BibTex RIS Kaynak Göster

Hereditary Ataxia

Yıl 2009, Cilt: 18 Sayı: 3, 171 - 226, 01.09.2009

Öz

Cerebellar Ataxia can be defined as the loss of balance and coordination due to various causes emerging in the cerebellum or related pathways. Ataxias can be classified as congenital, hereditary, sporadic and non-hereditary (infections, toxins, drugs and systemic reasons etc). In this study, features of clinical and genetical findings of hereditary ataxia were reviewed.

Kaynakça

  • 1. Klockgether T. Ataxias. In Goetz C, Textbook of Clinical Neurology. 3rd ed, New York: Saunders, 2007; Chapter 35,765-780.
  • 2. Saner N, Başak AN. Heterojen Bir Hastalık Grubu: Spinoserebellar ataksiler, Genetik Yapıları ve Moleküler Tanıları. Türk Nöroloji Dergisi 2006; 12: 185-194.
  • 3. Bird TD. Hereditary Ataxia overview. Erişim. http://www.geneclinics.org
  • 4. Gomez CM, Subramony SH. Dominantly Inherited Ataxias. Seminars in Pediatric Neurology 2003; 10: 210-222.
  • 5. http://neuromuscular.wustl.edu/ ataxia 22 Ocak 2010 6. Bradley WG, Daraff RB, Fenichel GM, Jankoviz J. (Eds). Neurology in Clinical Practice . Chapter 75. 5th ed. Philadelphia: Butterworth-Heinemann 2008; 76: 2123-2145.
  • 7. Gros-Louis F, Dupré N, Dion P, Fox MA, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 2007; 39: 80-85.
  • 8. Dupre N, Gros-Louis F, Chrestian N, et al. A. Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 2007;62:93-98.
  • 9. Lagier-Tourenne C, Tazir M, Lopez LC, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q(10) deficiency. Am J Hum Genet 2008; 82: 661-672.
  • 10. Mollet J, Delahodde A, Serre V, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 2008; 82: 623-630.
  • 11. Gueven N, Becherel OJ, Kijas A, et al. Aprataxin, a novel protein that protects against genotoxic stress. Hum Molec Genet 2004; 13: 1081-1093.
  • 12. Amouri R, Moreira MC, Zouari M, El Euch G, et al. Aprataxin gene mutations in Tunisian families Neurology 2004; 63: 928-929.
  • 13. Moreira MC, Klur S, Watanabe M, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nature Genet 2004; 36: 225-227.
  • 14. Asaka T, Yokoji H, Ito J, et al. Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX. Neurology 2006; 66: 1580-1581.
  • 15. Sanal O, Wei S, Foroud T, et al. Further mapping of an ataxia-telangiectasia locus to the chromosome 11q23 region. Am J Hum Genet 1990; 47: 860-866.
  • 16. Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006; 38(8): 873-5.
  • 17. Harding AE, Matthews S, Jones S, et al. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. New Eng J Med 1985; 313: 32-35.
  • 18. Arita M, Sato Y, Miyata A. et al. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J 1995; 306: 437-443.
  • 19. Ben Hamida C, Doerflinger N, Belal S, et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nature Genet 1993; 5: 195-200.
  • 20. Nystuen A, Benke P J, Merren J, et al. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Molec Genet 1996; 5: 525-531.
  • 21. Mrisca N, Belal S, Hamida CB, et al. Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 2000; 54: 1408-1414.
  • 22. El Euch-Fayache G, Lalani I, Amouri R, et al. Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol 2003; 60: 982-988.
  • 23. Nikali K, Suomalainen A, Saharinen J, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005; 14: 2981-90.
  • 24. Hakonen AH, Heiskanen S, Juvonen V, et al. Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 2005; 77: 430-41.
  • 25. Pasquier L, Laugel V, Lazaro L, et al. Wide clinical variability among 13 new Cockayne syndrome cases confirmed by biochemical aSCAys. Arch Dis Child 2006; 91, 178–182.
  • 26. Funaki S, Takahashi S, Murakami H, et al. Cockayne syndrome with recurrent acute tubulointerstitial nephritis. Pathol Int 2006; 56: 678–682.
  • 27. Reiss U, Hofweber K, Herterich R, et al. Nephrotic syndrome, hypertension, and adrenal failure in atypical Cockayne Syndrome. Pediatr Nephrol 1996; 10: 602–605.
  • 28. Weidenheim KM, Dickson DW, Rapin I. Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mechanisms of Ageing and Development 2009;130: 619–636.
  • 29. Anna-Kaisa Anttonen, Eija Siintola, Lisbeth Tranebjaerg, et al. Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco–Sjögren syndrome. European Journal of Human Genetics 2008; 16: 961–969.
  • 30. JM Van Raamsdonk . Loss of function mutations in SIL1 cause Marinesco-Sjögren syndrome. Clin Genet 2006; 69: 399–403.
  • 31. Ibrahim Mahjneh, Anna-Kaisa Anttonen, Mirja Somer, et al. Myopathy is a prominent feature in Marinesco-Sjögren syndrome, A muscle computed tomography study. J Neurol 2006; 253 : 301–306
  • 32. Anne Slavotinek, Jill Goldman, Kara Weisiger, et al. Marinesco–Sjo¨gren Syndrome in a Male With Mild Dysmorphism. American Journal of Medical Genetics 2005; 133A: 197-201.
  • 33. Reinker K, Hsia YE, Rimoin DL, et al. Orthopaedic Manifestations of Marinesco-Sjögren Syndrome. Journal of Pediatric Orthopaedics 2002;22:399–403.
  • 34. Harting I, Blaschek A, Wolf NI, et al. T2-hyperintense cerebellar cortex in Marinesco–Sjögren syndrome. Neurology 2004; 63: 2448-2449.
  • 35. Christodoulou K, Deymeer F Serdaroglu P, et al. Mapping of the second Friedreich's ataxia (FA2) locus to chromosome 9p23-p11: evidence for further locus heterogeneity. Neurogenetics 2001; 3: 127-132
  • 36. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet 2000; 37: 1-8.
  • 37. Alper G, Narayanan V. Friedreich's ataxia. J Neurol 2009; 256(1): 3-8.
  • 38. Gucev Z, Tasic V, Jancevska Aet al. Friedreich's ataxia (FA) associated with diabetes mellitus type 1 and hypertrophic cardiomyopathy: analysis of a FA family. Med Arh 2009; 63: 110-111.
  • 39. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol 2009; 1: 3-8.
  • 40. Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335: 1169-1175.
  • 41. Harding AE. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysisof early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104: 589- 620
  • 42. Geoffrey G, Barbeau A, Breton G, et al. Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 1976; 3: 279-286. 43. Klockgether T, Chamberlain S, Wüllner U, et al. Late-onset Friedreich’s onance imaging. Arch Neurol 1993; 50:803-806.
  • 44. Kostrzewa M, Klockgether T, Damian MS, et al. Locus heterogeneity in Friedreich ataxia. Neurogenetics 1997; 1: 43-47.
  • 45. Harding A E. Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J Neurol Neurosurg Psychiat 1981; 44: 503-508.
  • 46. Klocgether T, lüdtke R, Kramer B, et al. The natural history of degenerative ataxia: A retrospective study in 446 patients. Brain 1998; 121: 589-600.
  • 47. Tsou AY, Friedman LS, Wilson RB, Lynch DR. Pharmacotherapy for Friedreich ataxia. CNS Drugs 2009; 23: 213-23.
  • 48. Artuch R, Aracil A, Mas A, et al. Friedreich’s ataxia: İdebenone treatment in early stage patients. Neuropediatrics 2002; 33: 190-193.
  • 49. Di prospero N, Baker A, Jeffries N, et al. Neurological effects of high dose idebenone in patients with Friedreich’s ataxia: a randomized placebo controlled trial. Lancet Neurol 2007; 6: 878-886.
  • 50. Brent L Fogel, Susan Perlman. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007; 6: 245-257.
  • 51. Gilfillan GD, Selmer KK, Roxrud I, et al. SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet 2008; 82: 1003-1010.
  • 52. Pondarre C, Campagna DR, Antiochos B, et al. The gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 2007; 109: 3567- 3569.
  • 53. Pagon RA, Bird TD, Detter JC. Hereditary sideroblastic anaemia and ataxia: an X linked recessive disorder. J Med Genet 1985; 22: 267-273.
  • 54. Leehey MA, Berry-Kravis E, Min SJ, et al. Progression of tremor and ataxia in male carriers of the FMR1 premutation. Mov Disord 2007; 22: 203-206.
  • 55. Jacquemont S, Farzin F, Hall D, et al. Aging in individuals with the FMR 1 mutation. Am J Ment Retard 2004; 109: 154-164.
  • 56. Hagerman Rj, Coffey SM, et al. Neuropathy as a presenting feature in fragile X-associated tremor/ataxia syndrome. Am J Med Genet 2007; 143: 2256-60
  • 57. Bacalman S, Farzin F, Bourgeois JA, et al. Psychiatric phenotype of the Fragile X-associated tremor/ataxia syndrome (FXTAS) in males; newly described Fronto-subcortical dementia. J Clin Psychiatry 2006; 67: 87-94
  • 58. Cronister A, Schreiner R, Wittenberger M, et al. Heterozygous fagile X female: historical, physical, cognitive, and cytogenetic features. Am J Med Genet 1991; 38: 269-274.
  • 59. Schöls L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3: 291-304.
  • 60. Banfi S, Servadio A, Chung M, et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genet 1994; 7: 513-520.
  • 61. Sasaki H, Fukazawa T, Yanagihara T, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand 1996; 93: 64-71.
  • 62. Sriranjini SJ, Pal PK, Krishna N, Sathyaprabha TN. Subclinical pulmonary dysfunction in spinocerebellar ataxias 1, 2 and 3. Acta Neurol Scand DOI: 10.1111/j.1600- 404.2009.01306.x. (c) 2009.
  • 63. Dang D, Cunnington D. Excessive daytime somnolence in spinocerebellar ataxia type, J Neurol Sci 2010; 290: 146-147.
  • 64. Pulst, SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet 1996; 14: 269-276.
  • 65. Ramos EM, Martins S, Alonso I, et al. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2). Am J Med Genet B Neuropsychiatr Gene 2009; [Epub ahead of print]
  • 66. Giunti P, Sabbadini G, Sweeney MG, et al. The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families: frequency, clinical and genetic correlates. Brain 1998; 121: 459-67.
  • 67. Furtado S, Payami H, Lockhart PJ, et al. Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 2004; 19: 622-9.
  • 68. Modoni A, Contarino MF, Bentivoglio AR, et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov Disord 2007; 22: 324-7.
  • 69. Shan DE, Soong BW, Sum CM, et al. Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism. Ann Neurol 2001; 50: 812-15.
  • 70. Özbek S, Güneş A, Zarifoğlu M, et al. Parkinsonizm Bulgularıyla Giden Spinoserebellar Ataksi Tip 2 Olgusu. Parkinson Hastalığı ve Hareket Bozuklukları Dergisi 2009; 12: 76-79.
  • 71. Ağan K, Kutlu D, Başak N, et al. Spinocerebellar ataxia type 2 in a turkish family. Marmara Medical Journal 2006; 19: 135-8.
  • 72. Schöls L, Haan J, Riess O et al. Sleep disturbance in spinocerebellar ataxias. is the SCA3 mutation a cause of restless legs syndrome? Neurology 1998; 51: 1603-07.
  • 73. Flanigan K, Gardner K, Alderson K et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996; 59: 392-399.
  • 74. Gardner K, Alderson K, Galster B, Kaplan C et al. Autosomal dominant spinocerebellar ataxia: clinical description of a distinct hereditary ataxia and genetic localization to chromosome 16 (SCA4) in a Utah kindred. Neurology 1994; 44: A361.
  • 75. Hellenbroich Y, Bubel S, Pawlack H et al. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol 2003; 250: 668-671.
  • 76. A. Stankewich, M. C. Tse, W. T. Peters, L. et al. A widely expressed beta-III spectrin associated with Golgi and cytoplasmic vesicles. Proc Nat Acad Sci 1998; 19: 14158-14163.
  • 77. Shcöls L, Szymanski S, Peter S, et al. Genetic background of apparently idiopatic sporadic cerebellar ataxia. Hum Genet 2000; 107: 132-37.
  • 78. Diriong S, Lory P, Williams ME, et al. Chromosomal localization of the human genes for alpha-1A, alpha-1B, and alpha-1E voltage-dependent Ca(2+) channel subunits. Genomics 1995; 30: 605-609.
  • 79. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca(2+) channel gene CACNL1A4. Cell 1996; 87: 543-552.
  • 80. David G., Abbas N., Stevanin G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet 1997; 17: 65-70.
  • 81. Michalik A., Del-Favero J., Mauger C. et al. Genomic organisation of the spinocerebellar ataxia type 7 (SCA7) gene responsible for autosomal dominant cerebellar ataxia with retinal degeneration. Hum Genet 1999; 105: 410-417.
  • 82. Ikeda Y., Shizuka M., Watanabe M. et al. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 2000; 54: 950-955.
  • 83. Ito H., Kawakami H., Wate R. et al. Clinicopathologic investigation of a family with expanded SCA8 CTA/CTG repeats. Neurology 2006; 67: 1479-1481.
  • 84. Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet 1999; 21: 379-384.
  • 85. Higgins JJ, Pho LT, Ide SE, et al. Polymeropoulos, M. H. Evidence for a new spinocerebellar ataxia locus. Mov Disord 1997; 12: 412-417.
  • 86. Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genet 2000; 26: 191-194.
  • 87. Rasmussen A, Matsuura T, Ruano L, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 2001; 50: 234-239.
  • 88. Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature Genet 2007; 39: 1434-1436.
  • 89. Holmes SE, O'Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5-prime region of PPP2R2B is associated with SCA12. Nature Genet 1999; 23: 391- 392.
  • 90. Herman-Bert A, Stevanin G, Netter JC, et al. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 2000; 67: 229-235.
  • 91. Waters MF, Minassian NA, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental nervous system phenotypes. Nature Genet 2006; 38: 447-451.
  • 92. Brkanac Z, Bylenok L, Fernandez M, et al. A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter. Arch Neurol 2002; 59: 1291-1295.
  • 93. Chen DH, Brkanac Z, Verlinde C, et al. Missense mutations in the regulatory domain of PKCgamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet, 2003; 72: 839-849.
  • 94. Storey E, Gardner RJM, Knight MA, et al. A new autosomal dominant pure cerebellar ataxia. Neurology 2001; 57: 1913-1915.
  • 95. Iwaki A, Kawano Y, Miura S, et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 2008; 45: 32-35.
  • 96. Miura S, Shibata H, Furuya H, et al. The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology 2006; 67: 1236-1241.
  • 97. Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease?. Hum. Molec Genet 1999; 8: 2047-2053.
  • 98. Gao R, Matsuura T, Coolbaugh M, et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 2008; 16: 215-22.
  • 99. Minnerop M, Joe A, Lutz M, et al. Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol 2005; 58: 490-491.
  • 100. Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet 2002; 114: 450-457.
  • 101. Brkanac Z, Spencer D, Shendure J, et al. IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. Am J Hum Genet 2009; 84: 692-697.
  • 102. Schelhaas HJ, Ippel PF, Hageman G, et al. Clinical and genetic analysis of a fourgeneration fam ilywith a distinct autosomal dominant cerebellar ataxia. J Neurol 2001; 248: 113-120.
  • 103. Verbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 2002; 111: 388-393.
  • 104. Knight MA, Gardner RJM, Bahlo M, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 2004; 127: 1172-1181.
  • 105. Coutinho P, Cruz VT, Tuna A, et al. Cerebellar ataxia with spasmodic cough: a new form of dominant ataxia. Arch Neurol 2006; 63: 553-555.
  • 106. Devos D, Schraen-Maschke S, Vuillaume I, et al. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001; 56: 234-238.
  • 107. Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 2002; 52: 666-670.
  • 108. Schelhaas HJ, Ippel PF, Hageman G, et al. Clinical and genetic analysis of a fourgeneration family with a distinct autosomal dominant cerebellar ataxia. J Neurol 2001; 248:113-120.
  • 109. Chung M, Lu YC, Cheng NC, et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 2003; 126: 1293-1299.
  • 110. Verbeek DS, van de Warrenburg BP, Wesseling P, et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain 2004; 127: 2551-2557.
  • 111. Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 2004; 55: 97-104.
  • 112. Yu GY, Howell MJ, Roller MJ, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005; 57: 349-354.
  • 113. Van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral (sic) ataxia. Am J Hum Genet 2003; 72: 191-199.
  • 114. Dalski A, Atici J, Kreuz FR, et al. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Europ J Hum Genet, 2005; 13: 118-120.
  • 115. Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 2006; 129: 235-242.
  • 116. Storey E, Bahlo M, Fahey M, et al. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 2009; 80: 408-411.
  • 117. Onodera O, Oyake M, Takano H, et al. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 1995; 57: 1050-1060.
  • 118. Naito H, Oyanagi S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 1982; 32: 798-807.
  • 119. Farmer TW, Wingfield MS, Lynch SA, et al. Ataxia, chorea, seizures, and dementia: pathologic features of a newly defined familial disorder. Arch Neurol 1989; 46:774-779.
  • 120. Wardle M, Morris HR, Robertson NP. Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: A systematic review. Mov Disord 2009; 24: 1636-640.
  • 121. Öner C. Genetik kavramlar. 6. baskı. Ankara: Palme Yayıncılık, 2002; 744-746.
  • 122. İşcan M. Moleküler genetikte modern teknikler. Biyoinformatik-2003 (Teori ve Uygulama) Lisansüstü Yaz Okulu Erzurum-Türkiye, 22-28 Haziran 2003; 71-77
  • 123. Kalaycıoğlu A, Öner C, Birben E, Bozkurt A. PCR tekniği ve DNA parmakizi analizi. Uygulamalı Moleküler Biyoloji Teknikleri Lisansüstü Yaz Okulu Ankara-Türkiye, 7-13 Eylül 1997; 29-34.
  • 124. Sambrook J, Fritsch EF, ManiatisT. Molecular cloning, A laboratory manual. 2nd Ed., Cold spring harbor laboratory pres 1989. 125. Cooper GM. The cell a molecular approach. ASM Press Washington DC, 1997; 113.
  • 126. Watson JD, Gilman M, Witkowski J, Zollar M. Recombinant DNA. 2nd Ed., Scientific American books US 1992; 79-82.
  • 127. Bozkurt G, Algüneş Ç. Tıpta moleküler genetik uygulamaları genel prensipleri. Edirne: Trakya Üniversitesi Matbaa Tesisleri 2000; 42-46, 66-69.
  • 128. Solak M, Bağcı H, Şengil AZ, Öztaş S. Moleküler genetik ve rekombinant DNA teknolojisi. Afyon: Uyun Ajans 2000; 130-133, 135.
  • 129. Kocatürk Sel S. Spinal müsküler atrofi hastalarında SMN geni ekzon 7 ve 8'in moleküler analizi. Yüksek Lisans Tezi 2005.
  • 130. http://www.genetiklab.com Kapiller elektroforez sistemlerinde relatif flouresan kantitasyon 13.02.2010.
  • 131. Özer N, Öğüş H. Elektroforez ve izoelektrik odaklama. Biyokimyada temel ve modern teknikler Biyokimya Lisansüstü Yaz Okulu Kuşadası-Türkiye, 27 Ağustos-3 Eylül 2000; 251- 260.
  • 132. Özer N, Öğüş H. Kapiller Elektroforez. In: Telefoncu A, Zihnioğlu F, Kılınç A, Salnıkow J. Biyokimyada Temel ve Modern Teknikler Bornova: Ege Üniversitesi, 2000; 279-294.
  • 133. Aşıcıoğlu F, Koluaçık S, Çetinkaya Ü, Akyüz F, Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel jel elektroforez yöntemi ile karşılaştırma. Adli Tıp Derg 2002; 16: 88-93.
  • 134. Dilsiz N. Moleküler biyoloji. Palme Yayıncılık, Ankara. 2004.
  • 135. İzbırak A, Güler G, Tan S. DNA’nın agaroz jel elektroforezi ve spektrofotometrik miktar tayini. Uygulamalı Moleküler Biyoloji Teknikleri Lisansüstü Yaz Okulu Ankara-Türkiye, 7-13 Eylül 1997; 17-25.
  • 136. http://www.drzeydanli.com.tr/images/image/Elektroforez%20.JPG.

Herediter Ataksiler

Yıl 2009, Cilt: 18 Sayı: 3, 171 - 226, 01.09.2009

Öz

Serebellar ataksi, serebellum ve ilgili yollardaki değişik nedenlere bağlı olarak ortaya çıkan denge ve koordinasyon kaybı olarak tanımlanabilir. Ataksiler konjenital, herediter, sporadik ve non herediter (enfeksiyonlar, toksinler ve ilaçlar, sistemik nedenler gibi) olarak sınıflanabilir. Bu çalışmada herediter ataksilerin klinik ve genetik özellikleri gözden geçirilmiştir.

Kaynakça

  • 1. Klockgether T. Ataxias. In Goetz C, Textbook of Clinical Neurology. 3rd ed, New York: Saunders, 2007; Chapter 35,765-780.
  • 2. Saner N, Başak AN. Heterojen Bir Hastalık Grubu: Spinoserebellar ataksiler, Genetik Yapıları ve Moleküler Tanıları. Türk Nöroloji Dergisi 2006; 12: 185-194.
  • 3. Bird TD. Hereditary Ataxia overview. Erişim. http://www.geneclinics.org
  • 4. Gomez CM, Subramony SH. Dominantly Inherited Ataxias. Seminars in Pediatric Neurology 2003; 10: 210-222.
  • 5. http://neuromuscular.wustl.edu/ ataxia 22 Ocak 2010 6. Bradley WG, Daraff RB, Fenichel GM, Jankoviz J. (Eds). Neurology in Clinical Practice . Chapter 75. 5th ed. Philadelphia: Butterworth-Heinemann 2008; 76: 2123-2145.
  • 7. Gros-Louis F, Dupré N, Dion P, Fox MA, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 2007; 39: 80-85.
  • 8. Dupre N, Gros-Louis F, Chrestian N, et al. A. Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 2007;62:93-98.
  • 9. Lagier-Tourenne C, Tazir M, Lopez LC, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q(10) deficiency. Am J Hum Genet 2008; 82: 661-672.
  • 10. Mollet J, Delahodde A, Serre V, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 2008; 82: 623-630.
  • 11. Gueven N, Becherel OJ, Kijas A, et al. Aprataxin, a novel protein that protects against genotoxic stress. Hum Molec Genet 2004; 13: 1081-1093.
  • 12. Amouri R, Moreira MC, Zouari M, El Euch G, et al. Aprataxin gene mutations in Tunisian families Neurology 2004; 63: 928-929.
  • 13. Moreira MC, Klur S, Watanabe M, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nature Genet 2004; 36: 225-227.
  • 14. Asaka T, Yokoji H, Ito J, et al. Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX. Neurology 2006; 66: 1580-1581.
  • 15. Sanal O, Wei S, Foroud T, et al. Further mapping of an ataxia-telangiectasia locus to the chromosome 11q23 region. Am J Hum Genet 1990; 47: 860-866.
  • 16. Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006; 38(8): 873-5.
  • 17. Harding AE, Matthews S, Jones S, et al. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. New Eng J Med 1985; 313: 32-35.
  • 18. Arita M, Sato Y, Miyata A. et al. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J 1995; 306: 437-443.
  • 19. Ben Hamida C, Doerflinger N, Belal S, et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nature Genet 1993; 5: 195-200.
  • 20. Nystuen A, Benke P J, Merren J, et al. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Molec Genet 1996; 5: 525-531.
  • 21. Mrisca N, Belal S, Hamida CB, et al. Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 2000; 54: 1408-1414.
  • 22. El Euch-Fayache G, Lalani I, Amouri R, et al. Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol 2003; 60: 982-988.
  • 23. Nikali K, Suomalainen A, Saharinen J, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005; 14: 2981-90.
  • 24. Hakonen AH, Heiskanen S, Juvonen V, et al. Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 2005; 77: 430-41.
  • 25. Pasquier L, Laugel V, Lazaro L, et al. Wide clinical variability among 13 new Cockayne syndrome cases confirmed by biochemical aSCAys. Arch Dis Child 2006; 91, 178–182.
  • 26. Funaki S, Takahashi S, Murakami H, et al. Cockayne syndrome with recurrent acute tubulointerstitial nephritis. Pathol Int 2006; 56: 678–682.
  • 27. Reiss U, Hofweber K, Herterich R, et al. Nephrotic syndrome, hypertension, and adrenal failure in atypical Cockayne Syndrome. Pediatr Nephrol 1996; 10: 602–605.
  • 28. Weidenheim KM, Dickson DW, Rapin I. Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mechanisms of Ageing and Development 2009;130: 619–636.
  • 29. Anna-Kaisa Anttonen, Eija Siintola, Lisbeth Tranebjaerg, et al. Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco–Sjögren syndrome. European Journal of Human Genetics 2008; 16: 961–969.
  • 30. JM Van Raamsdonk . Loss of function mutations in SIL1 cause Marinesco-Sjögren syndrome. Clin Genet 2006; 69: 399–403.
  • 31. Ibrahim Mahjneh, Anna-Kaisa Anttonen, Mirja Somer, et al. Myopathy is a prominent feature in Marinesco-Sjögren syndrome, A muscle computed tomography study. J Neurol 2006; 253 : 301–306
  • 32. Anne Slavotinek, Jill Goldman, Kara Weisiger, et al. Marinesco–Sjo¨gren Syndrome in a Male With Mild Dysmorphism. American Journal of Medical Genetics 2005; 133A: 197-201.
  • 33. Reinker K, Hsia YE, Rimoin DL, et al. Orthopaedic Manifestations of Marinesco-Sjögren Syndrome. Journal of Pediatric Orthopaedics 2002;22:399–403.
  • 34. Harting I, Blaschek A, Wolf NI, et al. T2-hyperintense cerebellar cortex in Marinesco–Sjögren syndrome. Neurology 2004; 63: 2448-2449.
  • 35. Christodoulou K, Deymeer F Serdaroglu P, et al. Mapping of the second Friedreich's ataxia (FA2) locus to chromosome 9p23-p11: evidence for further locus heterogeneity. Neurogenetics 2001; 3: 127-132
  • 36. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet 2000; 37: 1-8.
  • 37. Alper G, Narayanan V. Friedreich's ataxia. J Neurol 2009; 256(1): 3-8.
  • 38. Gucev Z, Tasic V, Jancevska Aet al. Friedreich's ataxia (FA) associated with diabetes mellitus type 1 and hypertrophic cardiomyopathy: analysis of a FA family. Med Arh 2009; 63: 110-111.
  • 39. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol 2009; 1: 3-8.
  • 40. Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335: 1169-1175.
  • 41. Harding AE. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysisof early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104: 589- 620
  • 42. Geoffrey G, Barbeau A, Breton G, et al. Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 1976; 3: 279-286. 43. Klockgether T, Chamberlain S, Wüllner U, et al. Late-onset Friedreich’s onance imaging. Arch Neurol 1993; 50:803-806.
  • 44. Kostrzewa M, Klockgether T, Damian MS, et al. Locus heterogeneity in Friedreich ataxia. Neurogenetics 1997; 1: 43-47.
  • 45. Harding A E. Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J Neurol Neurosurg Psychiat 1981; 44: 503-508.
  • 46. Klocgether T, lüdtke R, Kramer B, et al. The natural history of degenerative ataxia: A retrospective study in 446 patients. Brain 1998; 121: 589-600.
  • 47. Tsou AY, Friedman LS, Wilson RB, Lynch DR. Pharmacotherapy for Friedreich ataxia. CNS Drugs 2009; 23: 213-23.
  • 48. Artuch R, Aracil A, Mas A, et al. Friedreich’s ataxia: İdebenone treatment in early stage patients. Neuropediatrics 2002; 33: 190-193.
  • 49. Di prospero N, Baker A, Jeffries N, et al. Neurological effects of high dose idebenone in patients with Friedreich’s ataxia: a randomized placebo controlled trial. Lancet Neurol 2007; 6: 878-886.
  • 50. Brent L Fogel, Susan Perlman. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007; 6: 245-257.
  • 51. Gilfillan GD, Selmer KK, Roxrud I, et al. SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet 2008; 82: 1003-1010.
  • 52. Pondarre C, Campagna DR, Antiochos B, et al. The gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 2007; 109: 3567- 3569.
  • 53. Pagon RA, Bird TD, Detter JC. Hereditary sideroblastic anaemia and ataxia: an X linked recessive disorder. J Med Genet 1985; 22: 267-273.
  • 54. Leehey MA, Berry-Kravis E, Min SJ, et al. Progression of tremor and ataxia in male carriers of the FMR1 premutation. Mov Disord 2007; 22: 203-206.
  • 55. Jacquemont S, Farzin F, Hall D, et al. Aging in individuals with the FMR 1 mutation. Am J Ment Retard 2004; 109: 154-164.
  • 56. Hagerman Rj, Coffey SM, et al. Neuropathy as a presenting feature in fragile X-associated tremor/ataxia syndrome. Am J Med Genet 2007; 143: 2256-60
  • 57. Bacalman S, Farzin F, Bourgeois JA, et al. Psychiatric phenotype of the Fragile X-associated tremor/ataxia syndrome (FXTAS) in males; newly described Fronto-subcortical dementia. J Clin Psychiatry 2006; 67: 87-94
  • 58. Cronister A, Schreiner R, Wittenberger M, et al. Heterozygous fagile X female: historical, physical, cognitive, and cytogenetic features. Am J Med Genet 1991; 38: 269-274.
  • 59. Schöls L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3: 291-304.
  • 60. Banfi S, Servadio A, Chung M, et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genet 1994; 7: 513-520.
  • 61. Sasaki H, Fukazawa T, Yanagihara T, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand 1996; 93: 64-71.
  • 62. Sriranjini SJ, Pal PK, Krishna N, Sathyaprabha TN. Subclinical pulmonary dysfunction in spinocerebellar ataxias 1, 2 and 3. Acta Neurol Scand DOI: 10.1111/j.1600- 404.2009.01306.x. (c) 2009.
  • 63. Dang D, Cunnington D. Excessive daytime somnolence in spinocerebellar ataxia type, J Neurol Sci 2010; 290: 146-147.
  • 64. Pulst, SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet 1996; 14: 269-276.
  • 65. Ramos EM, Martins S, Alonso I, et al. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2). Am J Med Genet B Neuropsychiatr Gene 2009; [Epub ahead of print]
  • 66. Giunti P, Sabbadini G, Sweeney MG, et al. The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families: frequency, clinical and genetic correlates. Brain 1998; 121: 459-67.
  • 67. Furtado S, Payami H, Lockhart PJ, et al. Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 2004; 19: 622-9.
  • 68. Modoni A, Contarino MF, Bentivoglio AR, et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov Disord 2007; 22: 324-7.
  • 69. Shan DE, Soong BW, Sum CM, et al. Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism. Ann Neurol 2001; 50: 812-15.
  • 70. Özbek S, Güneş A, Zarifoğlu M, et al. Parkinsonizm Bulgularıyla Giden Spinoserebellar Ataksi Tip 2 Olgusu. Parkinson Hastalığı ve Hareket Bozuklukları Dergisi 2009; 12: 76-79.
  • 71. Ağan K, Kutlu D, Başak N, et al. Spinocerebellar ataxia type 2 in a turkish family. Marmara Medical Journal 2006; 19: 135-8.
  • 72. Schöls L, Haan J, Riess O et al. Sleep disturbance in spinocerebellar ataxias. is the SCA3 mutation a cause of restless legs syndrome? Neurology 1998; 51: 1603-07.
  • 73. Flanigan K, Gardner K, Alderson K et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996; 59: 392-399.
  • 74. Gardner K, Alderson K, Galster B, Kaplan C et al. Autosomal dominant spinocerebellar ataxia: clinical description of a distinct hereditary ataxia and genetic localization to chromosome 16 (SCA4) in a Utah kindred. Neurology 1994; 44: A361.
  • 75. Hellenbroich Y, Bubel S, Pawlack H et al. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol 2003; 250: 668-671.
  • 76. A. Stankewich, M. C. Tse, W. T. Peters, L. et al. A widely expressed beta-III spectrin associated with Golgi and cytoplasmic vesicles. Proc Nat Acad Sci 1998; 19: 14158-14163.
  • 77. Shcöls L, Szymanski S, Peter S, et al. Genetic background of apparently idiopatic sporadic cerebellar ataxia. Hum Genet 2000; 107: 132-37.
  • 78. Diriong S, Lory P, Williams ME, et al. Chromosomal localization of the human genes for alpha-1A, alpha-1B, and alpha-1E voltage-dependent Ca(2+) channel subunits. Genomics 1995; 30: 605-609.
  • 79. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca(2+) channel gene CACNL1A4. Cell 1996; 87: 543-552.
  • 80. David G., Abbas N., Stevanin G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet 1997; 17: 65-70.
  • 81. Michalik A., Del-Favero J., Mauger C. et al. Genomic organisation of the spinocerebellar ataxia type 7 (SCA7) gene responsible for autosomal dominant cerebellar ataxia with retinal degeneration. Hum Genet 1999; 105: 410-417.
  • 82. Ikeda Y., Shizuka M., Watanabe M. et al. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 2000; 54: 950-955.
  • 83. Ito H., Kawakami H., Wate R. et al. Clinicopathologic investigation of a family with expanded SCA8 CTA/CTG repeats. Neurology 2006; 67: 1479-1481.
  • 84. Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet 1999; 21: 379-384.
  • 85. Higgins JJ, Pho LT, Ide SE, et al. Polymeropoulos, M. H. Evidence for a new spinocerebellar ataxia locus. Mov Disord 1997; 12: 412-417.
  • 86. Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genet 2000; 26: 191-194.
  • 87. Rasmussen A, Matsuura T, Ruano L, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 2001; 50: 234-239.
  • 88. Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature Genet 2007; 39: 1434-1436.
  • 89. Holmes SE, O'Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5-prime region of PPP2R2B is associated with SCA12. Nature Genet 1999; 23: 391- 392.
  • 90. Herman-Bert A, Stevanin G, Netter JC, et al. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 2000; 67: 229-235.
  • 91. Waters MF, Minassian NA, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental nervous system phenotypes. Nature Genet 2006; 38: 447-451.
  • 92. Brkanac Z, Bylenok L, Fernandez M, et al. A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter. Arch Neurol 2002; 59: 1291-1295.
  • 93. Chen DH, Brkanac Z, Verlinde C, et al. Missense mutations in the regulatory domain of PKCgamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet, 2003; 72: 839-849.
  • 94. Storey E, Gardner RJM, Knight MA, et al. A new autosomal dominant pure cerebellar ataxia. Neurology 2001; 57: 1913-1915.
  • 95. Iwaki A, Kawano Y, Miura S, et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 2008; 45: 32-35.
  • 96. Miura S, Shibata H, Furuya H, et al. The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology 2006; 67: 1236-1241.
  • 97. Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease?. Hum. Molec Genet 1999; 8: 2047-2053.
  • 98. Gao R, Matsuura T, Coolbaugh M, et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 2008; 16: 215-22.
  • 99. Minnerop M, Joe A, Lutz M, et al. Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol 2005; 58: 490-491.
  • 100. Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet 2002; 114: 450-457.
  • 101. Brkanac Z, Spencer D, Shendure J, et al. IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. Am J Hum Genet 2009; 84: 692-697.
  • 102. Schelhaas HJ, Ippel PF, Hageman G, et al. Clinical and genetic analysis of a fourgeneration fam ilywith a distinct autosomal dominant cerebellar ataxia. J Neurol 2001; 248: 113-120.
  • 103. Verbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 2002; 111: 388-393.
  • 104. Knight MA, Gardner RJM, Bahlo M, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 2004; 127: 1172-1181.
  • 105. Coutinho P, Cruz VT, Tuna A, et al. Cerebellar ataxia with spasmodic cough: a new form of dominant ataxia. Arch Neurol 2006; 63: 553-555.
  • 106. Devos D, Schraen-Maschke S, Vuillaume I, et al. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001; 56: 234-238.
  • 107. Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 2002; 52: 666-670.
  • 108. Schelhaas HJ, Ippel PF, Hageman G, et al. Clinical and genetic analysis of a fourgeneration family with a distinct autosomal dominant cerebellar ataxia. J Neurol 2001; 248:113-120.
  • 109. Chung M, Lu YC, Cheng NC, et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 2003; 126: 1293-1299.
  • 110. Verbeek DS, van de Warrenburg BP, Wesseling P, et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain 2004; 127: 2551-2557.
  • 111. Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 2004; 55: 97-104.
  • 112. Yu GY, Howell MJ, Roller MJ, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005; 57: 349-354.
  • 113. Van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral (sic) ataxia. Am J Hum Genet 2003; 72: 191-199.
  • 114. Dalski A, Atici J, Kreuz FR, et al. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Europ J Hum Genet, 2005; 13: 118-120.
  • 115. Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 2006; 129: 235-242.
  • 116. Storey E, Bahlo M, Fahey M, et al. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 2009; 80: 408-411.
  • 117. Onodera O, Oyake M, Takano H, et al. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 1995; 57: 1050-1060.
  • 118. Naito H, Oyanagi S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 1982; 32: 798-807.
  • 119. Farmer TW, Wingfield MS, Lynch SA, et al. Ataxia, chorea, seizures, and dementia: pathologic features of a newly defined familial disorder. Arch Neurol 1989; 46:774-779.
  • 120. Wardle M, Morris HR, Robertson NP. Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: A systematic review. Mov Disord 2009; 24: 1636-640.
  • 121. Öner C. Genetik kavramlar. 6. baskı. Ankara: Palme Yayıncılık, 2002; 744-746.
  • 122. İşcan M. Moleküler genetikte modern teknikler. Biyoinformatik-2003 (Teori ve Uygulama) Lisansüstü Yaz Okulu Erzurum-Türkiye, 22-28 Haziran 2003; 71-77
  • 123. Kalaycıoğlu A, Öner C, Birben E, Bozkurt A. PCR tekniği ve DNA parmakizi analizi. Uygulamalı Moleküler Biyoloji Teknikleri Lisansüstü Yaz Okulu Ankara-Türkiye, 7-13 Eylül 1997; 29-34.
  • 124. Sambrook J, Fritsch EF, ManiatisT. Molecular cloning, A laboratory manual. 2nd Ed., Cold spring harbor laboratory pres 1989. 125. Cooper GM. The cell a molecular approach. ASM Press Washington DC, 1997; 113.
  • 126. Watson JD, Gilman M, Witkowski J, Zollar M. Recombinant DNA. 2nd Ed., Scientific American books US 1992; 79-82.
  • 127. Bozkurt G, Algüneş Ç. Tıpta moleküler genetik uygulamaları genel prensipleri. Edirne: Trakya Üniversitesi Matbaa Tesisleri 2000; 42-46, 66-69.
  • 128. Solak M, Bağcı H, Şengil AZ, Öztaş S. Moleküler genetik ve rekombinant DNA teknolojisi. Afyon: Uyun Ajans 2000; 130-133, 135.
  • 129. Kocatürk Sel S. Spinal müsküler atrofi hastalarında SMN geni ekzon 7 ve 8'in moleküler analizi. Yüksek Lisans Tezi 2005.
  • 130. http://www.genetiklab.com Kapiller elektroforez sistemlerinde relatif flouresan kantitasyon 13.02.2010.
  • 131. Özer N, Öğüş H. Elektroforez ve izoelektrik odaklama. Biyokimyada temel ve modern teknikler Biyokimya Lisansüstü Yaz Okulu Kuşadası-Türkiye, 27 Ağustos-3 Eylül 2000; 251- 260.
  • 132. Özer N, Öğüş H. Kapiller Elektroforez. In: Telefoncu A, Zihnioğlu F, Kılınç A, Salnıkow J. Biyokimyada Temel ve Modern Teknikler Bornova: Ege Üniversitesi, 2000; 279-294.
  • 133. Aşıcıoğlu F, Koluaçık S, Çetinkaya Ü, Akyüz F, Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel jel elektroforez yöntemi ile karşılaştırma. Adli Tıp Derg 2002; 16: 88-93.
  • 134. Dilsiz N. Moleküler biyoloji. Palme Yayıncılık, Ankara. 2004.
  • 135. İzbırak A, Güler G, Tan S. DNA’nın agaroz jel elektroforezi ve spektrofotometrik miktar tayini. Uygulamalı Moleküler Biyoloji Teknikleri Lisansüstü Yaz Okulu Ankara-Türkiye, 7-13 Eylül 1997; 17-25.
  • 136. http://www.drzeydanli.com.tr/images/image/Elektroforez%20.JPG.
Toplam 133 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Filiz Koç Bu kişi benim

Pınar Bengi Boz Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 18 Sayı: 3

Kaynak Göster

AMA Koç F, Boz PB. Herediter Ataksiler. aktd. Eylül 2009;18(3):171-226.