Araştırma Makalesi
BibTex RIS Kaynak Göster

Bulanık Çok Kriterli Karar Verme Metodolojisine Dayalı Tedarikçi Seçimi Uygulaması

Yıl 2012, Cilt: 3 Sayı: 8, 7 - 18, 01.07.2012
https://doi.org/10.5824/1309-1581.2012.3.001.x

Öz

İş hayatının her sektöründe rekabetin artmasından dolayı, organizasyonların bütün süreçlerinde verimli olunması gereksinimi doğmaktadır. Bu noktada, tedarik zinciri yönetimi kapsamında en önemli süreçlerden biri de tedarikçi seçme sürecidir. Sistematik bir tedarikçi seçme metodolojisi oluşturulması durumunda en uygun tedarikçinin seçilmesi, zaman, kalite ve maliyet açısından verimliliğin sağlanmasını mümkün kılacaktır. Bu çalışmayla, gerçek çalışma ortamının belirsiz yapısına bağlı olarak, yaygın olarak kullanılan çok kriterli karar verme metodolojisi olan TOPSIS bulanık ortam altında kullanılmıştır. Önerilen teknik gerçek bir durum için kullanılmış ve en uygun tedarikçiler belirlenmiş ve sıralanmıştır.

Kaynakça

  • Amid, A., Ghodsypour, S. H., & O’Brien, C. (2006). Fuzzy multiobjective linear model for supplier selection in a supply chain. International Journal of Production Economics, 104, 394-407.
  • Bevilacqua, M., Ciarapica, F. E., & Giacchetta, G. (2006). A fuzzy-QFD approach to supplier selection. Journal of Purchasing & Supply Management, 12, 14-27.
  • Bhattacharya, A., Geraghty, J., & Young, P. (2010). Supplier selection paradigm: An integrated hierarchical QFD methodology under multiple-criteria environment. Applied Soft Computing, 10, 1013-1027.
  • Bilsel, R. U., & Ravindran, A. (2011). A multi-objective chance constrained programming model for supplier selection under uncertainty. Transportation Research Part B, 45, 1284-1300.
  • Büyüközkan, G., & Çiftçi, G. (2011). A novel fuzzy multi-criteria decision framework for sustainable supplier selection with incomplete information. Computers in Industry, 62, 164-174.
  • Büyüközkan, G., & Çiftçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39, 3000-3011.
  • Chamodrakas, I., Batis, D., & Martakos, D. (2010). Supplier selection in electronic marketplaces using satisficing and fuzzy AHP. Expert Systems with Applications, 37, 490-498.
  • Che, Z. H. (2012). Clustering and selecting suppliers based on simulated annealing algorithms. Computers and Mathematics with Applications, 63, 228-238.
  • Chen, Y., & Chao, R. (2012). Supplier selection using consistent fuzzy preference relations. Expert Systems with Applications, 39, 3233-3240.
  • Çelik, M., Çebi, S., Kahraman, C., & Er İ. D. (2009). Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. Expert Systems with Applications, 36, 4541-4557.
  • Çevikcan, E., Çebi, S., & Kaya, İ. (2009). Fuzzy VIKOR and fuzzy axiomatic design versus to fuzzy TOPSIS: An application of candidate assessment. Journal of Multi‐Valued Logic and Soft Computing, 15, 181-208.
  • Dağdeviren, M., Yavuz, S., & Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems with Applications, 36, 8143-8151.
  • Dalalah, D., Hayajneh, M., & Batieha, F. (2011). A fuzzy multi-criteria decision making model for supplier selection. Expert Systems with Applications, 38, 8384-8391.
  • De Boer, L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7, 75-89.
  • Degraeve, Z., Labro, E., & Roodhooft, F. (2000). An evaluation of supplier selection methods from a total cost of ownership perspective. European Journal of Operational Research, 125(1), 34-59.
  • Demirtas, E. A., & Üstün, Ö. (2008). An integrated multi-objective decision making process for supplier selection and order allocation. Omega, 36, 76-90.
  • Dickson, G. (1966). An analysis of vendor selection systems and decisions. Journal of Purchasing, 2(1), 5-17.
  • Feng, B., Fan, Z., & Li, Y. (2011). A decision method for supplier selection in multi-service outsourcing, International Journal of Production Economics, 132, 240-250.
  • Ferreira, L., & Borenstein, D. (2012). A fuzzy-Bayesian model for supplier selection. Expert Systems with Applications, Article in Press.
  • Ghodsypour, S. H., & O’Brien C. (1998). A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. International Journal of Production Economics, 56-57, 199-212.
  • Güneri, A. F., Ertay, T., & Yücel, A. (2011). An approach based on ANFIS input selection and modeling for supplier selection problem. Expert Systems with Applications, 38, 14907- 14917.
  • Ho, W., Xu, X. D., & Prasanta K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202, 16-24.
  • Hwang, C. L., & Yoon, K. (1981). Multiple attributes decision making methods & applications. New York: Springer.
  • Kara, S. S. (2011). Supplier selection with an integrated methodology in unknown environment. Expert Systems with Applications, 38, 2133-2139.
  • Lam, K., Tao, R., & Lam, M. C. (2010). A material supplier selection model for property developers using fuzzy principal component analysis. Automation in Construction, 19, 608-618.
  • Sanayei, A., Mousavi, S. F., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37, 24-30.
  • Torlak, G. Sevkli, M. Sanal, M., & Zaim, S. (2011). Analyzing business competition by using fuzzy TOPSIS method: an example of Turkish domestic airline industry. Expert Systems with Applications, 38(4), 3396-3406.
  • Weber, C. A., Current, J. R., & Benton, W. C. (1991). Vender selection criteria and methods. European Journal of Operational Research, 50, 2-18.

Supplier Selection Application Based on a Fuzzy Multiple Criteria Decision Making Methodology

Yıl 2012, Cilt: 3 Sayı: 8, 7 - 18, 01.07.2012
https://doi.org/10.5824/1309-1581.2012.3.001.x

Öz

Due to the increasing competitiveness in every sector of business life, being effective in every process of the organizations has been required. At this point, one of the most important processes is supplier selection process within the concept of supply chain management. If a systematic supplier selection methodology is performed, it will be possible to select the most suitable supplier and provide efficiency with respect to time, quality and cost. With this study, depending on the vague structure of the real working environment, an extensively used multi criteria decision making methodology TOPSIS is used within fuzzy environment. The proposed technique is applied in a real case and the most suitable suppliers are determined and ranked.

Kaynakça

  • Amid, A., Ghodsypour, S. H., & O’Brien, C. (2006). Fuzzy multiobjective linear model for supplier selection in a supply chain. International Journal of Production Economics, 104, 394-407.
  • Bevilacqua, M., Ciarapica, F. E., & Giacchetta, G. (2006). A fuzzy-QFD approach to supplier selection. Journal of Purchasing & Supply Management, 12, 14-27.
  • Bhattacharya, A., Geraghty, J., & Young, P. (2010). Supplier selection paradigm: An integrated hierarchical QFD methodology under multiple-criteria environment. Applied Soft Computing, 10, 1013-1027.
  • Bilsel, R. U., & Ravindran, A. (2011). A multi-objective chance constrained programming model for supplier selection under uncertainty. Transportation Research Part B, 45, 1284-1300.
  • Büyüközkan, G., & Çiftçi, G. (2011). A novel fuzzy multi-criteria decision framework for sustainable supplier selection with incomplete information. Computers in Industry, 62, 164-174.
  • Büyüközkan, G., & Çiftçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39, 3000-3011.
  • Chamodrakas, I., Batis, D., & Martakos, D. (2010). Supplier selection in electronic marketplaces using satisficing and fuzzy AHP. Expert Systems with Applications, 37, 490-498.
  • Che, Z. H. (2012). Clustering and selecting suppliers based on simulated annealing algorithms. Computers and Mathematics with Applications, 63, 228-238.
  • Chen, Y., & Chao, R. (2012). Supplier selection using consistent fuzzy preference relations. Expert Systems with Applications, 39, 3233-3240.
  • Çelik, M., Çebi, S., Kahraman, C., & Er İ. D. (2009). Application of axiomatic design and TOPSIS methodologies under fuzzy environment for proposing competitive strategies on Turkish container ports in maritime transportation network. Expert Systems with Applications, 36, 4541-4557.
  • Çevikcan, E., Çebi, S., & Kaya, İ. (2009). Fuzzy VIKOR and fuzzy axiomatic design versus to fuzzy TOPSIS: An application of candidate assessment. Journal of Multi‐Valued Logic and Soft Computing, 15, 181-208.
  • Dağdeviren, M., Yavuz, S., & Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems with Applications, 36, 8143-8151.
  • Dalalah, D., Hayajneh, M., & Batieha, F. (2011). A fuzzy multi-criteria decision making model for supplier selection. Expert Systems with Applications, 38, 8384-8391.
  • De Boer, L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7, 75-89.
  • Degraeve, Z., Labro, E., & Roodhooft, F. (2000). An evaluation of supplier selection methods from a total cost of ownership perspective. European Journal of Operational Research, 125(1), 34-59.
  • Demirtas, E. A., & Üstün, Ö. (2008). An integrated multi-objective decision making process for supplier selection and order allocation. Omega, 36, 76-90.
  • Dickson, G. (1966). An analysis of vendor selection systems and decisions. Journal of Purchasing, 2(1), 5-17.
  • Feng, B., Fan, Z., & Li, Y. (2011). A decision method for supplier selection in multi-service outsourcing, International Journal of Production Economics, 132, 240-250.
  • Ferreira, L., & Borenstein, D. (2012). A fuzzy-Bayesian model for supplier selection. Expert Systems with Applications, Article in Press.
  • Ghodsypour, S. H., & O’Brien C. (1998). A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. International Journal of Production Economics, 56-57, 199-212.
  • Güneri, A. F., Ertay, T., & Yücel, A. (2011). An approach based on ANFIS input selection and modeling for supplier selection problem. Expert Systems with Applications, 38, 14907- 14917.
  • Ho, W., Xu, X. D., & Prasanta K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202, 16-24.
  • Hwang, C. L., & Yoon, K. (1981). Multiple attributes decision making methods & applications. New York: Springer.
  • Kara, S. S. (2011). Supplier selection with an integrated methodology in unknown environment. Expert Systems with Applications, 38, 2133-2139.
  • Lam, K., Tao, R., & Lam, M. C. (2010). A material supplier selection model for property developers using fuzzy principal component analysis. Automation in Construction, 19, 608-618.
  • Sanayei, A., Mousavi, S. F., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37, 24-30.
  • Torlak, G. Sevkli, M. Sanal, M., & Zaim, S. (2011). Analyzing business competition by using fuzzy TOPSIS method: an example of Turkish domestic airline industry. Expert Systems with Applications, 38(4), 3396-3406.
  • Weber, C. A., Current, J. R., & Benton, W. C. (1991). Vender selection criteria and methods. European Journal of Operational Research, 50, 2-18.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Hüseyin Selçuk Kılıç Bu kişi benim

Yayımlanma Tarihi 1 Temmuz 2012
Gönderilme Tarihi 1 Temmuz 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 3 Sayı: 8

Kaynak Göster

APA Selçuk Kılıç, H. (2012). Supplier Selection Application Based on a Fuzzy Multiple Criteria Decision Making Methodology. AJIT-E: Academic Journal of Information Technology, 3(8), 7-18. https://doi.org/10.5824/1309-1581.2012.3.001.x