Geniş çaplı tıp alanında bilgisayar destekli çalışmalar son yıllarda büyük ölçüde artmıştır. Ayrıca, birçok tıbbi kuruluşlar farklı hastalıklar için veritabanları inşa etmeye devam etmektedir. Hastalığın belirlenmesi için yapay zeka tekniklerine hazırlanan bu tıp veritabanları paha biçilmez değerdedir. Bu çalışmada karar ağaçlarından Gini alogritması ve yapay sinir ağlarından dağıtılmış gecikme ağı, olasılık sinir ağı, ileri beslemeli ağ ve öğrenme vector nicelemesi migren ve olası migren teşhis amacıyla kullanılmıştır. Bu tekniklerin performansı karşılaştırılmış ve dağıtılmış gecikme ağ tekniği 95.45% doğruluk ile iyi tanı olarak görülmüştür.
Başağrısı Migren Karar Ağaçları Yapay Sinir Ağları Tıbbi Teşhis
Computer supported studies in wide range of medical fields have been greatly expanded in recent years. Also, many medical organizations continue to build databases for different diseases. This medical database for artificial intelligence techniques for the determination of the disease is invaluable. As a subset, artificial neural networks and decision tree techniques are used for disease diagnosis. In this study Gini algorithm from decision trees and distributed delay network, probabilistic neural network, feed-forward network and learning vector quantization from artificial neural network have been used in order to diagnose migraine and probable migraine. Performance of these techniques has been compared and distributed delay network technique is observed as the best diagnosis with 95.45% accuracy.
headache migraine decision-tree artificial neural networks medical diagnosis
Birincil Dil | İngilizce |
---|---|
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 1 Ocak 2014 |
Gönderilme Tarihi | 1 Ocak 2014 |
Yayımlandığı Sayı | Yıl 2014 Cilt: 5 Sayı: 14 |
0216 355 56 19 numarasıyla iletişime geçebilirsiniz.
Bu dergideki makaleler Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.