Derleme
BibTex RIS Kaynak Göster

Kök Hücreler, Dental Pulpa Kök Hücreleri ve Klinik Uygulamaları

Yıl 2024, , 145 - 155, 30.09.2024
https://doi.org/10.17827/aktd.1511375

Öz

Son yıllardaki en önemli araştırma konularından biri olan kök hücreler; kolay bir şekilde ulaşılabilmeleri ve çoğaltılabilmeleri, doku tamiri ve yenilemesinde başarılı olmaları, bağışıklık sistemi üzerinde düzenleyici etkiye sahip (immünomodülatör) olmaları, farklı dokulardan izole edilebilmeleri ve birçok hücre çeşidine farklılaşabilmeleri sebebiyle doku mühendisliği ve rejeneratif tıp çalışmalarının da önemli bir parçası haline gelmiştir. İlaç ve tedavi araştırmalarında, hastalıkların oluşum mekanizmalarının, etkilerinin ve olası sonuçlarının daha detaylı bir şekilde incelenmesinde, hücre kültürü çalışmalarında, laboratuvar ortamında fonksiyonel dokuların geliştirilmesinde, hücre terapilerinde, hasarlı doku ve organ rejenerasyonunda kök hücreler sıklıkla kullanılmakta ve bu alandaki çalışmalar hızla ilerlemektedir.
Yetişkin diş pulpasından enzimatik olarak ayrıştırılan, yüksek proliferatif özellik gösteren hücreler; ilk defa “dental pulpa kök hücresi” olarak tanımlanmış ve bu terim literatüre kazandırılmıştır. Ayrıca ilk defa dental pulpa kök hücreleri başarıyla izole edilmiş ve odontoblast benzeri yapılara farklanarak dentin/pulpa benzeri bir kompleks oluşturabildiği, dentinogeneze katkı sağladığı bildirilmiştir. Bu çalışmadan sonra dental pulpa kök hücreleriyle ilgili tıp ve diş hekimliği alanındaki araştırmalar, büyük bir hız kazanarak günümüze kadar gelmiştir.

Etik Beyan

Yazarlar, Arşiv Kaynak Tarama Dergisinin Etik İlkeler ve Yayın Politikasına uygun davrandıklarını beyan etmişlerdir.

Kaynakça

  • 1. Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease, 7(1), e2062. https://doi.org/10.1038/cddis.2015.327
  • 2. Ferreira, J. R. M., & Greck, A. P. (2020). Adult mesenchymal stem cells and their possibilities for Dentistry: what to expect?. Dental press journal of orthodontics, 25(3), 85–92. https://doi.org/10.1590/2177-6709.25.3.085-092.sar
  • 3. Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in biochemical engineering/biotechnology, 114, 185–199. https://doi.org/10.1007/10_2008_45
  • 4. Ratajczak, M. Z., Zuba-Surma, E., Kucia, M., Poniewierska, A., Suszynska, M., & Ratajczak, J. (2012). Pluripotent and multipotent stem cells in adult tissues. Advances in medical sciences, 57(1), 1–17. https://doi.org/10.2478/v10039-012-0020-z
  • 5. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024
  • 6. Vieira, M. S., Santos, A. K., Vasconcellos, R., Goulart, V. A. M., Parreira, R. C., Kihara, A. H., Ulrich, H., & Resende, R. R. (2018). Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnology advances, 36(7), 1946–1970. https://doi.org/10.1016/j.biotechadv.2018.08.002
  • 7. Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5
  • 8. Seale, P., Asakura, A., & Rudnicki, M. A. (2001). The potential of muscle stem cells. Developmental cell, 1(3), 333–342. https://doi.org/10.1016/s1534-5807(01)00049-1
  • 9. Huang, G., Ye, S., Zhou, X., Liu, D., & Ying, Q. L. (2015). Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cellular and molecular life sciences: CMLS, 72(9), 1741–1757. https://doi.org/10.1007/s00018-015-1833-2
  • 10. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.), 282(5391), 1145–1147. https://doi.org/10.1126/science.282.5391.1145
  • 11. King, N. M., & Perrin, J. (2014). Ethical issues in stem cell research and therapy. Stem cell research & therapy, 5(4), 85. https://doi.org/10.1186/scrt474
  • 12. Sağsöz, H. & Ketani, M. A. (2008). Kök Hücreler . Dicle Üniversitesi Veteriner Fakültesi Dergisi,(2), 29-33 . Retrieved from https://dergipark.org.tr/tr/pub/duvetfd/issue/29537/317025
  • 13. (14) Fortier, L. A. (2005). Stem cells: classifications, controversies, and clinical applications. Veterinary Surgery, 34(5), 415-423.
  • 14. Kaya, M. M., & Tutun, H. (2021). Kök hücre üretimi, izolasyonu ve tedavide kullanımı. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 12(2), 55-78.
  • 15. Arat, M. (2016). Hematopoietik kök hücrelerin klinik kullanımı. İstanbul Bilim Üniversitesi Florence Nightingale Transplantasyon Dergisi , 1 (1) , 10-18 . Retrieved from https://dergipark.org.tr/en/pub/ibufntx/issue/24818/262190
  • 16. Avcı M., Kocahan M. E. , Etiz P. Hematopoietik Kök Hücre Nakil Süreci. aktd. 2022; 31(3): 196-203.
  • 17. Yeşilipek, M. A. (2014). Çocuklarda hematopoietik kök hücre nakli. Turk Pediatri Ars, 49, 91-98.
  • 18. Friedenstein, A.J., Chailakhjan, R.K. and Lalykina, K.S. (1970), THE DEVELOPMENT OF FIBROBLAST COLONIES IN MONOLAYER CULTURES OF GUINEA-PIG BONE MARROW AND SPLEEN CELLS. Cell Proliferation, 3: 393-403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
  • 19. Liu, Xizhe MD∗; Kumagai, Gentaro MD, PhD∗; Wada, Kanichiro MD, PhD∗; Tanaka, Toshihiro MD, PhD∗; Asari, Toru MD, PhD∗; Oishi, Kazuki MD, PhD∗; Fujita, Taku MD∗; Mizukami, Hiroki MD, PhD†; Furukawa, Ken-Ichi PhD‡; Ishibashi, Yasuyuki MD, PhD∗. High Osteogenic Potential of Adipose- and Muscle-derived Mesenchymal Stem Cells in Spinal-Ossification Model Mice. SPINE 42(23):p E1342-E1349, December 1, 2017. | DOI: 10.1097/BRS.0000000000002266)
  • 20. Gargett, C. E., Schwab, K. E., Zillwood, R. M., Nguyen, H. P., & Wu, D. (2009). Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biology of reproduction, 80(6), 1136–1145. https://doi.org/10.1095/biolreprod.108.075226)
  • 21. Jazedje, T., Perin, P. M., Czeresnia, C. E., Maluf, M., Halpern, S., Secco, M., Bueno, D. F., Vieira, N. M., Zucconi, E., & Zatz, M. (2009). Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. Journal of translational medicine, 7, 46. https://doi.org/10.1186/1479-5876-7-46
  • 22. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–13630. doi:10.1073/pnas.24 0309797
  • 23. Charbord P. (2010). Bone marrow mesenchymal stem cells: historical overview and concepts. Human gene therapy, 21(9),1045–1056. https://doi.org/10.1089/hum.2010.115
  • 24. Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., & Tsuji, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem cells (Dayton, Ohio), 22(5), 649–658. https://doi.org/10.1634/stemcells.22-5-649
  • 25. Mariane Secco, Eder Zucconi, Natassia M. Vieira, Luciana L.Q. Fogaça, Antonia Cerqueira, Maria Denise F. Carvalho, Tatiana Jazedje, Oswaldo K. Okamoto, Alysson R. Muotri, Mayana Zatz, Multipotent Stem Cells from Umbilical Cord: Cord Is Richer than Blood!, Stem Cells, Volume 26, Issue 1, January 2008, Pages 146–150, https://doi.org/10.1634/stemcells.2007-0381
  • 26. Ferretti, C., & Mattioli-Belmonte, M. (2014). Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World journal of stem cells, 6(3),266–277. https://doi.org/10.4252/wjsc.v6.i3.266
  • 27. Colnot C. (2009). Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 24(2), 274–282. https://doi.org/10.1359/jbmr.081003
  • 28. Roubelakis, M. G., Pappa, K. I., Bitsika, V., Zagoura, D., Vlahou, A., Papadaki, H. A., ... & Anagnou, N. P. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem cells and development, 16(6), 931-952.
  • 29. Sekiya, I., Ojima, M., Suzuki, S., Yamaga, M., Horie, M., Koga, H., Tsuji, K., Miyaguchi, K., Ogishima, S., Tanaka, H. and Muneta, T. (2012), Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J. Orthop. Res., 30: 943-949. https://doi.org/10.1002/jor.22029
  • 30. Liu, X. N., Mi, S. L., Chen, Y., & Wang, Y. (2021). Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. International journal of ophthalmology, 14(3), 448–455. https://doi.org/10.18240/ijo.2021.03.19
  • 31. Bačić, A., Prgomet, D., & Janjanin, S. (2019). Tonsil-derived mesenchymal stem cells exert immunosuppressive effects on T cells. Croatian medical journal, 60(1), 12–19. https://doi.org/10.3325/cmj.2019.60.12
  • 32. Zhang, W., & Yelick, P. C. (2021). Tooth Repair and Regeneration: Potential of Dental Stem Cells. Trends in molecular medicine, 27(5), 501–511. https://doi.org/10.1016/j.molmed.2021.02.005
  • 33. Chow K, Fessel JP, KaoriIhida-Stansbury, et al. Dysfunctional Resident Lung Mesenchymal Stem Cells Contribute to Pulmonary Microvascular Remodeling. Pulmonary Circulation. 2013;3(1):31-49. doi:10.4103/2045-8932.109912
  • 34. An, P., Xing, J., Peng, A. et al. The regulation of dermal mesenchymal stem cells on keratinocytes apoptosis. Cell Tissue Bank 22, 57–65 (2021). https://doi.org/10.1007/s10561-020-09865-w
  • 35. Wang, Y., Yu, X., Chen, E., & Li, L. (2016). Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem cell research & therapy, 7, 1-8.
  • 36. Signe Carlson, JoAnn Trial, Christian Soeller, Mark L. Entman, Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction, Cardiovascular Research, Volume 91, Issue 1, 1 July 2011, Pages 99–107, https://doi.org/10.1093/cvr/cvr061
  • 37. Judson, R. N., Zhang, R. H., & Rossi, F. M. (2013). Tissue‐resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?. The FEBS journal, 280(17), 4100-4108.
  • 38. Aru, B., Gürel, G., & Demirel, G. Y. (2022). Mezenkimal Kök Hücreler: Tarihçe, Karakteristik Özellikler ve Tedavi Edici Kullanımlarına İlişkin Genel Bir Bakış. Turkish Journal of Immunology, 10(2).
  • 39. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.j, & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
  • 40. Purwaningrum, M., Jamilah, N. S., Purbantoro, S. D., Sawangmake, C., & Nantavisai, S. (2021). Comparative characteristic study from bone marrow-derived mesenchymal stem cells. Journal of veterinary science, 22(6), e74. https://doi.org/10.4142/jvs.2021.22.e74
  • 41. Fragkakis, E. M., El-Jawhari, J. J., Dunsmuir, R. A., Millner, P. A., Rao, A. S., Henshaw, K. T., Pountos, I., Jones, E., & Giannoudis, P. V. (2018). Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion. PloS one, 13(5), e0197969. https://doi.org/10.1371/journal.pone.0197969
  • 42. Dias LD, Casali KR, Ghem C, da Silva MK, Sausen G, Palma PB, et al. Mesenchymal stem cells from sternum: the type of heart disease, ischemic or valvular, does not influence the cell culture establishment and growth kinetics. J Transl Med. 2017;15(1):161.
  • 43. Vasiliadis, A. V., & Galanis, N. (2020). Human bone marrow-derived mesenchymal stem cells from different bone sources: a panorama. Stem cell investigation, 7, 15. https://doi.org/10.21037/sci-2020-013
  • 44. Yediel Aras, Ş. & Karadağ Sarı, E. (2017). İmmun Sistem Hücrelerinde CD Molekülleri . Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 10 (2) , 206-214 . Retrieved from https://dergipark.org.tr/tr/pub/kujs/issue/33872/365751
  • 45. Assou, S., Le Carrour, T., Tondeur, S., Ström, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Réme, T., Hugnot, J. P., Gasca, S., Hovatta, O., Hamamah, S., Klein, B., & De Vos, J. (2007). A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem cells (Dayton, Ohio), 25(4), 961–973. https://doi.org/10.1634/stemcells.2006-0352
  • 46. Zhao, W., Ji, X., Zhang, F., Li, L., & Ma, L. (2012). Embryonic stem cell markers. Molecules(Basel,Switzerland), 17(6),6196–6236. https://doi.org/10.3390/molecules17066196
  • 47. İsan, H., Uyanık, A., & Aktaş, R. G. (2016). Embriyonik Kök Hücre Belirteçleri. Maltepe Tıp Dergisi, 8(2), 1-5.
  • 48. Gao, Q., Zhao, L., Song, Z., & Yang, G. (2012). Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs. Molecular biology reports, 39, 5791-5804.
  • 49. Rix B, Maduro AH, Bridge KS and Grey W (2022), Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front. Physiol. 13:1009160. doi: 10.3389/fphys.2022.1009160
  • 50. Leyton, L., and Hagood, J. S. (2014). Thy-1 modulates neurological cell-cell and cell-matrix interactions through multiple molecular interactions. Adv. Neurobiol. 8, 3–20. doi:10.1007/978-1-4614-8090-7_1
  • 51. Shivtiel, S., Kollet, O., Lapid, K., Schajnovitz, A., Goichberg, P., Kalinkovich, A., et al. (2008). CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. J. Exp. Med. 205 (10), 2381–2395. doi:10.1084/jem.20080072
  • 52. Majeti, R., Park, C. Y., and Weissman, I. L. (2007). Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1 (6), 635–645. doi:10.1016/j.stem.2007.10.001
  • 53. Petrenko, Y., Vackova, I., Kekulova, K. et al. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci Rep 10, 4290 (2020). https://doi.org/10.1038/s41598-020-61167-z
  • 54. Ghaneialvar, H., Soltani, L., Rahmani, H. R., Lotfi, A. S., & Soleimani, M. (2018). Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian journal of clinical biochemistry : IJCB, 33(1), 46–52. https://doi.org/10.1007/s12291-017-0641-x
  • 55. Tjäderhane, L., Carrilho, M. R., Breschi, L., Tay, F. R., & Pashley, D. H. (2009). Dentin basic structure and composition—an overview. Endodontic topics, 20(1), 3-29.
  • 56. Longoni, A., Utomo, L., van Hooijdonk, I. E., Bittermann, G. K., Vetter, V. C., Kruijt Spanjer, E. C., Ross, J., Rosenberg, A. J., & Gawlitta, D. (2020). The chondrogenic differentiation potential of dental pulp stem cells. European cells & materials, 39, 121–135. https://doi.org/10.22203/eCM.v039a08
  • 57. Mercado-Rubio, M. D., Pérez-Argueta, E., Zepeda-Pedreguera, A., Aguilar-Ayala, F. J., Peñaloza-Cuevas, R., Kú-González, A., Rojas-Herrera, R. A., Rodas-Junco, B. A., & Nic-Can, G. I. (2021). Similar Features, Different Behaviors: A Comparative In VitroStudy of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. Journal of personalized medicine, 11(8), 738. https://doi.org/10.3390/jpm11080738
  • 58. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630. https://doi.org/10.1073/pnas.240309797
  • 59. Chang, C. C., Chang, K. C., Tsai, S. J., Chang, H. H., & Lin, C. P. (2014). Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan medical association, 113(12), 956-965.
  • 60. Zhang, W., Walboomers, X. F., Van Kuppevelt, T. H., Daamen, W. F., Van Damme, P. A., Bian, Z., & Jansen, J. A. (2008). İn vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. Journal of tissue engineering and regenerative medicine, 2(2-3), 117–125. https://doi.org/10.1002/term.71
  • 61. Ishkitiev, N., Yaegaki, K., Imai, T., Tanaka, T., Nakahara, T., Ishikawa, H., Mitev, V., & Haapasalo, M. (2012). High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. Journal of endodontics, 38(4), 475–480. https://doi.org/10.1016/j.joen.2011.12.011
  • 62. Luzuriaga, J., Pastor-Alonso, O., Encinas, J. M., Unda, F., Ibarretxe, G., & Pineda, J. R. (2019). Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Frontiers in Physiology, 10, 347.
  • 63. Shetty, H., Kakade, A., Shetty, S., Neelakantan, P., Nagar, S., Desai, R. S., & Beri, K. (2018). Immunohistochemical characterization of stem cell and differentiation markers of the dental pulp of human natal teeth. Future science OA, 4(10), FSO342. https://doi.org/10.4155/fsoa-2018-0062
  • 64. Demiriz, L., Durmuşlar, M. C., & Mısır, A. F. (2015). Prevalence and characteristics of supernumerary teeth: A survey on 7348 people. Journal of International Society of Preventive & Community Dentistry, 5(Suppl 1), S39–S43. https://doi.org/10.4103/2231-0762.156151
  • 65. Huang, A. H. C., Chen, Y. K., Lin, L. M., Shieh, T. Y., & Chan, A. W. S. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology & Medicine, 37(9), 571-574.
  • 66. Yan, M., Nada, O. A., Kluwe, L., Gosau, M., Smeets, R., & Friedrich, R. E. (2020). Expansion of Human Dental Pulp Cells In Vitro Under Different Cryopreservation Conditions. İn vivo (Athens, Greece), 34(5), 2363–2370. https://doi.org/10.21873/invivo.12049
  • 67. Yazid, F. B., Gnanasegaran, N., Kunasekaran, W., Govindasamy, V., & Musa, S. (2014). Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clinical oral investigations, 18, 2103-2112.
  • 68. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem cells (Dayton, Ohio), 26(7), 1787–1795. https://doi.org/10.1634/stemcells.2007-0979
  • 69. Nagashima, K., Miwa, T., Soumiya, H., Ushiro, D., Takeda-Kawaguchi, T., Tamaoki, N., Ishiguro, S., Sato, Y., Miyamoto, K., Ohno, T., Osawa, M., Kunisada, T., Shibata, T., Tezuka, K. I., Furukawa, S., & Fukumitsu, H. (2017). Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Scientific reports, 7(1), 13500. https://doi.org/10.1038/s41598-017-13373-5
  • 70. Arthur, A., Shi, S., Zannettino, A. C., Fujii, N., Gronthos, S., & Koblar, S. A. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem cells (Dayton, Ohio), 27(9), 2229–2237. https://doi.org/10.1002/stem.138
  • 71. Sowa, K., Nito, C., Nakajima, M., Suda, S., Nishiyama, Y., Sakamoto, Y., Nitahara-Kasahara, Y., Nakamura-Takahashi, A., Ueda, M., Kimura, K., & Okada, T. (2018). Impact of Dental Pulp Stem Cells Overexpressing Hepatocyte Growth Factor after Cerebral Ischemia/Reperfusion in Rats. Molecular therapy. Methods & clinical development, 10, 281–290. https://doi.org/10.1016/j.omtm.2018.07.009   72. Nito, C., Sowa, K., Nakajima, M., Sakamoto, Y., Suda, S., Nishiyama, Y., Nakamura-Takahashi, A., Nitahara-Kasahara, Y., Ueda, M., Okada, T., & Kimura, K. (2018). Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 108, 1005–1014. https://doi.org/10.1016/j.biopha.2018.09.084
  • 73. Estrela, C., Alencar, A. H. G. D., Kitten, G. T., Vencio, E. F., & Gava, E. (2011). Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Brazilian dental journal, 22, 91-98.
  • 74. Verma, K., Bains, R., Bains, V. K., Rawtiya, M., Loomba, K., & Srivastava, S. C. (2014). Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview. Dental research journal, 11(3), 302.
  • 75. Rácz, G. Z., Kádár, K., Földes, A., Kálló, K., Perczel-Kovách, K. E., Kerémi, B., ... & Varga, G. (2014). Immunomodulatory and potential therapeutic role of mesenchymal stem cells in periodontitis.
  • 76. Amir, L. R., Suniarti, D. F., Utami, S., & Abbas, B. (2014). Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell and tissue research, 358, 407-415.
  • 77. Shiehzadeh, V., Aghmasheh, F., Shiehzadeh, F., Joulae, M., Kosarieh, E., & Shiehzadeh, F. (2014). Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: new method and three case reports. Indian Journal of Dental Research, 25(2), 248-253.
  • 78. Son, YB., Kang, YH., Lee, HJ. et al. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17β-estradiol on efficiency. BMC Oral Health 21, 15 (2021). https://doi.org/10.1186/s12903-020-01366-2
  • 79. Jeong, S. Y., Lee, S., Choi, W. H., Jee, J. H., Kim, H. R., & Yoo, J. (2020). Fabrication of dentin-pulp-like organoids using dental-pulp stem cells. Cells, 9(3), 642.
  • 80. Nakashima, M., & Tanaka, H. (2024). Pulp Regenerative Therapy Using Autologous Dental Pulp Stem Cells in a Mature Tooth with Apical Periodontitis: A Case Report. Journal of Endodontics, 50(2), 189-195.
  • 81. Gao, P., Liu, C., Dong, H., Li, Q., & Chen, Y. (2023). TGF-β promotes the proliferation and osteogenic differentiation of dental pulp stem cells a systematic review and meta-analysis. European journal of medical research, 28(1), 261. https://doi.org/10.1186/s40001-023-01227-y
  • 82. Fujii, Y., Kawase-Koga, Y., Hojo, H., Yano, F., Sato, M., Chung, U. I., Ohba, S., & Chikazu, D. (2018). Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheet technology. Stem cell research & therapy, 9(1), 24. https://doi.org/10.1186/s13287-018-0783-7
  • 83. Weiss, J. N. (2021). Clinical Study of Pulp Mesenchymal Stem Cells in the Treatment of Primary Mild to Moderate Knee Osteoarthritis. In Orthopedic Stem Cell Surgery (pp. 141-144). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-73299-8_25

Stem Cells, Dental Pulp Stem Cells and Their Clinical Applications

Yıl 2024, , 145 - 155, 30.09.2024
https://doi.org/10.17827/aktd.1511375

Öz

Stem cells as one of the most important research topics in recent years; They have become an important part of tissue engineering and regenerative medicine studies because they can be easily accessed and reproduced, are successful in tissue repair and renewal, have a regulatory effect on the immune system (immunomodulator), can be isolated from different tissues and can differentiate into many cell types. Stem cells are frequently used in drug and treatment research, in more detailed examination of the formation mechanisms, effects and possible consequences of diseases, in cell culture studies, in the development of functional tissues in the laboratory environment, in cell therapies, and in damaged tissue and organ regeneration.
Cells with high proliferative properties, separated enzymatically from adult dental pulp; It was defined as "dental pulp stem cell" for the first time and this term was introduced into the literature. In addition, dental pulp stem cells have been successfully isolated for the first time and it has been reported that they can differentiate into odontoblast-like structures and form a dentin/pulp-like complex, contributing to dentinogenesis. After this study, research on dental pulp stem cells in the field of medicine and dentistry has gained great momentum and has continued to this day.

Kaynakça

  • 1. Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease, 7(1), e2062. https://doi.org/10.1038/cddis.2015.327
  • 2. Ferreira, J. R. M., & Greck, A. P. (2020). Adult mesenchymal stem cells and their possibilities for Dentistry: what to expect?. Dental press journal of orthodontics, 25(3), 85–92. https://doi.org/10.1590/2177-6709.25.3.085-092.sar
  • 3. Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Advances in biochemical engineering/biotechnology, 114, 185–199. https://doi.org/10.1007/10_2008_45
  • 4. Ratajczak, M. Z., Zuba-Surma, E., Kucia, M., Poniewierska, A., Suszynska, M., & Ratajczak, J. (2012). Pluripotent and multipotent stem cells in adult tissues. Advances in medical sciences, 57(1), 1–17. https://doi.org/10.2478/v10039-012-0020-z
  • 5. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024
  • 6. Vieira, M. S., Santos, A. K., Vasconcellos, R., Goulart, V. A. M., Parreira, R. C., Kihara, A. H., Ulrich, H., & Resende, R. R. (2018). Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnology advances, 36(7), 1946–1970. https://doi.org/10.1016/j.biotechadv.2018.08.002
  • 7. Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5
  • 8. Seale, P., Asakura, A., & Rudnicki, M. A. (2001). The potential of muscle stem cells. Developmental cell, 1(3), 333–342. https://doi.org/10.1016/s1534-5807(01)00049-1
  • 9. Huang, G., Ye, S., Zhou, X., Liu, D., & Ying, Q. L. (2015). Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cellular and molecular life sciences: CMLS, 72(9), 1741–1757. https://doi.org/10.1007/s00018-015-1833-2
  • 10. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.), 282(5391), 1145–1147. https://doi.org/10.1126/science.282.5391.1145
  • 11. King, N. M., & Perrin, J. (2014). Ethical issues in stem cell research and therapy. Stem cell research & therapy, 5(4), 85. https://doi.org/10.1186/scrt474
  • 12. Sağsöz, H. & Ketani, M. A. (2008). Kök Hücreler . Dicle Üniversitesi Veteriner Fakültesi Dergisi,(2), 29-33 . Retrieved from https://dergipark.org.tr/tr/pub/duvetfd/issue/29537/317025
  • 13. (14) Fortier, L. A. (2005). Stem cells: classifications, controversies, and clinical applications. Veterinary Surgery, 34(5), 415-423.
  • 14. Kaya, M. M., & Tutun, H. (2021). Kök hücre üretimi, izolasyonu ve tedavide kullanımı. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 12(2), 55-78.
  • 15. Arat, M. (2016). Hematopoietik kök hücrelerin klinik kullanımı. İstanbul Bilim Üniversitesi Florence Nightingale Transplantasyon Dergisi , 1 (1) , 10-18 . Retrieved from https://dergipark.org.tr/en/pub/ibufntx/issue/24818/262190
  • 16. Avcı M., Kocahan M. E. , Etiz P. Hematopoietik Kök Hücre Nakil Süreci. aktd. 2022; 31(3): 196-203.
  • 17. Yeşilipek, M. A. (2014). Çocuklarda hematopoietik kök hücre nakli. Turk Pediatri Ars, 49, 91-98.
  • 18. Friedenstein, A.J., Chailakhjan, R.K. and Lalykina, K.S. (1970), THE DEVELOPMENT OF FIBROBLAST COLONIES IN MONOLAYER CULTURES OF GUINEA-PIG BONE MARROW AND SPLEEN CELLS. Cell Proliferation, 3: 393-403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
  • 19. Liu, Xizhe MD∗; Kumagai, Gentaro MD, PhD∗; Wada, Kanichiro MD, PhD∗; Tanaka, Toshihiro MD, PhD∗; Asari, Toru MD, PhD∗; Oishi, Kazuki MD, PhD∗; Fujita, Taku MD∗; Mizukami, Hiroki MD, PhD†; Furukawa, Ken-Ichi PhD‡; Ishibashi, Yasuyuki MD, PhD∗. High Osteogenic Potential of Adipose- and Muscle-derived Mesenchymal Stem Cells in Spinal-Ossification Model Mice. SPINE 42(23):p E1342-E1349, December 1, 2017. | DOI: 10.1097/BRS.0000000000002266)
  • 20. Gargett, C. E., Schwab, K. E., Zillwood, R. M., Nguyen, H. P., & Wu, D. (2009). Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biology of reproduction, 80(6), 1136–1145. https://doi.org/10.1095/biolreprod.108.075226)
  • 21. Jazedje, T., Perin, P. M., Czeresnia, C. E., Maluf, M., Halpern, S., Secco, M., Bueno, D. F., Vieira, N. M., Zucconi, E., & Zatz, M. (2009). Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. Journal of translational medicine, 7, 46. https://doi.org/10.1186/1479-5876-7-46
  • 22. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–13630. doi:10.1073/pnas.24 0309797
  • 23. Charbord P. (2010). Bone marrow mesenchymal stem cells: historical overview and concepts. Human gene therapy, 21(9),1045–1056. https://doi.org/10.1089/hum.2010.115
  • 24. Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., & Tsuji, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem cells (Dayton, Ohio), 22(5), 649–658. https://doi.org/10.1634/stemcells.22-5-649
  • 25. Mariane Secco, Eder Zucconi, Natassia M. Vieira, Luciana L.Q. Fogaça, Antonia Cerqueira, Maria Denise F. Carvalho, Tatiana Jazedje, Oswaldo K. Okamoto, Alysson R. Muotri, Mayana Zatz, Multipotent Stem Cells from Umbilical Cord: Cord Is Richer than Blood!, Stem Cells, Volume 26, Issue 1, January 2008, Pages 146–150, https://doi.org/10.1634/stemcells.2007-0381
  • 26. Ferretti, C., & Mattioli-Belmonte, M. (2014). Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World journal of stem cells, 6(3),266–277. https://doi.org/10.4252/wjsc.v6.i3.266
  • 27. Colnot C. (2009). Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 24(2), 274–282. https://doi.org/10.1359/jbmr.081003
  • 28. Roubelakis, M. G., Pappa, K. I., Bitsika, V., Zagoura, D., Vlahou, A., Papadaki, H. A., ... & Anagnou, N. P. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem cells and development, 16(6), 931-952.
  • 29. Sekiya, I., Ojima, M., Suzuki, S., Yamaga, M., Horie, M., Koga, H., Tsuji, K., Miyaguchi, K., Ogishima, S., Tanaka, H. and Muneta, T. (2012), Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J. Orthop. Res., 30: 943-949. https://doi.org/10.1002/jor.22029
  • 30. Liu, X. N., Mi, S. L., Chen, Y., & Wang, Y. (2021). Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. International journal of ophthalmology, 14(3), 448–455. https://doi.org/10.18240/ijo.2021.03.19
  • 31. Bačić, A., Prgomet, D., & Janjanin, S. (2019). Tonsil-derived mesenchymal stem cells exert immunosuppressive effects on T cells. Croatian medical journal, 60(1), 12–19. https://doi.org/10.3325/cmj.2019.60.12
  • 32. Zhang, W., & Yelick, P. C. (2021). Tooth Repair and Regeneration: Potential of Dental Stem Cells. Trends in molecular medicine, 27(5), 501–511. https://doi.org/10.1016/j.molmed.2021.02.005
  • 33. Chow K, Fessel JP, KaoriIhida-Stansbury, et al. Dysfunctional Resident Lung Mesenchymal Stem Cells Contribute to Pulmonary Microvascular Remodeling. Pulmonary Circulation. 2013;3(1):31-49. doi:10.4103/2045-8932.109912
  • 34. An, P., Xing, J., Peng, A. et al. The regulation of dermal mesenchymal stem cells on keratinocytes apoptosis. Cell Tissue Bank 22, 57–65 (2021). https://doi.org/10.1007/s10561-020-09865-w
  • 35. Wang, Y., Yu, X., Chen, E., & Li, L. (2016). Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem cell research & therapy, 7, 1-8.
  • 36. Signe Carlson, JoAnn Trial, Christian Soeller, Mark L. Entman, Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction, Cardiovascular Research, Volume 91, Issue 1, 1 July 2011, Pages 99–107, https://doi.org/10.1093/cvr/cvr061
  • 37. Judson, R. N., Zhang, R. H., & Rossi, F. M. (2013). Tissue‐resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?. The FEBS journal, 280(17), 4100-4108.
  • 38. Aru, B., Gürel, G., & Demirel, G. Y. (2022). Mezenkimal Kök Hücreler: Tarihçe, Karakteristik Özellikler ve Tedavi Edici Kullanımlarına İlişkin Genel Bir Bakış. Turkish Journal of Immunology, 10(2).
  • 39. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.j, & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
  • 40. Purwaningrum, M., Jamilah, N. S., Purbantoro, S. D., Sawangmake, C., & Nantavisai, S. (2021). Comparative characteristic study from bone marrow-derived mesenchymal stem cells. Journal of veterinary science, 22(6), e74. https://doi.org/10.4142/jvs.2021.22.e74
  • 41. Fragkakis, E. M., El-Jawhari, J. J., Dunsmuir, R. A., Millner, P. A., Rao, A. S., Henshaw, K. T., Pountos, I., Jones, E., & Giannoudis, P. V. (2018). Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion. PloS one, 13(5), e0197969. https://doi.org/10.1371/journal.pone.0197969
  • 42. Dias LD, Casali KR, Ghem C, da Silva MK, Sausen G, Palma PB, et al. Mesenchymal stem cells from sternum: the type of heart disease, ischemic or valvular, does not influence the cell culture establishment and growth kinetics. J Transl Med. 2017;15(1):161.
  • 43. Vasiliadis, A. V., & Galanis, N. (2020). Human bone marrow-derived mesenchymal stem cells from different bone sources: a panorama. Stem cell investigation, 7, 15. https://doi.org/10.21037/sci-2020-013
  • 44. Yediel Aras, Ş. & Karadağ Sarı, E. (2017). İmmun Sistem Hücrelerinde CD Molekülleri . Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 10 (2) , 206-214 . Retrieved from https://dergipark.org.tr/tr/pub/kujs/issue/33872/365751
  • 45. Assou, S., Le Carrour, T., Tondeur, S., Ström, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Réme, T., Hugnot, J. P., Gasca, S., Hovatta, O., Hamamah, S., Klein, B., & De Vos, J. (2007). A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem cells (Dayton, Ohio), 25(4), 961–973. https://doi.org/10.1634/stemcells.2006-0352
  • 46. Zhao, W., Ji, X., Zhang, F., Li, L., & Ma, L. (2012). Embryonic stem cell markers. Molecules(Basel,Switzerland), 17(6),6196–6236. https://doi.org/10.3390/molecules17066196
  • 47. İsan, H., Uyanık, A., & Aktaş, R. G. (2016). Embriyonik Kök Hücre Belirteçleri. Maltepe Tıp Dergisi, 8(2), 1-5.
  • 48. Gao, Q., Zhao, L., Song, Z., & Yang, G. (2012). Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs. Molecular biology reports, 39, 5791-5804.
  • 49. Rix B, Maduro AH, Bridge KS and Grey W (2022), Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front. Physiol. 13:1009160. doi: 10.3389/fphys.2022.1009160
  • 50. Leyton, L., and Hagood, J. S. (2014). Thy-1 modulates neurological cell-cell and cell-matrix interactions through multiple molecular interactions. Adv. Neurobiol. 8, 3–20. doi:10.1007/978-1-4614-8090-7_1
  • 51. Shivtiel, S., Kollet, O., Lapid, K., Schajnovitz, A., Goichberg, P., Kalinkovich, A., et al. (2008). CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. J. Exp. Med. 205 (10), 2381–2395. doi:10.1084/jem.20080072
  • 52. Majeti, R., Park, C. Y., and Weissman, I. L. (2007). Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1 (6), 635–645. doi:10.1016/j.stem.2007.10.001
  • 53. Petrenko, Y., Vackova, I., Kekulova, K. et al. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci Rep 10, 4290 (2020). https://doi.org/10.1038/s41598-020-61167-z
  • 54. Ghaneialvar, H., Soltani, L., Rahmani, H. R., Lotfi, A. S., & Soleimani, M. (2018). Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian journal of clinical biochemistry : IJCB, 33(1), 46–52. https://doi.org/10.1007/s12291-017-0641-x
  • 55. Tjäderhane, L., Carrilho, M. R., Breschi, L., Tay, F. R., & Pashley, D. H. (2009). Dentin basic structure and composition—an overview. Endodontic topics, 20(1), 3-29.
  • 56. Longoni, A., Utomo, L., van Hooijdonk, I. E., Bittermann, G. K., Vetter, V. C., Kruijt Spanjer, E. C., Ross, J., Rosenberg, A. J., & Gawlitta, D. (2020). The chondrogenic differentiation potential of dental pulp stem cells. European cells & materials, 39, 121–135. https://doi.org/10.22203/eCM.v039a08
  • 57. Mercado-Rubio, M. D., Pérez-Argueta, E., Zepeda-Pedreguera, A., Aguilar-Ayala, F. J., Peñaloza-Cuevas, R., Kú-González, A., Rojas-Herrera, R. A., Rodas-Junco, B. A., & Nic-Can, G. I. (2021). Similar Features, Different Behaviors: A Comparative In VitroStudy of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. Journal of personalized medicine, 11(8), 738. https://doi.org/10.3390/jpm11080738
  • 58. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630. https://doi.org/10.1073/pnas.240309797
  • 59. Chang, C. C., Chang, K. C., Tsai, S. J., Chang, H. H., & Lin, C. P. (2014). Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan medical association, 113(12), 956-965.
  • 60. Zhang, W., Walboomers, X. F., Van Kuppevelt, T. H., Daamen, W. F., Van Damme, P. A., Bian, Z., & Jansen, J. A. (2008). İn vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. Journal of tissue engineering and regenerative medicine, 2(2-3), 117–125. https://doi.org/10.1002/term.71
  • 61. Ishkitiev, N., Yaegaki, K., Imai, T., Tanaka, T., Nakahara, T., Ishikawa, H., Mitev, V., & Haapasalo, M. (2012). High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. Journal of endodontics, 38(4), 475–480. https://doi.org/10.1016/j.joen.2011.12.011
  • 62. Luzuriaga, J., Pastor-Alonso, O., Encinas, J. M., Unda, F., Ibarretxe, G., & Pineda, J. R. (2019). Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Frontiers in Physiology, 10, 347.
  • 63. Shetty, H., Kakade, A., Shetty, S., Neelakantan, P., Nagar, S., Desai, R. S., & Beri, K. (2018). Immunohistochemical characterization of stem cell and differentiation markers of the dental pulp of human natal teeth. Future science OA, 4(10), FSO342. https://doi.org/10.4155/fsoa-2018-0062
  • 64. Demiriz, L., Durmuşlar, M. C., & Mısır, A. F. (2015). Prevalence and characteristics of supernumerary teeth: A survey on 7348 people. Journal of International Society of Preventive & Community Dentistry, 5(Suppl 1), S39–S43. https://doi.org/10.4103/2231-0762.156151
  • 65. Huang, A. H. C., Chen, Y. K., Lin, L. M., Shieh, T. Y., & Chan, A. W. S. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology & Medicine, 37(9), 571-574.
  • 66. Yan, M., Nada, O. A., Kluwe, L., Gosau, M., Smeets, R., & Friedrich, R. E. (2020). Expansion of Human Dental Pulp Cells In Vitro Under Different Cryopreservation Conditions. İn vivo (Athens, Greece), 34(5), 2363–2370. https://doi.org/10.21873/invivo.12049
  • 67. Yazid, F. B., Gnanasegaran, N., Kunasekaran, W., Govindasamy, V., & Musa, S. (2014). Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clinical oral investigations, 18, 2103-2112.
  • 68. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem cells (Dayton, Ohio), 26(7), 1787–1795. https://doi.org/10.1634/stemcells.2007-0979
  • 69. Nagashima, K., Miwa, T., Soumiya, H., Ushiro, D., Takeda-Kawaguchi, T., Tamaoki, N., Ishiguro, S., Sato, Y., Miyamoto, K., Ohno, T., Osawa, M., Kunisada, T., Shibata, T., Tezuka, K. I., Furukawa, S., & Fukumitsu, H. (2017). Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Scientific reports, 7(1), 13500. https://doi.org/10.1038/s41598-017-13373-5
  • 70. Arthur, A., Shi, S., Zannettino, A. C., Fujii, N., Gronthos, S., & Koblar, S. A. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem cells (Dayton, Ohio), 27(9), 2229–2237. https://doi.org/10.1002/stem.138
  • 71. Sowa, K., Nito, C., Nakajima, M., Suda, S., Nishiyama, Y., Sakamoto, Y., Nitahara-Kasahara, Y., Nakamura-Takahashi, A., Ueda, M., Kimura, K., & Okada, T. (2018). Impact of Dental Pulp Stem Cells Overexpressing Hepatocyte Growth Factor after Cerebral Ischemia/Reperfusion in Rats. Molecular therapy. Methods & clinical development, 10, 281–290. https://doi.org/10.1016/j.omtm.2018.07.009   72. Nito, C., Sowa, K., Nakajima, M., Sakamoto, Y., Suda, S., Nishiyama, Y., Nakamura-Takahashi, A., Nitahara-Kasahara, Y., Ueda, M., Okada, T., & Kimura, K. (2018). Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 108, 1005–1014. https://doi.org/10.1016/j.biopha.2018.09.084
  • 73. Estrela, C., Alencar, A. H. G. D., Kitten, G. T., Vencio, E. F., & Gava, E. (2011). Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Brazilian dental journal, 22, 91-98.
  • 74. Verma, K., Bains, R., Bains, V. K., Rawtiya, M., Loomba, K., & Srivastava, S. C. (2014). Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview. Dental research journal, 11(3), 302.
  • 75. Rácz, G. Z., Kádár, K., Földes, A., Kálló, K., Perczel-Kovách, K. E., Kerémi, B., ... & Varga, G. (2014). Immunomodulatory and potential therapeutic role of mesenchymal stem cells in periodontitis.
  • 76. Amir, L. R., Suniarti, D. F., Utami, S., & Abbas, B. (2014). Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell and tissue research, 358, 407-415.
  • 77. Shiehzadeh, V., Aghmasheh, F., Shiehzadeh, F., Joulae, M., Kosarieh, E., & Shiehzadeh, F. (2014). Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: new method and three case reports. Indian Journal of Dental Research, 25(2), 248-253.
  • 78. Son, YB., Kang, YH., Lee, HJ. et al. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17β-estradiol on efficiency. BMC Oral Health 21, 15 (2021). https://doi.org/10.1186/s12903-020-01366-2
  • 79. Jeong, S. Y., Lee, S., Choi, W. H., Jee, J. H., Kim, H. R., & Yoo, J. (2020). Fabrication of dentin-pulp-like organoids using dental-pulp stem cells. Cells, 9(3), 642.
  • 80. Nakashima, M., & Tanaka, H. (2024). Pulp Regenerative Therapy Using Autologous Dental Pulp Stem Cells in a Mature Tooth with Apical Periodontitis: A Case Report. Journal of Endodontics, 50(2), 189-195.
  • 81. Gao, P., Liu, C., Dong, H., Li, Q., & Chen, Y. (2023). TGF-β promotes the proliferation and osteogenic differentiation of dental pulp stem cells a systematic review and meta-analysis. European journal of medical research, 28(1), 261. https://doi.org/10.1186/s40001-023-01227-y
  • 82. Fujii, Y., Kawase-Koga, Y., Hojo, H., Yano, F., Sato, M., Chung, U. I., Ohba, S., & Chikazu, D. (2018). Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheet technology. Stem cell research & therapy, 9(1), 24. https://doi.org/10.1186/s13287-018-0783-7
  • 83. Weiss, J. N. (2021). Clinical Study of Pulp Mesenchymal Stem Cells in the Treatment of Primary Mild to Moderate Knee Osteoarthritis. In Orthopedic Stem Cell Surgery (pp. 141-144). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-73299-8_25
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derleme
Yazarlar

Derin Atasever 0009-0004-7245-6709

Özgün Selim Germiyan 0000-0001-7077-0965

Yiğit Uyanıkgil 0000-0002-4016-0522

Erken Görünüm Tarihi 25 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 5 Temmuz 2024
Kabul Tarihi 5 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

AMA Atasever D, Germiyan ÖS, Uyanıkgil Y. Kök Hücreler, Dental Pulpa Kök Hücreleri ve Klinik Uygulamaları. aktd. Eylül 2024;33(3):145-155. doi:10.17827/aktd.1511375