Derleme
BibTex RIS Kaynak Göster

Yoğun Bakımda Yapay Zekâ Uygulamaları: Güncel Durum ve Yenilikçi Yaklaşımlar

Yıl 2025, Cilt: 34 Sayı: 4, 274 - 281, 24.12.2025
https://doi.org/10.17827/aktd.1707456

Öz

Yoğun bakım ünitelerinde (YBÜ) yapay zekâ (YZ) ve makine öğrenimi tabanlı yaklaşımlar, yüksek hacimli çok modlu veriden klinisyenin gözden kaçırabileceği örüntüleri ortaya çıkarmaya olanak tanıyarak erken tanı, risk öngörüsü ve tedavi optimizasyonu için umut vaat etmektedir. Derin öğrenme algoritmaları akciğer grafisi, toraks-bilgisayarlı tomografi (BT) ve travma beyin BT’sinde infiltrat, ödem, pnömoni veya kanama gibi bulguları insan gözleminden daha hızlı ve objektif saptayabilmekte; gerçek zamanlı ultrason analizi gibi alanlara da genişleme potansiyeli göstermektedir. Sürekli vital bulgulara dayanan erken uyarı sistemleri, hipotansiyon, kardiyorespiratuvar instabilite veya sepsis gelişimini saatler öncesinden yüksek doğrulukla tahmin edebilmekte, hastane mortalitesi öngörüsünde geleneksel skorlama sistemlerini aşmaktadır. Kümelenme ve sınıflandırma yöntemleri, sepsis ve akut solunum sıkıntısı sendromu (ARDS) gibi heterojen sendromları biyolojik ve klinik alt fenotiplere ayırarak kişiselleştirilmiş tedavi olasılığını artırmıştır. Pekiştirmeli öğrenme ise sıvı-vazopresör yönetimi ve mekanik ventilatör ayarlarını dinamik olarak optimize eden “YZ-klinis¬yeni” modelleriyle hasta bazlı kararlara rehberlik edebilmektedir. Bununla birlikte, veri standardizasyonu ve paylaşımındaki yetersizlik, algoritmaların farklı merkezlere genellenebilirliğini sınırlamakta; gözlemsel verideki yanlılıklar ve “kara kutu” modellerin açıklanamazlığı klinik güveni zedelemektedir. Etik ve yasal çerçeveler, algoritmik adalet, sorumluluk paylaşımı ve hasta gizliliği konularında hâlen netleşmemiştir. Geleceğin odak noktaları; güvenli çok merkezli veri ekosistemleri, yorumlanabilir ve prospektif olarak doğrulanmış modeller, alarm yorgunluğunu azaltan akıllı arayüzler, dijital ikiz simülasyonları ve YZ okuryazarlığı yüksek sağlık profesyonelleridir. Sonuç olarak, YZ insan uzmanlığının yerini almayacak; ancak iyi tasarlandığında klinik karar süreçlerini tamamlayan, hızlı, özelleştirilmiş ve kanıta dayalı yoğun bakım hizmeti sunulmasına katkı sağlayacaktır.

Kaynakça

  • 1. Zimmerman JE, Kramer AA, Knaus WA. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit Care. 2013;17(2):R81. Published 2013 Apr 27. doi:10.1186/cc12695
  • 2. Yoon JH, Pinsky MR, Clermont G. Artificial Intelligence in Critical Care Medicine. Crit Care. 2022;26(1):75. Published 2022 Mar 22. doi:10.1186/s13054-022-03915-3
  • 3. Pinsky MR, Bedoya A, Bihorac A, et al. Use of artificial intelligence in critical care: opportunities and obstacles. Crit Care. 2024;28(1):113. Published 2024 Apr 8. doi:10.1186/s13054-024-04860-z
  • 4. Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med. 2019;112(1):22-28. doi:10.1177/0141076818815510
  • 5. Seah JCY, Tang JSN, Kitchen A, Gaillard F, Dixon AF. Chest Radiographs in Congestive Heart Failure: Visualizing Neural Network Learning. Radiology. 2019;290(2):514-522. doi:10.1148/radiol.2018180887
  • 6. Horng S, Liao R, Wang X, Dalal S, Golland P, Berkowitz SJ. Deep Learning to Quantify Pulmonary Edema in Chest Radiographs. Radiol Artif Intell. 2021;3(2):e190228. Published 2021 Jan 6. doi:10.1148/ryai.2021190228
  • 7. Li L, Qin L, Xu Z, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology. 2020;296(2):E65-E71. doi:10.1148/radiol.2020200905 8. Monteiro M, Newcombe VFJ, Mathieu F, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit Health. 2020;2(6):e314-e322. doi:10.1016/S2589-7500(20)30085-6
  • 9. Dreizin D, Zhou Y, Fu S, et al. A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation. Radiol Artif Intell. 2020;2(6):e190220. Published 2020 Nov 11. doi:10.1148/ryai.2020190220
  • 10. Vincent JL. The continuum of critical care. Crit Care. 2019;23(Suppl 1):122. Published 2019 Jun 14. doi:10.1186/s13054-019-2393-x
  • 11. Chen L, Ogundele O, Clermont G, Hravnak M, Pinsky MR, Dubrawski AW. Dynamic and Personalized Risk Forecast in Step-Down Units. Implications for Monitoring Paradigms. Ann Am Thorac Soc. 2017;14(3):384-391. doi:10.1513/AnnalsATS.201611-905OC
  • 12. Wijnberge M, Geerts BF, Hol L, et al. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA. 2020;323(11):1052-1060. doi:10.1001/jama.2020.0592
  • 13. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit Care Med. 2018;46(4):547-553. doi:10.1097/CCM.0000000000002936
  • 14. Bartkowiak B, Snyder AM, Benjamin A, et al. Validating the Electronic Cardiac Arrest Risk Triage (eCART) Score for Risk Stratification of Surgical Inpatients in the Postoperative Setting: Retrospective Cohort Study. Ann Surg. 2019;269(6):1059-1063. doi:10.1097/SLA.0000000000002665
  • 15. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health. 2020;2(4):e179-e191. doi:10.1016/S2589-7500(20)30018-2
  • 16. Banoei MM, Dinparastisaleh R, Zadeh AV, Mirsaeidi M. Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying. Crit Care. 2021;25(1):328. Published 2021 Sep 8. doi:10.1186/s13054-021-03749-5
  • 17. Seymour CW, Kennedy JN, Wang S, et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019;321(20):2003-2017. doi:10.1001/jama.2019.5791
  • 18. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6(9):691-698. doi:10.1016/S2213-2600(18)30177-2
  • 19. Sinha P, Delucchi KL, McAuley DF, O'Kane CM, Matthay MA, Calfee CS. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respir Med. 2020;8(3):247-257. doi:10.1016/S2213-2600(19)30369-8
  • 20. Geri G, Vignon P, Aubry A, et al. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: a post hoc analysis. Intensive Care Med. 2019;45(5):657-667. doi:10.1007/s00134-019-05596-z
  • 21. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-1377. doi:10.1056/NEJMoa010307
  • 22. PRISM Investigators, Rowan KM, Angus DC, et al. Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis. N Engl J Med. 2017;376(23):2223-2234. doi:10.1056/NEJMoa1701380
  • 23. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716-1720. doi:10.1038/s41591-018-0213-5
  • 24. Peine A, Hallawa A, Bickenbach J, et al. Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. NPJ Digit Med. 2021;4(1):32. Published 2021 Feb 19. doi:10.1038/s41746-021-00388-6
  • 25. Thoral PJ, Peppink JM, Driessen RH, et al. Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med. 2021;49(6):e563-e577. doi:10.1097/CCM.0000000000004916
  • 26. Sauer CM, Dam TA, Celi LA, et al. Systematic Review and Comparison of Publicly Available ICU Data Sets-A Decision Guide for Clinicians and Data Scientists. Crit Care Med. 2022;50(6):e581-e588. doi:10.1097/CCM.0000000000005517
  • 27. Fleuren LM, Thoral P, Shillan D, Ercole A, Elbers PWG; Right Data Right Now Collaborators. Machine learning in intensive care medicine: ready for take-off?. Intensive Care Med. 2020;46(7):1486-1488. doi:10.1007/s00134-020-06045-y
  • 28. Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK). Destek Süreçlerinde Üretken Yapay Zekânın (ÜYZ) Sorumlu ve Güvenilir Kullanımı Rehberi. Available from: https://tubitak.gov.tr/sites/default/files/2025-10/UYZ_Rehberi_v03_TR.pdf. Accessed: 24 October 2025.
  • 29. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. Published 2020 Mar 25. doi:10.1136/bmj.m689
  • 30. Rudin C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2019;1(5):206-215. doi:10.1038/s42256-019-0048-x
  • 31. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749-760. doi:10.1038/s41551-018-0304-0
  • 32. Davoudi A, Malhotra KR, Shickel B, et al. Intelligent ICU for Autonomous Patient Monitoring Using Pervasive Sensing and Deep Learning. Sci Rep. 2019;9(1):8020. Published 2019 May 29. doi:10.1038/s41598-019-44004-w
  • 33. Hravnak M, Pellathy T, Chen L, et al. A call to alarms: Current state and future directions in the battle against alarm fatigue. J Electrocardiol. 2018;51(6S):S44-S48. doi:10.1016/j.jelectrocard.2018.07.024

Artificial Intelligence Applications in Intensive Care: Current State and Innovative Perspectives

Yıl 2025, Cilt: 34 Sayı: 4, 274 - 281, 24.12.2025
https://doi.org/10.17827/aktd.1707456

Öz

Artificial intelligence (AI) and machine learning techniques hold great promise for intensive care units (ICUs) by extracting clinically relevant patterns from high-volume, multimodal data that may elude human observation. Deep learning algorithms already outperform clinicians in the rapid, objective detection of infiltrates, oedema, pneumonia and haemorrhage on chest radiographs, thoracic computed tomography (CT) and trauma head CT, and are poised to extend to real-time ultrasound interpretation. Early warning systems that continuously analyse vital-sign streams can predict hypotension, cardiorespiratory instability and sepsis hours in advance, surpassing established scoring systems for predicting hospital mortality. Unsupervised clustering and classification have begun to dissect heterogeneous syndromes such as sepsis and acute respiratory distress syndrome (ARDS) into biologically and clinically distinct sub-phenotypes, paving the way for precision therapeutics. Reinforcement learning frameworks are emerging that dynamically optimise fluid–vasopressor management and ventilator settings, creating AI–clinician hybrids for patient-specific decision-making. Nevertheless, inadequate data standardisation and sharing restrict external validity, while biases in observational datasets and the opacity of “black-box” models erode clinical confidence. Ethical and legal frameworks remain unsettled regarding algorithmic fairness, accountability and patient privacy. Future priorities include secure multicentre data ecosystems, interpretable and prospectively validated models, smart user interfaces that mitigate alarm fatigue, digital-twin simulations and a workforce proficient in AI literacy. Ultimately, AI will not supplant human expertise but, when thoughtfully integrated, will augment clinical decision-making to deliver faster, more personalised and evidence-based critical-care services.

Kaynakça

  • 1. Zimmerman JE, Kramer AA, Knaus WA. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit Care. 2013;17(2):R81. Published 2013 Apr 27. doi:10.1186/cc12695
  • 2. Yoon JH, Pinsky MR, Clermont G. Artificial Intelligence in Critical Care Medicine. Crit Care. 2022;26(1):75. Published 2022 Mar 22. doi:10.1186/s13054-022-03915-3
  • 3. Pinsky MR, Bedoya A, Bihorac A, et al. Use of artificial intelligence in critical care: opportunities and obstacles. Crit Care. 2024;28(1):113. Published 2024 Apr 8. doi:10.1186/s13054-024-04860-z
  • 4. Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med. 2019;112(1):22-28. doi:10.1177/0141076818815510
  • 5. Seah JCY, Tang JSN, Kitchen A, Gaillard F, Dixon AF. Chest Radiographs in Congestive Heart Failure: Visualizing Neural Network Learning. Radiology. 2019;290(2):514-522. doi:10.1148/radiol.2018180887
  • 6. Horng S, Liao R, Wang X, Dalal S, Golland P, Berkowitz SJ. Deep Learning to Quantify Pulmonary Edema in Chest Radiographs. Radiol Artif Intell. 2021;3(2):e190228. Published 2021 Jan 6. doi:10.1148/ryai.2021190228
  • 7. Li L, Qin L, Xu Z, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology. 2020;296(2):E65-E71. doi:10.1148/radiol.2020200905 8. Monteiro M, Newcombe VFJ, Mathieu F, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit Health. 2020;2(6):e314-e322. doi:10.1016/S2589-7500(20)30085-6
  • 9. Dreizin D, Zhou Y, Fu S, et al. A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation. Radiol Artif Intell. 2020;2(6):e190220. Published 2020 Nov 11. doi:10.1148/ryai.2020190220
  • 10. Vincent JL. The continuum of critical care. Crit Care. 2019;23(Suppl 1):122. Published 2019 Jun 14. doi:10.1186/s13054-019-2393-x
  • 11. Chen L, Ogundele O, Clermont G, Hravnak M, Pinsky MR, Dubrawski AW. Dynamic and Personalized Risk Forecast in Step-Down Units. Implications for Monitoring Paradigms. Ann Am Thorac Soc. 2017;14(3):384-391. doi:10.1513/AnnalsATS.201611-905OC
  • 12. Wijnberge M, Geerts BF, Hol L, et al. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA. 2020;323(11):1052-1060. doi:10.1001/jama.2020.0592
  • 13. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit Care Med. 2018;46(4):547-553. doi:10.1097/CCM.0000000000002936
  • 14. Bartkowiak B, Snyder AM, Benjamin A, et al. Validating the Electronic Cardiac Arrest Risk Triage (eCART) Score for Risk Stratification of Surgical Inpatients in the Postoperative Setting: Retrospective Cohort Study. Ann Surg. 2019;269(6):1059-1063. doi:10.1097/SLA.0000000000002665
  • 15. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health. 2020;2(4):e179-e191. doi:10.1016/S2589-7500(20)30018-2
  • 16. Banoei MM, Dinparastisaleh R, Zadeh AV, Mirsaeidi M. Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying. Crit Care. 2021;25(1):328. Published 2021 Sep 8. doi:10.1186/s13054-021-03749-5
  • 17. Seymour CW, Kennedy JN, Wang S, et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019;321(20):2003-2017. doi:10.1001/jama.2019.5791
  • 18. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6(9):691-698. doi:10.1016/S2213-2600(18)30177-2
  • 19. Sinha P, Delucchi KL, McAuley DF, O'Kane CM, Matthay MA, Calfee CS. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respir Med. 2020;8(3):247-257. doi:10.1016/S2213-2600(19)30369-8
  • 20. Geri G, Vignon P, Aubry A, et al. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: a post hoc analysis. Intensive Care Med. 2019;45(5):657-667. doi:10.1007/s00134-019-05596-z
  • 21. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-1377. doi:10.1056/NEJMoa010307
  • 22. PRISM Investigators, Rowan KM, Angus DC, et al. Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis. N Engl J Med. 2017;376(23):2223-2234. doi:10.1056/NEJMoa1701380
  • 23. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716-1720. doi:10.1038/s41591-018-0213-5
  • 24. Peine A, Hallawa A, Bickenbach J, et al. Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. NPJ Digit Med. 2021;4(1):32. Published 2021 Feb 19. doi:10.1038/s41746-021-00388-6
  • 25. Thoral PJ, Peppink JM, Driessen RH, et al. Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example. Crit Care Med. 2021;49(6):e563-e577. doi:10.1097/CCM.0000000000004916
  • 26. Sauer CM, Dam TA, Celi LA, et al. Systematic Review and Comparison of Publicly Available ICU Data Sets-A Decision Guide for Clinicians and Data Scientists. Crit Care Med. 2022;50(6):e581-e588. doi:10.1097/CCM.0000000000005517
  • 27. Fleuren LM, Thoral P, Shillan D, Ercole A, Elbers PWG; Right Data Right Now Collaborators. Machine learning in intensive care medicine: ready for take-off?. Intensive Care Med. 2020;46(7):1486-1488. doi:10.1007/s00134-020-06045-y
  • 28. Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK). Destek Süreçlerinde Üretken Yapay Zekânın (ÜYZ) Sorumlu ve Güvenilir Kullanımı Rehberi. Available from: https://tubitak.gov.tr/sites/default/files/2025-10/UYZ_Rehberi_v03_TR.pdf. Accessed: 24 October 2025.
  • 29. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. Published 2020 Mar 25. doi:10.1136/bmj.m689
  • 30. Rudin C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2019;1(5):206-215. doi:10.1038/s42256-019-0048-x
  • 31. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749-760. doi:10.1038/s41551-018-0304-0
  • 32. Davoudi A, Malhotra KR, Shickel B, et al. Intelligent ICU for Autonomous Patient Monitoring Using Pervasive Sensing and Deep Learning. Sci Rep. 2019;9(1):8020. Published 2019 May 29. doi:10.1038/s41598-019-44004-w
  • 33. Hravnak M, Pellathy T, Chen L, et al. A call to alarms: Current state and future directions in the battle against alarm fatigue. J Electrocardiol. 2018;51(6S):S44-S48. doi:10.1016/j.jelectrocard.2018.07.024
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Cerrahi (Diğer)
Bölüm Derleme
Yazarlar

Kadir Kabahasanoğlu 0009-0002-9045-5123

Muammer Hayri Bektaş 0009-0009-7577-9171

Gönderilme Tarihi 27 Mayıs 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 4

Kaynak Göster

AMA Kabahasanoğlu K, Bektaş MH. Yoğun Bakımda Yapay Zekâ Uygulamaları: Güncel Durum ve Yenilikçi Yaklaşımlar. aktd. Aralık 2025;34(4):274-281. doi:10.17827/aktd.1707456