BibTex RIS Kaynak Göster

Genetic Risk Factors in Chronic Obstructive Lung Disease (COPD)

Yıl 2010, Cilt: 19 Sayı: 3, 168 - 179, 01.09.2010

Öz

COPD is a leading cause of morbidity and mortality among the adult population. The major risk factor of COPD is, undoubtedly, cigarette smoking. In a significant proportion of smokers clinically significant airflow obstruction develops. Exogenous factors outside the meeting, increasing susceptibility to disease and genetic factors in the development of the disease is thought to play an important role.Apart from the contribution by the well-recognized α-1 antitrypsin deficiency, the genetic basis of COPD is poorly understood. However, many genes are thought to be associated with COPD. The most important ones are α-1-antitrypsin (AAT), α-1-antichymotrypsin (AACT), matrix metalloproteinase (MMP), microsomal epoxide hydrolase (EPHX1), glutathione S-transferase (GST), tumor necrosis factor-α (TNF ) and transforming growth factor beta (TGFβ).

Kaynakça

  • Brantly M, Nukiwa T. Crystal RG. Molecular basis of α1-antitrypsin deficiency. Am J Med, 1988;84:13–31.
  • Owen MC, Carrell RW, Brennan SO. The abnormality of the S variant of human alpha-1- antitrypsin. Biochim Biophys Acta. 1976;453:257–61.
  • Jeppsson JO. Amino acid substitution Glu leads to Lys alpha-1-antitrypsin PiZ. FEBS Lett. 1976;65:195–7.
  • Brantly ML, Paul LD, Miller BH, et al. Clinical features and history of the destructive lung disease associated with α1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis. 1988;138:327–36.
  • Yoshida A, Lieberman J, Gaidulis L. Molecular abnormality of human alpha-1-antitrypsin variant (Pi-ZZ) associated with plasma activity deficiency. Proc Natl Acad Sci USA. 1976;73:1324-8.
  • Bruce RM, Cohen BH, Diamond EL, et al. Collaborative study to assess risk of lung disease in PiMZ phenotype subjects. Am Rev Respir Dis. 1984;130:386–90.
  • Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.
  • Pendas AM, Santamaria I, Alvarez MV, et al. Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome 11q22.3. Genomics, 1996;37:266–8.
  • D’Armiento J, Dalal SS, Okada Y, et al. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell. 1992;71:955–61.
  • Rutter JL, Mitchell TI, Buttice G, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an ETS binding site transcription. Cancer Res. 1998;58:5321–5.
  • Cheng SL, Yun CJ, Yang PC. Genetic Polymorphisms of Cytochrome P450 and Matrix Metalloproteinase in Chronic Obstructive Pulmonary Disease. Biochem Genet. 2009;47:591– 601.
  • Seidegard J, DePierre JW. Microsomal epoxide hydrolase. Properties, regulation and function. Biochim Biophys Acta. 1983;695(3-4):251-70.
  • Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997;350:630–3.
  • Yoshikawa M, Hiyama K, Ishioka S, et al. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. J Mol Med. 2000;5:49–53.
  • Yim JJ, Park GY, Lee CT, et al. Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax. 2000;55:121–5.
  • Wilce MC, Parker MW. Structure and function of glutathione S-transferases. Biochim. Biophys. Acta. 1994;1205 (1): 1–18.
  • Harrison DJ, Cantlay AM, Rae F, et al. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol. 1997;16:356–60.
  • Cantlay AM, Smith CA, Wallace WA, et al. Heterogeneous expression and polymorphic genotype of glutathione S-transferases in human lung. Thorax. 1994;49:1010–4.
  • Sundberg K, Johansson AS, Stenberg G, et al. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998;19:433–6.
  • Ishii T, Matsuse T, Teramoto S, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 1999;54:693–6.
  • Cheng SL, Yu CJ, Chen CJ, et al. Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur Respir J. 2004;23:818–824.
  • Cosma G, Crofts F, Taioli E, et al. Relationship between genotype and function of the human CYP1A1 gene. J Toxicol Environ Health. 1993;40:309–16.
  • Cantlay AM, Lamb D, Gillooly M, et al. Association between the CYP1A1 gene polymorphism and susceptibility to emphysema and lung cancer. J Clin Pathol 1995;48:M210–4.
  • Otterbein LE, Lee PJ, Chin BY, et al. Protective effects of heme oxygenase-1 in acute lung injury. Chest. 1999;116:61S–3S.
  • Choi AMK, Alam J. Heme Oxygenase 1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996;15:9– 19.
  • Otterbein LE, Lee PJ, Chin BY, et al. Protective effects of heme oxygenase-1 in acute lung injury. Chest .1999;116:61S–3S.
  • Bouma G, Crusius JB, Oudkerk PM, et al. Secretion of tumour necrosis factor α and
  • lymphotoxin a in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol. 1996;43:456–63.
  • Moffatt MF, Cookson WO. Tumour necrosis factor haplotypes and asthma. Hum Mol Genet 1997;6:551–4.
  • Huang SL, Su CH, Chang SC. Tumor necrosis factor-α gene polymorphism in chronic bronchitis. Am J Respir Crit Care Med. 1997;156:1436–9.
  • Sakao S, Tatsumi K, Igari H, et al. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163:420–2.
  • Higham MA, Pride NB, Alikhan A, et al. Tumour necrosis factor-alpha gene promoter polymorphism in chronic obstructive pulmonary disease. Eur Respir J. 2000;15:281–4.
  • Teramoto S, Ishii T. No association of tumor necrosis factor-alpha gene polymorphism and copd in Caucasian smokers and Japanese smokers. Chest. 2001;119:315–6.
  • Clark DA, Coker R. Molecules in focus: Transforming growth factor-beta (TGF-β). Biochemistry & CellBiology, 1998;30:293-298.
  • Ito M, Hanaoka M, Droma Y, et al.The Association of Transforming Growth Factor Beta1 Gene Polymorphisms with the Emphysema Phenotype of COPD in Japanese. InterMed. 2008;47:1387-1394.
  • Su W, Wen F, Feng Y, et al. Transforming growth factor-β1 gene polymorphisms associated with chronic obstructive pulmonary disease in Chinese population. Acta Pharmacologica Sinica. 2005;6:714–720.
  • Mak JC, Moira MW, Yeung C, et al. Elevated plasmaTGF-β1 levels in patients with chronic obstructive pulmonary disease. RespiratoryMedicine. 2009;103:1083-1089.
  • Kew RR, Webster RO. Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J Clin Invest. 1988;82:364–9.
  • Yamamoto N, Homma S. Vitamin D-binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc Natl Acad Sci. 1991;88:8539–43.
  • Horne SL, Cockcroft DW, Dosman JA. Possible protective effect against chronic obstructive airways disease by the GC-2 allele. Hum Hered. 1990;40:173–6.
  • Schellenberg D, Pare PD, Weir TD, et al. Vitamin D binding protein variants and the risk of COPD. Am J Respir Crit Care Med. 1998;157:957–61.
  • Ishii T, Keicho N, Teramoto S, et al. Association of Gc-globulin variation with susceptibility to COPD and diffuse panbronchiolitis. Eur Respir J. 2001;18:753–7.
  • Arend WP, Malyak M, Guthridge CJ, et al. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.
  • Steinkasserer A, Spurr NK, Cox S, et al. The human IL-1 receptor antagonist gene (IL1RN) maps to chromosome 2q14-q21, in the region of the IL-1 alpha and IL-1 beta loci. Genomics. 1992;13:654–7.
  • Giovine FS, Takhsh E, Blakemore AI, et al. Single base polymorphism at -511 in the human interleukin-1 beta gene(IL1 beta). Hum Mol Genet. 1992;1:450.
  • Joos L, McIntyre L, Ruan J, et al. Association of IL-1beta and IL-1 receptor antagonist haplotypes with rate of decline in lung function in smokers. Thorax. 2001;56:863–6.
  • Ishii T, Matsuse T, Teramoto S, et al. Neither IL-1beta, IL-1 receptor antagonist, nor TNF- alpha polymorphisms are associated with susceptibility to COPD. Respir Med. 2000;94:847– 51.
  • Weir TD, Mallek N, Sandford AJ, et al. Beta2-adrenergic receptor haplotypes in mild, moderate and fatal/near fatal asthma. Am J Respir Crit Care Med. 1998;158:787-91.
  • Lima JJ, Thomason DB, Mohamed MH, et al. Impact of genetic polymorphisms of the beta2- adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 1999;65:519–25.
  • Summerhill E, Leavitt SA, Gidley H, Parry, et al. Beta2-adrenergic receptor arg16/arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am J Respir Crit Care Med. 2000;162:599–602.
  • Green SA, Cole G, Jacinto M, et al. A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem. 1993;268:23116–21.
  • Joos L, Paré PD, Anthonisen N, et al. Polymorphisms in the beta2 adrenergic receptor and bronchodilator response, bronchial hyperresponsiveness, and rate of decline in lung function in smokers.Thorax. 2003;58(8):703-7.

Kronik Obstrüktif Akciğer Hastalığında (KOAH) Genetik Risk Faktörleri

Yıl 2010, Cilt: 19 Sayı: 3, 168 - 179, 01.09.2010

Öz

KOAH erişkinlerde önemli bir morbidite ve mortalite nedenidir. KOAH'a ilişkin şüphesiz en önemli risk faktörü sigara içimidir. Sigara içenlerin ancak önemsiz bir oranında klinik olarak önemli hava yolu obstrüksiyonu gelişir. Ekzojen faktörlerle karşılaşma dışında, hastalığa karşı duyarlılık artışında ve hastalığın gelişmesinde genetik faktörlerin de önemli rol oynadığı düşünülmektedir. İyi bilinen α-1 antitripsin eksikliği dışında KOAH'ın genetik temeli tam anlaşılmamıştır. Ancak KOAH ile ilişkili olduğu düşünülen pek çok gen vardır. Bunların en önemlileri α-1-antitripsin (AAT), α-1-antikimotripsin (AACT), Matriks metalloproteinaz (MMP), Mikrozomal epoksit hidrolaz (EPHX1), Glutatyon S-transferaz (GST), Tümör nekroz faktör-α (TNF), Transforme edici büyüme faktörü (TGFβ) 'dır.

Kaynakça

  • Brantly M, Nukiwa T. Crystal RG. Molecular basis of α1-antitrypsin deficiency. Am J Med, 1988;84:13–31.
  • Owen MC, Carrell RW, Brennan SO. The abnormality of the S variant of human alpha-1- antitrypsin. Biochim Biophys Acta. 1976;453:257–61.
  • Jeppsson JO. Amino acid substitution Glu leads to Lys alpha-1-antitrypsin PiZ. FEBS Lett. 1976;65:195–7.
  • Brantly ML, Paul LD, Miller BH, et al. Clinical features and history of the destructive lung disease associated with α1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis. 1988;138:327–36.
  • Yoshida A, Lieberman J, Gaidulis L. Molecular abnormality of human alpha-1-antitrypsin variant (Pi-ZZ) associated with plasma activity deficiency. Proc Natl Acad Sci USA. 1976;73:1324-8.
  • Bruce RM, Cohen BH, Diamond EL, et al. Collaborative study to assess risk of lung disease in PiMZ phenotype subjects. Am Rev Respir Dis. 1984;130:386–90.
  • Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.
  • Pendas AM, Santamaria I, Alvarez MV, et al. Fine physical mapping of the human matrix metalloproteinase genes clustered on chromosome 11q22.3. Genomics, 1996;37:266–8.
  • D’Armiento J, Dalal SS, Okada Y, et al. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell. 1992;71:955–61.
  • Rutter JL, Mitchell TI, Buttice G, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an ETS binding site transcription. Cancer Res. 1998;58:5321–5.
  • Cheng SL, Yun CJ, Yang PC. Genetic Polymorphisms of Cytochrome P450 and Matrix Metalloproteinase in Chronic Obstructive Pulmonary Disease. Biochem Genet. 2009;47:591– 601.
  • Seidegard J, DePierre JW. Microsomal epoxide hydrolase. Properties, regulation and function. Biochim Biophys Acta. 1983;695(3-4):251-70.
  • Smith CA, Harrison DJ. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997;350:630–3.
  • Yoshikawa M, Hiyama K, Ishioka S, et al. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. J Mol Med. 2000;5:49–53.
  • Yim JJ, Park GY, Lee CT, et al. Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax. 2000;55:121–5.
  • Wilce MC, Parker MW. Structure and function of glutathione S-transferases. Biochim. Biophys. Acta. 1994;1205 (1): 1–18.
  • Harrison DJ, Cantlay AM, Rae F, et al. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol. 1997;16:356–60.
  • Cantlay AM, Smith CA, Wallace WA, et al. Heterogeneous expression and polymorphic genotype of glutathione S-transferases in human lung. Thorax. 1994;49:1010–4.
  • Sundberg K, Johansson AS, Stenberg G, et al. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998;19:433–6.
  • Ishii T, Matsuse T, Teramoto S, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 1999;54:693–6.
  • Cheng SL, Yu CJ, Chen CJ, et al. Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur Respir J. 2004;23:818–824.
  • Cosma G, Crofts F, Taioli E, et al. Relationship between genotype and function of the human CYP1A1 gene. J Toxicol Environ Health. 1993;40:309–16.
  • Cantlay AM, Lamb D, Gillooly M, et al. Association between the CYP1A1 gene polymorphism and susceptibility to emphysema and lung cancer. J Clin Pathol 1995;48:M210–4.
  • Otterbein LE, Lee PJ, Chin BY, et al. Protective effects of heme oxygenase-1 in acute lung injury. Chest. 1999;116:61S–3S.
  • Choi AMK, Alam J. Heme Oxygenase 1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996;15:9– 19.
  • Otterbein LE, Lee PJ, Chin BY, et al. Protective effects of heme oxygenase-1 in acute lung injury. Chest .1999;116:61S–3S.
  • Bouma G, Crusius JB, Oudkerk PM, et al. Secretion of tumour necrosis factor α and
  • lymphotoxin a in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol. 1996;43:456–63.
  • Moffatt MF, Cookson WO. Tumour necrosis factor haplotypes and asthma. Hum Mol Genet 1997;6:551–4.
  • Huang SL, Su CH, Chang SC. Tumor necrosis factor-α gene polymorphism in chronic bronchitis. Am J Respir Crit Care Med. 1997;156:1436–9.
  • Sakao S, Tatsumi K, Igari H, et al. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163:420–2.
  • Higham MA, Pride NB, Alikhan A, et al. Tumour necrosis factor-alpha gene promoter polymorphism in chronic obstructive pulmonary disease. Eur Respir J. 2000;15:281–4.
  • Teramoto S, Ishii T. No association of tumor necrosis factor-alpha gene polymorphism and copd in Caucasian smokers and Japanese smokers. Chest. 2001;119:315–6.
  • Clark DA, Coker R. Molecules in focus: Transforming growth factor-beta (TGF-β). Biochemistry & CellBiology, 1998;30:293-298.
  • Ito M, Hanaoka M, Droma Y, et al.The Association of Transforming Growth Factor Beta1 Gene Polymorphisms with the Emphysema Phenotype of COPD in Japanese. InterMed. 2008;47:1387-1394.
  • Su W, Wen F, Feng Y, et al. Transforming growth factor-β1 gene polymorphisms associated with chronic obstructive pulmonary disease in Chinese population. Acta Pharmacologica Sinica. 2005;6:714–720.
  • Mak JC, Moira MW, Yeung C, et al. Elevated plasmaTGF-β1 levels in patients with chronic obstructive pulmonary disease. RespiratoryMedicine. 2009;103:1083-1089.
  • Kew RR, Webster RO. Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J Clin Invest. 1988;82:364–9.
  • Yamamoto N, Homma S. Vitamin D-binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc Natl Acad Sci. 1991;88:8539–43.
  • Horne SL, Cockcroft DW, Dosman JA. Possible protective effect against chronic obstructive airways disease by the GC-2 allele. Hum Hered. 1990;40:173–6.
  • Schellenberg D, Pare PD, Weir TD, et al. Vitamin D binding protein variants and the risk of COPD. Am J Respir Crit Care Med. 1998;157:957–61.
  • Ishii T, Keicho N, Teramoto S, et al. Association of Gc-globulin variation with susceptibility to COPD and diffuse panbronchiolitis. Eur Respir J. 2001;18:753–7.
  • Arend WP, Malyak M, Guthridge CJ, et al. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.
  • Steinkasserer A, Spurr NK, Cox S, et al. The human IL-1 receptor antagonist gene (IL1RN) maps to chromosome 2q14-q21, in the region of the IL-1 alpha and IL-1 beta loci. Genomics. 1992;13:654–7.
  • Giovine FS, Takhsh E, Blakemore AI, et al. Single base polymorphism at -511 in the human interleukin-1 beta gene(IL1 beta). Hum Mol Genet. 1992;1:450.
  • Joos L, McIntyre L, Ruan J, et al. Association of IL-1beta and IL-1 receptor antagonist haplotypes with rate of decline in lung function in smokers. Thorax. 2001;56:863–6.
  • Ishii T, Matsuse T, Teramoto S, et al. Neither IL-1beta, IL-1 receptor antagonist, nor TNF- alpha polymorphisms are associated with susceptibility to COPD. Respir Med. 2000;94:847– 51.
  • Weir TD, Mallek N, Sandford AJ, et al. Beta2-adrenergic receptor haplotypes in mild, moderate and fatal/near fatal asthma. Am J Respir Crit Care Med. 1998;158:787-91.
  • Lima JJ, Thomason DB, Mohamed MH, et al. Impact of genetic polymorphisms of the beta2- adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 1999;65:519–25.
  • Summerhill E, Leavitt SA, Gidley H, Parry, et al. Beta2-adrenergic receptor arg16/arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am J Respir Crit Care Med. 2000;162:599–602.
  • Green SA, Cole G, Jacinto M, et al. A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem. 1993;268:23116–21.
  • Joos L, Paré PD, Anthonisen N, et al. Polymorphisms in the beta2 adrenergic receptor and bronchodilator response, bronchial hyperresponsiveness, and rate of decline in lung function in smokers.Thorax. 2003;58(8):703-7.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Mehmet Ali Erkoç Bu kişi benim

Ceyhun Bereketoğlu Bu kişi benim

Davut Alptekin Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 19 Sayı: 3

Kaynak Göster

AMA Erkoç MA, Bereketoğlu C, Alptekin D. Kronik Obstrüktif Akciğer Hastalığında (KOAH) Genetik Risk Faktörleri. aktd. Eylül 2010;19(3):168-179.