery. Pharmaceutical Research, 38(8), 1327-1334.
  • Zhang, Y., Yu, J., Qiang, L., and Z. Gu. (2018). Nanomedicine for obesity treatment. Science China Life Sciences, 61(4), 373-379.
  • Zu, Y., Zhao, L., Hao, L., Mechref, Y., Zabet-Moghaddam, M., P.A. Keyel, et al. (2021). Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. Journal of Controlled Release, 333, 339-351.

Brown/Beige Adipose Tissue: Novel Players in the Fight Against Obesity

Yıl 2022, Cilt: 4 Sayı: 3, 129 - 152, 30.12.2022

Öz

Obesity is a metabolic disease which its prevalence is increasing worldwide. Multidisciplinary strategies are required to combat obesity. Many methods, from diet to surgery, are tried in obesity treatment. However, these methods have not been successful enough in the treatment of obesity. In recent years, a new adipose tissue type has been mentioned, with very important developments in adipose tissue biology. This type of adipose tissue is named as beige adipose tissue, different from white adipose tissue and classical brown adipose tissue. It has been observed that the beige adipocytes have a Brown-like characteristic and have thermogenesis abilities. It has been shown that beige adipocytes can develop in the white adipose tissue by a mechanism called browning, with the effect of various stimuli such as cold, hormones, exercise and dietary compounds. Brown/beige adipocytes are a candidate to be a new generation weight loss strategy and it is likely to have benefits against both obesity and its related metabolic diseases such as insulin resistance, diabetes, etc. To date, an increasing number of studies have been carried out to combat obesity by inducing browning of WAT by trying many compounds or methods, including cold exposure, various drugs, hormones, and plant-based agents. With the use of new generation nanotechnology-based therapies in the near future, specific molecules that can directly bind to brown/beige fat cells and activate the thermogenic program will be able to treat obesity. However, the therapeutic use of browning agents in people with obesity in the coming years will depend on the outcome of further randomised controlled trials.

Kaynakça

  • Ahmad, B., Vohra, M.S., Saleemi, M.A., Serpell, C.J., Fong, I.L., Wong, E.H. (2021). Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie, 184, 26-39.
  • Altshuler-Keylin, S., Shinoda, K., Hasegawa, Y., Ikeda, K., Hong, H., Q. Kang, et al. (2016). Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell metabolism, 24(3), 402-419.
  • Azhar, Y., Parmar, A., Miller, C.N., Samuels, J.S., Rayalam, S. (2016) Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr Metab (Lond), 13, 89–016–0150-6 eCollection 2016.
  • Bargut, T.C.L., Souza-Mello, V., Aguila, M.B., and C.A., Mandarim-de-Lacerda. (2017). Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig, 31(1).
  • Bartelt, A., Bruns, O.T., Reimer, R., Hohenberg, H., Ittrich, H., K., Peldschus, et al. (2011). Brown adipose tissue activity controls triglyceride clearance. Nat Med, 17(2), 200–205. Bartelt, A., and Heeren, J. (2014). Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36
  • Bartness, T.J., Liu, Y., Shrestha, Y.B., and V. Ryu. (2014). Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol, 35, 473–493.
  • Bartness, T.J., and C.K. Song. (2007). Sympathetic and sensory innervation of white adipose tissue. J Lipid Res, 48, 1655–1672.
  • Baskaran, P., Krishnan, V,. Ren, J., and B. Thyagarajan. (2016). Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol, 173(15), 2369–2389.
  • Becerril, S., Gómez-Ambrosi, J., Martín, M., Moncada, R., Sesma, P., M.A. Burrell, et al. (2013). Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol, 28. 10.14670/HH-28.1411.
  • Berry, R., and M.S. Rodeheffer. (2013). Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 15, 302–308.
  • Berry, D.C., Stenesen, D., Zeve, D., and J.M. Graff. (2013). The developmental origins of adipose tissue. Development, 140(19), 3939–3949.
  • Bordicchia, M., Liu, D., Amri, E.Z., Ailhaud, G., Dessi-Fulgheri, P., C. Zhang, et al. (2012). Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest, 122(3), 1022–1036.
  • Bostrom, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., J.C. Lo, et al. (2012). A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468.
  • Carriere, A., Jeanson, Y., Berger-Muller, S., Andre, M., Chenouard, V., E. Arnaud, et al. (2014). Browning of white adipose cells by intermediate metabolites, an adaptive mechanism to alleviate redox pressure. Diabetes, 63(10), 3253–3265.
  • Cedikova, M., Kripnerová, M., Dvorakova, J., Pitule, P., Grundmanova, M., V. Babuska, et al. (2016). Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int, 2016, 6067349.
  • Cereijo, R., Gavaldà-Navarro, A., Cairó, M., Quesada-López, T., Villarroya, J., S. Morón-Ros, et al. (2018). CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab 28, 750–763.e6.
  • Chapman, B.J., Farquahar, D.L., Galloway, S.M., Simpson, G.K., and J.F. Munro. (1988). The effects of a new beta-adrenoceptor agonist BRL 26830A in refractory obesity. Int J Obes (Lond), 12(2), 119-123.
  • Chen, L.H., Chien, Y.W., Liang, C.T., Chan, C.H., Fan, M.H., and H.Y. Huang. (2017). Green tea extract induces genes related to browning of White adipose tissue and limits weight-gain in high energy diet-fed rat. Food Nutr Res, 61(1), 1347480.
  • Chen, Y., Ikeda, K., Yoneshiro, T., Scaramozza, A., Tajima, K., Q. Wang, et al. (2019). Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature, 565, 180–5.
  • Cheng, L., Wang, J., Dai, H., Duan, Y., An, Y., L. Shi, et al. (2021). Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 10(1), 48-65.
  • Choi, S.S., Kim, E.S., Jung, J.E., Marciano, D.P., Jo, A., J.Y. Koo, et al. (2016). PPARgamma antagonist Gleevec improves insulin sensitivity and promotes the browning of white adipose tissue. Diabetes, 65(4), 829–839.
  • Chondronikola, M., Volpi, E., Børsheim, E., Porter, C., Annamalai, P., S. Enerbäck, et al. (2014). Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes, 63(12), 4089-4099.
  • Chondronikola, M., Volpi, E., Børsheim, E., Porter, C., Saraf, M. K., P. Annamalai, et al. (2016). Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab, 23(6), 1200-1206.
  • Chouchani, E.T., Kazak, L., and B.M. Spiegelman. (2019). New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metab. 29(1), 27–37.
  • Cinti, S. (2012). The adipose organ at a glance. Dis Model Mech, 5(5), 588–594.
  • Cousin, B., Cinti, S., Morroni, M., Raimbault, S., Ricquier, D., L. Penicaud, et al. (1992). Occurrence of brown adipocytes in rat White adipose tissue: molecular and morphological characterization. J Cell Sci, 103(Pt 4), 931–942.
  • Cypess, A.M., White, A.P., Vernochet, C., Schulz, T.J., Xue, R., C.A. Sass, et al. (2013). Anatomical Localization, Gene Expression Profiling and Functional Characterization of Adult Human Neck Brown Fat. Nat Med, 19(5), 635–9.
  • Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., A.B. Goldfine, et al. (2009). Identification and importance of brown adipose tissue in adult humans. N Engl J Med, 360(15), 1509-1517.
  • Cypess, A.M., Weiner, L.S., Roberts-Toler, C., Franquet Elía, E., Kessler, S.H., P.A. Kahn, et al. (2015). Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab, 21, 33–38.
  • de Jong, J.M., Larsson, O., Cannon, B., and J. Nedergaard. (2015). A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab, 308, E1085–1105.
  • Deshmukh, A.S., Peijs, L., Beaudry, J.L., Jespersen, N.Z., Nielsen, C.H., T. Ma, et al. (2019). Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab, 30, 963–975.e7.
  • Dodd, G.T., Decherf, S., Loh, K., Simonds, S.E., Wiede, F., E. Balland, et al. (2015). Leptin and insülin act on POMC neurons to promote the browning of white fat. Cell 160(1–2), 88–104.
  • Feldmann, H.M., Golozoubova, V., Cannon, B., and J. Nedergaard. (2009). UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab, 9, 203–209.
  • Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., J. Wu, et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev, 26, 271–281.
  • Galic, S., Oakhill, J.S., and G.R. Steinberg. (2010). Adipose tissue as an endocrine organ. Mol Cell Endocrinol, 316, 129–139.
  • Garcia-Alonso, V., and J. Claria. (2014). Prostaglandin E2 signals white-tobrown adipogenic differentiation. Adipocyte, 3(4), 290–296.
  • Gaspar, R.C., Pauli, J.R., Shulman, G.I., and V.R. Muñoz. (2021). An update on brown adipose tissue biology: a discussion of recent findings. Am J Physiol Endocrinol Metab, 320(3), E488-E495.
  • Gesta, S., Blüher, M., Yamamoto, Y., Norris, A.W., Berndt, J., S. Kralisch, et al. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA, 103, 6676–6681.
  • Ghorbani, M., and J. Himms-Hagen. (1997). Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord, 21(6), 465–475.
  • Goggi, J.L., Hartimath, S., Khanapur, S., Ramasamy, B., Tang, J. R., P. Cheng, et al. (2022). Imaging Adipose Tissue Browning using Mitochondrial Complex-I Tracer [18F] BCPP-EF. Contrast Media Mol Imaging, 2022, 6113660.
  • Grundlingh, J., Dargan, P.I., El-Zanfaly, M., and D.M. Wood. (2011). 2, 4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol, 7(3), 205-212.
  • Guerra, C., Navarro, P., Valverde, A.M., Arribas, M., Brüning, J., L.P. Kozak, et al. (2001). Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest, 108(8), 1205–1213.
  • Gunawardana, S.C., and D.W. Piston. (2012). Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes, 61(3), 674–682.
  • Gunawardana, S.C., and D.W. Piston. (2015). Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab, 308(12), E1043–1055.
  • Harms, M.J., Ishibashi, J., Wang, W., Lim, H.W., Goyama, S., T. Sato, et al. (2014). Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell metabolism, 19(4), 593-604.
  • Harms, M., and P. Seale. (2013). Brown and beige fat: development, function and therapeutic potential. Nat Med. 19(10), 1252–1263.
  • Herz, C.T., and F.W. Kiefer. (2019). Adipose tissue browning in mice and humans. J Endocrinol, 241(3), R97-R109.
  • Hondares, E., Rosell, M., Diaz-Delfin, J., Olmos, Y., Monsalve, M., R. Iglesias, et al. (2011). Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem, 286, 43112–22.
  • Hondares, E., Rosell, M., Gonzalez, F.J., Giralt, M., Iglesias, R., and F. Villarroya. (2010). Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab, 11(3), 206–212.
  • Ikeda, K., Maretich, P., and S. Kajimura. (2018). The common and distinct features of brown and beige adipocytes. Trends in Endocrinology & Metabolism, 29(3), 191-200.
  • Jespersen, N.Z., Larsen, T.J., Peijs, L., Daugaard, S., Homoe, P., A. Loft, et al. (2013). A Classical Brown Adipose Tissue mRNA Signature Partly Overlaps With Brite in the Supraclavicular Region of Adult Humans. Cell Metab, 17(5), 798–805.
  • Jimenez-Aranda, A., Fernandez-Vazquez, G., Campos, D., Tassi, M., Velasco-Perez, L., D.X. Tan, et al. (2013). Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res, 55(4), 416–423.
  • Kaisanlahti, A., and T. Glumoff. (2019). Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem, 75(1), 1–10.
  • Kajimura, S., and M.A. Saito. (2014). A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol, 76, 225–249.
  • Kim, M., Goto, T., Yu, R., Uchida, K., Tominaga, M., Y. Kano, et al. (2015). Fish oil intake induces UCP1 upregulation in brown andwhite adipose tissue via the sympathetic nervous system. Sci Rep, 5, 18013.
  • Knudsen, J.G., Murholm, M., Carey, A.L., Bienso, R.S., Basse, A.L., T.L. Allen, et al. (2014). Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One, 9(1), e84910.
  • Koenen, M., Hill, M. A., Cohen, P., and J.R. Sowers. (2021). Obesity, adipose tissue and vascular dysfunction. Circ Res 128(7), 951-968.
  • Kristóf, E., Klusóczki, Á., Veress, R., Shaw, A., Combi, Z.S., K. Varga, et al. (2019). Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res, 377(1-2), 47-55.
  • Kwan, H.Y., Wu, J., Su, T., Chao, X.J., Liu, B., X. Fu, et al. (2017). Cinnamon induces browning in subcutaneous adipocytes. Sci Rep, 7(1), 2447–017–02263-5.
  • Lee, S.G., Park, J.S., and H.W. Kang. (2017). Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem, 42, 62–71.
  • Lee, Y.H., Petkova, A.P., Konkar, A.A., and J.G. Granneman. (2014). Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J, 29(1), 286–299.
  • Liu, D., Ceddia, R.P., and S. Collins. (2018). Cardiac natriuretic peptides promote adipose 'browning' through mTOR complex-1. Mol Metab, 9, 192–198.
  • Lone, J., Choi, J.H., Kim, S.W., and J.W. Yun. (2016). Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem, 27, 193–202.
  • Long, J.Z., Svensson, K.J., Tsai, L., Zeng, X., Roh, H.C., X. Kong, et al. (2014). A smooth muscle-like origin for beige adipocytes. Cell Metab, 19(5), 810–820.
  • Lopez, M., Dieguez, C., and R. Nogueiras. (2015). Hypothalamic GLP-1: the control of BAT thermogenesis and browning of white fat. Adipocyte, 4(2), 141–145.
  • Lowell, B.B., S-Susulic, V., Hamann, A., Lawitts, J.A., Himms-Hagen, J., B.B. Boyer, et al. (1993). Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature, 366(6457), 740–742.
  • Ma, P.Y., Li, X.Y., Wang, Y.L., Lang, D.Q., Liu, L., Y.K. Yi, et al. (2022). Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res, 178, 106175.
  • Markan, K.R., Boland, L.K., King-McAlpin, A.Q., Claflin, K.E., Leaman, M.P., M.K. Kemerling, et al. (2020). Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity in vivo. Mol Metab, 36, 100965.
  • Merlin, J., Evans, B.A., Dehvari, N., Sato, M., Bengtsson, T., and D.S. Hutchinson. (2016). Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Mol Nutr Food Res, 60(1), 18–42.
  • Moreno-Navarrete, J.M., and J.M. Fernandez-Real. (2019). The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Reviews in Endocrine and Metabolic Disorders, 20(4), 387-397.
  • Nedergaard, J., Bengtsson T., and B. Cannon B. (2007). Unexpected evidence for active Brown adipose tissue in adult humans, Am J Physiol Endocrinol Metab, 293, E444–E452.
  • Ng, R., Hussain, N.A., Zhang, Q., Chang, C., Li, H., Y. Fu, et al. (2017). miRNA-32 drives brown fat thermogenesis and trans-activates subcutaneous white fat browning in mice. Cell Rep 19(6), 1229–1246.
  • Ohno, H., Shinoda, K., Spiegelman, B.M., and S. Kajimura. (2012). PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell metabolism, 15(3), 395-404.
  • Ouchi, N., Parker, J.L., Lugus, J.J., and K. Walsh. (2011). Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 11(2), 85–97.
  • Pan, R., Zhu, X., Maretich, P., and Y. Chen. (2020). Combating obesity with thermogenic fat: current challenges and advancements. Frontiers in Endocrinology, 11, 185.
  • Park, A., Kim, W. K., and K.H. Bae. (2014). Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World journal of stem cells, 6(1), 33-42.
  • Patsouris, D., Qi, P., Abdullahi, A, Stanojcic, M., Chen, P., A. Parousis, et al. (2015). Burn Induces Browning of the Subcutaneous White Adipose Tissue in Mice and Humans. Cell Rep. 13, 1538e1544.
  • Petrovic, N., Walden, T.B,. Shabalina, I.G., Timmons, J.A., Cannon, B., and J. Nedergaard. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem, 285(10), 7153–7164.
  • Piantadosi, C.A., and H.B. Suliman. (2006). Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem, 281, 324–33.
  • Robidoux, J., Cao, W., Quan, H., Daniel, K.W., Moukdar, F., X. Bai, et al. (2005). Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol, 25, 5466–79.
  • Rodeheffer, M.S., Birsoy, K., and J.M. Friedman. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.
  • Rui, L. (2017). Brown and beige adipose tissues in health and disease. Compr Physiol, 7(4), 1281-1306.
  • Rui, L. (2013). Brain regulation of energy balance and body weight. Rev Endocr Metab Disord, 14(4), 387–407.
  • Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K,. Yoneshiro, T., J. Nio- Kobayashi, et al. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes, 58, 1526–31.
  • Saito, M. (2014). Human brown adipose tissue: regulation and anti-obesity potential. Endocr J, 61(5), 409–416.
  • Sanchez-Gurmaches, J., Hung, C.M., Sparks, C.A., Tang, Y., Li, H., and D.A. Guertin. (2012). PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell metabolism, 16(3), 348-362.
  • Seale, P., Kajimura, S., and B.M. Spiegelman. (2009). Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes Dev, 23(7), 788–797.
  • Segawa, M., Oh-Ishi, S., Kizaki, T, Ookawara. T., Sakurai, T., T. Izawa, et al. (1998). Effect of running training on brown adipose tissue activity in rats: a reevaluation. Res Commun Mol Pathol Pharmacol 100(1), 77–82.
  • Shamsi, F., Zhang, H., and Y.H. Tseng. (2017). MicroRNA regulation of brown adipogenesis and thermogenic energy expenditure. Front Endocrinol (Lausanne) 8, 205.
  • Shibata, H., and T. Nagasaka. (1987). The effect of forced running on heat production in brown adipose tissue in rats. Physiol Behav 39(3):377–380.
  • Shinoda, K., Luijten, I.H., Hasegawa, Y., Hong, H., Sonne, S.B., M. Kim, et al. (2015). Genetic and Functional Characterization of Clonally Derived Adult Human Brown Adipocytes. Nat Med. 21(4), 389–94.
  • Srivastava, R.K., Moliner, A., Lee, E.S., Nickles, E., Sim, E., C. Liu, et al. (2020). CD137 negatively affects “browning” of white adipose tissue during cold exposure. Journal of Biological Chemistry, 295(7), 2034-2042.
  • Srivastava, S., Kashiwaya, Y., King, M.T., Baxa, U., Tam, J., G. Niu, et al. (2012). Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J, 26, 2351–2362.
  • Suárez-Zamorano, N., Fabbiano, S., Chevalier, C., Stojanović, O., Colin, D. J., A. Stevanović, et al. (2015). Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nature medicine, 21(12), 1497-1501.
  • Tan, C.Y., Ishikawa, K., Virtue, S., and A. Vidal-Puig. (2011). Brown adipose tissue in the treatment of obesity and diabetes: Are we hot enough? J Diabetes Investig. 2(5), 341–350.
  • Than, A., He, H.L., Chua, S.H., Xu, D., Sun, L., M.K. Leow, et al. (2015). Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290, 14679–14691.
  • Thomas, S.S., and W.E. Mitch. (2017). Parathyroid hormone stimulates adipose tissue browning: a pathway to muscle wasting. Curr Opin Clin Nutr Metab Care 20(3), 153–157.
  • Tseng, Y.H., Kokkotou, E., Schulz, T.J., Huang, T.L., Winnay, J.N., C.M. Taniguchi, et al. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454(7207), 1000-1004.
  • Tsoli, M., Moore, M., Burg, D., Painter, A., Taylor, R., S.H. Lockie, et al. (2012). Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372e4382.
  • Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., T. Niemi, et al. (2009). Functional brown adipose tissue in healthy adults. New England Journal of Medicine, 360(15), 1518-1525.
  • Virtue, S., Masoodi, M., Velagapudi, V., Tan, C.Y., Dale, M., T. Suorti, et al. (2012). Lipocalin prostaglandin D synthase and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism in vivo. PLoS One, 7(7), e39512.
  • Wang, B., Fu, X., Liang, X., Deavila, J.M., Wang, Z.., L. Zhao, et al. (2017). Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRalpha(+) adipose progenitors. Cell Discov, 3, 17036.
  • Wang, W., and P. Seale. (2016). Control of brown and beige fat development, Nat Rev Mol Cell Biol, 17, 691-702.
  • Wang, G.X., Zhao, X.Y., and J.D. Lin. (2015). The brown fat secretome: metabolic functions beyond thermogenesis. Trends in Endocrinology & Metabolism, 26(5), 231-237.
  • Wang, W., Kissig, M., Rajakumari, S., Huang, L., Lim, H. W., K.J. Won, et al.(2014). Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Pro. Natl Acad Sci USA, 111(40), 14466-14471.
  • Wang, X., and R. Wahl. (2014). Responses of the insulin signaling pathways in the brown adipose tissue of rats following cold exposure. PLoS One, 9(6), e99772.
  • Wankhade, U.D., Shen, M., Yadav, H., and K.M. Thakali. (2016). Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. Biomed Res Int, 2016, 2365609.
  • Weiner, J., Hankir, M., Heiker, J.T., Fenske, W., and K. Krause. (2017). Thyroid hormones and browning of adipose tissue. Mol Cell Endocrinol 458, 156–159.
  • Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., A.H. Giang, et al (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150(2), 366–376.
  • Wu, J., Cohen, P., and B.M. Spiegelman. (2013). Adaptive thermogenesis in adipocytes: is beige the new brown?. Genes & development, 27(3), 234-250.
  • Xue, L., Sun, J., Liu, J., Hu, C., Wu, D., C. Nie, et al. (2022). Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO reports, e54132.
  • Xue, Y., Xu, X., Zhang, X. Q., Farokhzad, O. C., and R. Langer. (2016). Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proceedings of the National Academy of Sciences, 113(20), 5552-5557.
  • Yoneshiro, T., Aita, S., Matsushita, M., Kayahara, T., Kameya, T., Y. Kawai, et al. (2013). Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest, 123(8), 3404–3408.
  • Zhang, H., Guan, M., Townsend, K.L., Huang, T.L., An, D., X. Yan, et al. (2015). MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network. EMBO Rep 16(10), 1378–1393.
  • Zhang, Z., Zhang, H., Li, B., Meng, X., Wang, J., Y. Zhang, et al. (2014). Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5, 5493.
  • Zhang, W., Sheng, T., Gu, Z., and Y. Zhang. (2021). Strategies for browning agent delivery. Pharmaceutical Research, 38(8), 1327-1334.
  • Zhang, Y., Yu, J., Qiang, L., and Z. Gu. (2018). Nanomedicine for obesity treatment. Science China Life Sciences, 61(4), 373-379.
  • Zu, Y., Zhao, L., Hao, L., Mechref, Y., Zabet-Moghaddam, M., P.A. Keyel, et al. (2021). Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. Journal of Controlled Release, 333, 339-351.
Toplam 118 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji , Eczacılık ve İlaç Bilimleri, Klinik Tıp Bilimleri
Bölüm Research Article
Yazarlar

Gökhan Bağcı 0000-0003-4554-2391

Sara Çıbık 0000-0003-0100-3409

Hatice Pınarbaşı 0000-0003-3084-8064

Yayımlanma Tarihi 30 Aralık 2022
Kabul Tarihi 2 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 3

Kaynak Göster

APA Bağcı, G., Çıbık, S., & Pınarbaşı, H. (2022). Brown/Beige Adipose Tissue: Novel Players in the Fight Against Obesity. Aurum Journal of Health Sciences, 4(3), 129-152.