Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri

Yıl 2007, Cilt: 20 Sayı: 1, 59 - 65, 01.06.2007

Öz

Çiftlik Serisi (Typic Calciorthid) toprağında, parmak erozyonu ve sediment taşınımı üzerine farklı debi ve eğim koşullarının etkisini saptamak için, laboratuar çalışması yapılmıştır. 160 cm uzunluk ve 80 cm genişliğindeki toprak tavasında, denemeler 5, 10 ve 15 l dk-1 debi ve % 5, 10, 15 ve 20 eğimlerde yürütülmüştür. Debi ve eğimin artışıyla sediment konsantrasyonu artmıştır. 15 l dk-1 debi ve % 20 eğimde sediment konsantrasyonu 1027.66 g l-1 ile en yüksek değerde yer alırken, 5 l dk-1 debi ve % 5 eğimde 212.51 g l-1 ile en düşük seviyede yer almıştır. Diğer uygulamalar bu iki değer arasında değişim göstermiştir. Debinin artmasıyla akış hızı da artmıştır. Parmakların genişliği 6–11 cm olarak ölçülmüştür

Kaynakça

  • Abrahams, A.D., Li, G. and Parsons, A.J., 1996. Rill Hydraulics on a Semiarid Hillslope, Southern Arizona. Earth Surface Processes and Landforms, 21: 35–47.
  • Blake, G.R. and Hartge, K.H., 1986. Bulk Density. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp. 363–375
  • Bouyocous, G.J., 1951. A Recalibration of Hydrometer for Making Mechanical Analysis of Soils. Agronomy Journal, 43: 434–438.
  • Brown, L. C. 1988. Effects of Incorporated Crop Residue on Rill Erosion. Ph. D. thesis, Purdue University, 197 pp.
  • Brown, L.C., Foster, G.R. and Beasley, D.B., 1989. Rill Erosion as Affected by Incorporated Crop Residue and Sesonal Consolidation. Transactions of the ASAE, 32: 1967-1978.
  • Cassel, D.K. and Nielsen, D.R., 1986. Field Capacity and Available Water Capacity. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp. 901–926.
  • Desment, P.J.J. and Govers, G., 1997. Two- dimensional Modelling of the Within-field Variation in Rill and Gully Geometry and Location Related to Topography. Catena, 29: 283–306.
  • Foster, G.R. and Meyer, L.D., 1975. Mathematical Simulation of Upland Erosion by Fundamental Erosion Mechanics. In: Present and Prospective Technology for Predicting Sediments Yields and Sources. Agr. Res. Service Rep. ARS-S–40. pp. 190–207.
  • Fox, D.M. and Bryan, R.B., 1999. The Relationship of Soil Loss by Interrill Erosion to Slope Gradient. Catena, 38: 211–222.
  • Fullen, M.A. and Reed, A.H., 1987. Rill Erosion on Arable Loamy Sands in the West Midlands of England. In: R.B. Bryan (Editör), Rill Erosion: Processes and Significance. Catena Supp., 8. Cremlingen: Catena Verlag, pp. 85–96.
  • Govers, G., 1990. Empirical Relationships for the Transporting Capacity of Overland Flow. In: A. Yair, S. Berckowicz and D. E. Walling (Editör), Erosion, transport and deposition (Proceedings of the Jerusalem Workshop). IAHS pub. 189. pp.45–63.
  • Govers, G., 1991. Rill Erosion on Arable Land in Central Belgium: Rates, Controls and Predictability. Catena, 18: 133–155.
  • Govers, G., 1992. Relationship between Discharge, Velocity and Flow Area for Rills Eroding Loose, Non-layered Materials. Earth Surface Processes and Landforms, 17: 515–518.
  • Gökmen, S. ve Yüksel, M., 1993. Ankara Üniversitesi Ziraat Fakültesi Kenan Evren Araştırma Uygulama Çiftliği Topraklarının Detaylı Etüd ve Haritalanması. Ankara Üniversitesi Ziraat Fakültesi Yıllığı, 43 (1–2): 55–64.
  • Guy, B. T., Dickinson, W.T. and Rudra, R.P., 1987. The Roles of Rainfall and Runoff in the Sediment Transport Capacity of Interrill Flow. Transactions of the ASAE, 30: 1378–1386.
  • Huang, C., 1998. Sediments Regimes under Different Slope and Surface Hydrologic Conditions. Soil Science Society of America Journal, 62: 423– 430.
  • Huang, C., Wells, L.K. and Norton, L.D., 1999. Sediment Transport Capacity and Erosion Processes: Model Concepts and Reality. Earth Surface Processes and Landforms, 24: 503–516.
  • Kalman, R., 1976. Etude Experimentale de L’erosion par Griffes. Revue de Geographie Physique et de Geologie Dynaique. 18: 395–405.
  • Kemper, W.D. and Rosenau, R.C., 1986. Aggregate Stability and Size Distribution. In: Methods of Soil Analysis. Part I, Physical and Mineralogical Methods. ASA and SSSA Agronomy Monograph no 9 (2nd ed), Madison. pp.425–442.
  • Klute, A. and Dirksen, C., 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp.687–734.
  • Line, D. E. and Meyer, L. D., 1988. Flow Velocities of Concentrated Runoff along Cropland Furrows. Transactions of the ASAE, 31: 1435–1439.
  • Merten, G.H. and Nearing, M.A., 2001. Effect of Sediment Load on Soil Detachment and Deposition in Rills. Soil Science Society of America Journal, 65: 861–868.
  • Nearing, M.A. and Parker, S.C., 1994. Detachment of Soil by Flowing Water under Turbulent and Laminar Conditions. Soil Science Society of America Journal, 58: 1612–1614.
  • Nelson, D.W. and Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. In: Methods of Soil Analysis, Part II, Chemical and Microbiological Properties. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp.539–579.
  • Nelson, R.E., 1982. Carbonate and Gypsum. In: Methods of Soil Analysis, Part II, Chemical and Microbiological Properties. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp.181–197.
  • Oygarden, L., 2003. Rill and Gully Development during an Extreme Winter Runoff Event in Norvey. Catena, 50: 217–242.
  • Öztürk, F., Tokgöz, M.A. ve Yıldırım, O., 1989. Karık Sulamada Sediment Taşınımı.Ankara Üniversitesi Ziraat Fakültesi:1136. Bilimsel Araştırma ve İncelemeler: 624.
  • Polyakov, V.O. and Nearing, M.A., 2003. Sediment Transport in Rill Flow under Deposition and Detachment Conditions. Catena, 51: 33–43.
  • Römkens, M.J.M., Helming, K. and Prasad, S.N., 2001. Soil Erosion under Different Rainfall Intensities, Surface Roughness and Soil Water Regimes. Catena, 46: 103–123.
  • Savat, J. and De Ploey, J., 1982. Sheetwash and Rill Development by Surface Flow. In: R.B. Bryan and A. Yair (Editör) Badland Geomorphology and Piping,. Norwich: Geo Books. pp. 126-133.
  • Shainberg, I., Laflen, J.M., Bradford, J.M. and Norton, L.D., 1994. Hydraulics Flow and Water Quality Characteristics in Rill Erosion. Soil Science Society of America Journal, 58: 1007–1012.
  • Taysun, A., Çanga, M.R., Uysal, H. ve Erpul, G., 1995. Toprak Erozyonu ve Korunma Önlemleri. IV. Türkiye Ziraat Mühendisliği Teknik Kongresi, 9–13 Ocak 1995, TMMOB Ziraat Mühendisleri Odası, Ziraat Bankası Kültür Yayınları No: 26. 267-280.
  • U.S. Salinity Laboratory Staff., 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agricultural Handbook. No: 60.
  • Zheng, F., Huang, C. and Norton,L.D., 2000. Vertical Hydraulic Gradient and Run-on Water and Sediment Effects on Erosion Processes and Sediment Regimes. Soil Science Society of America Journal, 64: 4–11.

The Effects of Different Discharge and Slope Conditions on Rill Erosion and Sediment Concentration

Yıl 2007, Cilt: 20 Sayı: 1, 59 - 65, 01.06.2007

Öz

This research was carried out in a laboratory on Çiftlik Series (Typic Calciorthid) soils to determine the effects of different discharge and slope conditions on rill erosion and sediment transportation. Soil pan with 160 cm length and 80 cm width was prepared to see the effects of different discharge and slopes. The values were 5, 10 and 15 l min-1 for discharge and 5, 10, 15 and 20 % for slope. With the increment in discharge and slope sediment concentration increased. The highest sediment concentration was 1027.66 g l -1 at the discharge value of 15 l min -1 and 20 % slope while the lowest value, 212.51 g l-1, was obtained at that of 5 l min-1 and 5 % slope. The results of other trials changed between these values. With the increment in discharge flow velocity increased also. Rills were measured as 6-11 cm in wide.

Kaynakça

  • Abrahams, A.D., Li, G. and Parsons, A.J., 1996. Rill Hydraulics on a Semiarid Hillslope, Southern Arizona. Earth Surface Processes and Landforms, 21: 35–47.
  • Blake, G.R. and Hartge, K.H., 1986. Bulk Density. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp. 363–375
  • Bouyocous, G.J., 1951. A Recalibration of Hydrometer for Making Mechanical Analysis of Soils. Agronomy Journal, 43: 434–438.
  • Brown, L. C. 1988. Effects of Incorporated Crop Residue on Rill Erosion. Ph. D. thesis, Purdue University, 197 pp.
  • Brown, L.C., Foster, G.R. and Beasley, D.B., 1989. Rill Erosion as Affected by Incorporated Crop Residue and Sesonal Consolidation. Transactions of the ASAE, 32: 1967-1978.
  • Cassel, D.K. and Nielsen, D.R., 1986. Field Capacity and Available Water Capacity. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp. 901–926.
  • Desment, P.J.J. and Govers, G., 1997. Two- dimensional Modelling of the Within-field Variation in Rill and Gully Geometry and Location Related to Topography. Catena, 29: 283–306.
  • Foster, G.R. and Meyer, L.D., 1975. Mathematical Simulation of Upland Erosion by Fundamental Erosion Mechanics. In: Present and Prospective Technology for Predicting Sediments Yields and Sources. Agr. Res. Service Rep. ARS-S–40. pp. 190–207.
  • Fox, D.M. and Bryan, R.B., 1999. The Relationship of Soil Loss by Interrill Erosion to Slope Gradient. Catena, 38: 211–222.
  • Fullen, M.A. and Reed, A.H., 1987. Rill Erosion on Arable Loamy Sands in the West Midlands of England. In: R.B. Bryan (Editör), Rill Erosion: Processes and Significance. Catena Supp., 8. Cremlingen: Catena Verlag, pp. 85–96.
  • Govers, G., 1990. Empirical Relationships for the Transporting Capacity of Overland Flow. In: A. Yair, S. Berckowicz and D. E. Walling (Editör), Erosion, transport and deposition (Proceedings of the Jerusalem Workshop). IAHS pub. 189. pp.45–63.
  • Govers, G., 1991. Rill Erosion on Arable Land in Central Belgium: Rates, Controls and Predictability. Catena, 18: 133–155.
  • Govers, G., 1992. Relationship between Discharge, Velocity and Flow Area for Rills Eroding Loose, Non-layered Materials. Earth Surface Processes and Landforms, 17: 515–518.
  • Gökmen, S. ve Yüksel, M., 1993. Ankara Üniversitesi Ziraat Fakültesi Kenan Evren Araştırma Uygulama Çiftliği Topraklarının Detaylı Etüd ve Haritalanması. Ankara Üniversitesi Ziraat Fakültesi Yıllığı, 43 (1–2): 55–64.
  • Guy, B. T., Dickinson, W.T. and Rudra, R.P., 1987. The Roles of Rainfall and Runoff in the Sediment Transport Capacity of Interrill Flow. Transactions of the ASAE, 30: 1378–1386.
  • Huang, C., 1998. Sediments Regimes under Different Slope and Surface Hydrologic Conditions. Soil Science Society of America Journal, 62: 423– 430.
  • Huang, C., Wells, L.K. and Norton, L.D., 1999. Sediment Transport Capacity and Erosion Processes: Model Concepts and Reality. Earth Surface Processes and Landforms, 24: 503–516.
  • Kalman, R., 1976. Etude Experimentale de L’erosion par Griffes. Revue de Geographie Physique et de Geologie Dynaique. 18: 395–405.
  • Kemper, W.D. and Rosenau, R.C., 1986. Aggregate Stability and Size Distribution. In: Methods of Soil Analysis. Part I, Physical and Mineralogical Methods. ASA and SSSA Agronomy Monograph no 9 (2nd ed), Madison. pp.425–442.
  • Klute, A. and Dirksen, C., 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp.687–734.
  • Line, D. E. and Meyer, L. D., 1988. Flow Velocities of Concentrated Runoff along Cropland Furrows. Transactions of the ASAE, 31: 1435–1439.
  • Merten, G.H. and Nearing, M.A., 2001. Effect of Sediment Load on Soil Detachment and Deposition in Rills. Soil Science Society of America Journal, 65: 861–868.
  • Nearing, M.A. and Parker, S.C., 1994. Detachment of Soil by Flowing Water under Turbulent and Laminar Conditions. Soil Science Society of America Journal, 58: 1612–1614.
  • Nelson, D.W. and Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. In: Methods of Soil Analysis, Part II, Chemical and Microbiological Properties. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp.539–579.
  • Nelson, R.E., 1982. Carbonate and Gypsum. In: Methods of Soil Analysis, Part II, Chemical and Microbiological Properties. ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. pp.181–197.
  • Oygarden, L., 2003. Rill and Gully Development during an Extreme Winter Runoff Event in Norvey. Catena, 50: 217–242.
  • Öztürk, F., Tokgöz, M.A. ve Yıldırım, O., 1989. Karık Sulamada Sediment Taşınımı.Ankara Üniversitesi Ziraat Fakültesi:1136. Bilimsel Araştırma ve İncelemeler: 624.
  • Polyakov, V.O. and Nearing, M.A., 2003. Sediment Transport in Rill Flow under Deposition and Detachment Conditions. Catena, 51: 33–43.
  • Römkens, M.J.M., Helming, K. and Prasad, S.N., 2001. Soil Erosion under Different Rainfall Intensities, Surface Roughness and Soil Water Regimes. Catena, 46: 103–123.
  • Savat, J. and De Ploey, J., 1982. Sheetwash and Rill Development by Surface Flow. In: R.B. Bryan and A. Yair (Editör) Badland Geomorphology and Piping,. Norwich: Geo Books. pp. 126-133.
  • Shainberg, I., Laflen, J.M., Bradford, J.M. and Norton, L.D., 1994. Hydraulics Flow and Water Quality Characteristics in Rill Erosion. Soil Science Society of America Journal, 58: 1007–1012.
  • Taysun, A., Çanga, M.R., Uysal, H. ve Erpul, G., 1995. Toprak Erozyonu ve Korunma Önlemleri. IV. Türkiye Ziraat Mühendisliği Teknik Kongresi, 9–13 Ocak 1995, TMMOB Ziraat Mühendisleri Odası, Ziraat Bankası Kültür Yayınları No: 26. 267-280.
  • U.S. Salinity Laboratory Staff., 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agricultural Handbook. No: 60.
  • Zheng, F., Huang, C. and Norton,L.D., 2000. Vertical Hydraulic Gradient and Run-on Water and Sediment Effects on Erosion Processes and Sediment Regimes. Soil Science Society of America Journal, 64: 4–11.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

M. Parlak Bu kişi benim

M. R. Çanga Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2007
Yayımlandığı Sayı Yıl 2007 Cilt: 20 Sayı: 1

Kaynak Göster

APA Parlak, M., & Çanga, M. R. (2007). Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri. Akdeniz University Journal of the Faculty of Agriculture, 20(1), 59-65.
AMA Parlak M, Çanga MR. Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri. Akdeniz University Journal of the Faculty of Agriculture. Haziran 2007;20(1):59-65.
Chicago Parlak, M., ve M. R. Çanga. “Farklı Debi Ve Eğim Koşullarının Parmak Erozyonu Ve Sediment Konsantrasyonu Üzerine Etkileri”. Akdeniz University Journal of the Faculty of Agriculture 20, sy. 1 (Haziran 2007): 59-65.
EndNote Parlak M, Çanga MR (01 Haziran 2007) Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri. Akdeniz University Journal of the Faculty of Agriculture 20 1 59–65.
IEEE M. Parlak ve M. R. Çanga, “Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri”, Akdeniz University Journal of the Faculty of Agriculture, c. 20, sy. 1, ss. 59–65, 2007.
ISNAD Parlak, M. - Çanga, M. R. “Farklı Debi Ve Eğim Koşullarının Parmak Erozyonu Ve Sediment Konsantrasyonu Üzerine Etkileri”. Akdeniz University Journal of the Faculty of Agriculture 20/1 (Haziran 2007), 59-65.
JAMA Parlak M, Çanga MR. Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri. Akdeniz University Journal of the Faculty of Agriculture. 2007;20:59–65.
MLA Parlak, M. ve M. R. Çanga. “Farklı Debi Ve Eğim Koşullarının Parmak Erozyonu Ve Sediment Konsantrasyonu Üzerine Etkileri”. Akdeniz University Journal of the Faculty of Agriculture, c. 20, sy. 1, 2007, ss. 59-65.
Vancouver Parlak M, Çanga MR. Farklı Debi ve Eğim Koşullarının Parmak Erozyonu ve Sediment Konsantrasyonu Üzerine Etkileri. Akdeniz University Journal of the Faculty of Agriculture. 2007;20(1):59-65.