Derleme
BibTex RIS Kaynak Göster

Biochemical Approach to Pyroptosis and Its Role in Cancer

Yıl 2020, Cilt: 29 Sayı: 3, 181 - 189, 30.09.2020
https://doi.org/10.17827/aktd.673798

Öz

The dynamic balance between cell proliferation, differentiation, and death regulates the homeostasis and pathological processes in multicellular organisms. Cell death was considered to be mainly in two types, apoptosis (programmed cell death) and necrosis. However, in recent years, several different ways of cell death are specified, one of which is pyroptosis. The newly discovered pyroptosis consists of a process mediated by the gasdermin family with an inflammatory and immune system response. The effects of pyroptosis on cancer are complex and may vary with the genetic structure. Pyroptosis inhibits tumor formation and development. On the other hand, it supports the microenvironment that is appropriate for tumor formation. Moreover, manipulations of pyroptosis in tumor cells may provide an alternative for cancer treatment. The present review is aimed to provide an overview of the current knowledge of signal transduction systems in pyroptosis, classical (canonical), non-classical pathways, the Gasdermin protein family, the pore-forming mechanism of this family, its relationship with cancers, and the manipulations of pyroptosis in treatment.

Kaynakça

  • 1. Fink SL, Cookson BT et al: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. İnfection and Immunity. 2005;73:1907-1916.
  • 2. Albert ML et al: Death-defying immunity: Do apoptotic cells influence antigen processing and presentation? Nature Reviews Immunol. 2004;4:223–231.
  • 3. Nagarajan K, Soundarapandian K, Thorne RF, Li D, Deyu L et al: Activation of pyroptotic cell death pathways in cancer: an alternative therapeutic approach. Translational oncology. 2019;12:925-931. 4. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, Hu J et al: The role of pyroptosis in cancer: pro-cancer or pro-“host”? Death and Disease. 2019;10:650.
  • 5. Bergsbaken T, Fink SL and Cookson BT et al: Pyroptosis: host cell death and inflammation. Nature Reviews Microbiology. 2009;7: 99–109.
  • 6. Monack DM, Raupach B, Hromockyj AE, Falkow S et al: Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proceedings of the National Academy of Sciences. 1996;93:9833–9838.
  • 7. Zychlinsky A, Prevost MC, Sansonetti PJ et al: Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358:167–169 .
  • 8. Hilbi H, Chen Y, Thirumalai K, Zychlinsky A et al: The interleukin-1 beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun. 1997;65:5165–5170.
  • 9. Hersh D et al: The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci. 1999;96:2396–2401.
  • 10. Boise LH, Collins CM et al: Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends in Microbiology. 2001;9:64–67.
  • 11. Fujii T, Tamura M, Tanaka S, Kato Y et al: Gasdermin D (Gsdmd) Is Dispensable for Mouse Intestinal Epithelium Development. Genesis. 2008;46:418-23.
  • 12. Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42:245–254.
  • 13. Galluzzi L et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486.
  • 14. Lamkanfi M, Dixit VM: Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–1022.
  • 15. Zhang Y, Chen X, Gueydan C, Han J: Plasma membrane changes during programmed cell deaths. Cell Research. 2017;133:1-13.
  • 16. Lamkanfi M, Dixit VM: Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–1022.
  • 17. Van Opdenbosch N et al: Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun. 2014;5:3209. 18. Karki R, Kanneganti T: Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19:197.
  • 19. Wang Y, Sun B: Advances in inflammasome and inflammasome-related diseases. Chin J Immunol. 2015;31:72172.
  • 20. Kesikli SA, Güç D: Steril inflamasyon ve inflamazom. Ankem Derg. 2011;25:102-109.
  • 21. Jorgensen I, Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–142.
  • 22. Man SM, Karki R, Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61–75.
  • 23. Fink SL, Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–1825.
  • 24. Shi J et al: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014;514:187–192.
  • 25. Kayagaki N et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526:666–671.
  • 26. Kang SJ et al: Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. Journal of Cell Biol. 2000;149:613–622.
  • 27. Kayagaki N et al: Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117.
  • 28. Wang S et al: Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92:501–509.
  • 29. Crawford ED, Wells JA: Caspase substrates and cellular remodeling. Annu Rev Biochem. 2011;80:1055–1087.
  • 30. Liu X et al: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–158.
  • 31. Aglietti RA et al: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci. 2016;113:7858–7863.
  • 32. Sborgi L et al: GSDMD membrane pore formation con-stitutes the mechanism of pyroptotic cell death. EMBO J. 2016;35:1766–1778.
  • 33. Rogers C et al: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.
  • 34. Wang Y et al: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99–103.
  • 35. Burgener SS et al: Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Rep. 2019;27:3646–3656.
  • 36. Nagarajan K, Soundarapandian K, Thorne RF, Li D and Deyu Li: Activation of Pyroptotic Cell Death Pathways in Cancer: An Alternative Therapeutic Approach. Translational Oncology. 2019;12:925-931.
  • 37. Wei Q et al: Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest. 2014;94:52–62.
  • 38. Zaki MH, Lamkanfi M, Kanneganti TD: The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 2011;32:171–179.
  • 39. Wei Q, Zhu R, Zhu, J, Zhao, R, Li M et al: E2-induced activation of the NLRP3 inflammasome triggers pyroptosis and inhibits autophagy in HCC cells. Oncol Res. 2019;27:827.
  • 40. Ma X et al: Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget. 2016;7:36185–36197.
  • 41. Chen YF, Qi HY, Wu FL: Euxanthone exhibits anti-proliferative and anti-invasive activities in hepatocellular carcinoma by inducing pyroptosis: preliminary results. Eur Rev Med Pharm Sci. 2018;22:8186–8196.
  • 42. Hergueta RM et al: Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS ONE 2014;9 e90099.
  • 43. Thompson DA, Weigel RJ: Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE-1) in breast carcinomas. Eur J Biochem. 1998;252:169.
  • 44. Shi Y et al: GSDME influences sensitivity of breast cancer MCF-7 cells to paclitaxel by regulating cell pyroptosis. Chin. J Cancer Biother 2019;26:146–151.
  • 45. Lee BL et al: ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci Rep. 2018;8:3788.
  • 46. Saeki N et al: Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer 2019;48:261–271.
  • 47. Chien H, Dix RD: Evidence for multiple cell death pathways during development of experimental cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression: apoptosis, necroptosis, and pyroptosis. J Virol. 2012;86:10961-10978.
  • 48. Song J, Du L, Feng Y, Wu W, Yan Z: Pyroptosis induced by zinc oxide nanoparticles in A549 cells. Wei Sheng Yan Jiu 2013;42:273–276.
  • 49. Draganov D et al: Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222.
  • 50. Pizato N et al: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep 2018;8:1952.
  • 51. Chu Q et al: Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget. 2016;7:84658–84665.
  • 52. Jiang Z et al: miRNA-214 inhibits cellular proliferation and migration in glioma cells targeting caspase 1 involved in pyroptosis. Oncol Res. 2017;25:1009–1019.
  • 53. Wang L et al: Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019;450:22–31.
  • 54. Derangere V et al: Liver X receptor beta activation induces pyroptosis of human and murine colon cancer cells. Cell Death Differ. 2014;21:1914–1924.
  • 55. Tabraue C et al: LXR signaling regulates macrophage survival and inflammation in response to ionizing radiation. Int J Radiat Oncol Biol Phys. 2019;104:913–923.

Piroptozise Biyokimyasal Yaklaşım ve Kanserdeki Rolü

Yıl 2020, Cilt: 29 Sayı: 3, 181 - 189, 30.09.2020
https://doi.org/10.17827/aktd.673798

Öz

Hücre çoğalması, farklılaşması ve ölümü arasındaki dinamik denge çok hücreli organizmalarda homeostazı ve patolojik süreçleri düzenlemektedir. Hücre ölümünün temel olarak apoptozis (programlı hücre ölümü) ve nekrozis olmak üzere 2 tür olduğu düşünülüyordu fakat son yıllarda bir hücrenin çok daha farklı yollarla ölebileceğini gösteren hücre ölüm türleri tanımlanmıştır. Bu hücre ölüm tiplerinden yeni keşfedilen piroptozis, inflamatuvar ve immün sistem tepkisi ile birlikte gasdermin ailesinin aracılık ettiği bir süreçten meydana gelmektedir. Piroptozisin kanser üzerindeki etkileri karmaşıktır ve genetik yapı ile değişiklik gösterebilir. Bir yandan piroptozis tümör oluşumunu ve gelişmesini inhibe ederken diğer yandan tömür oluşumu için uygun mikroçevreyi destekleyebilir. Ayrıca tümör hücrelerinde piroptozisin manipülasyonlarının kanser tedavisine alternatif sağlayabileceği düşünülmektedir. Bu derlemenin amacı piroptoziste sinyal iletim sistemleri, klasik (kanonik) ve klasik olmayan yolaklar, Gasdermin protein ailesi, bu ailenin hücre zarında gözenek oluşturma mekanizması, kanserlerle ilişkisi ve tedavide piroptozis manipülasyonları ile ilgili mevcut bilgiler değerlendirilerek genel bir bakış sağlamaktır.

Kaynakça

  • 1. Fink SL, Cookson BT et al: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. İnfection and Immunity. 2005;73:1907-1916.
  • 2. Albert ML et al: Death-defying immunity: Do apoptotic cells influence antigen processing and presentation? Nature Reviews Immunol. 2004;4:223–231.
  • 3. Nagarajan K, Soundarapandian K, Thorne RF, Li D, Deyu L et al: Activation of pyroptotic cell death pathways in cancer: an alternative therapeutic approach. Translational oncology. 2019;12:925-931. 4. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, Hu J et al: The role of pyroptosis in cancer: pro-cancer or pro-“host”? Death and Disease. 2019;10:650.
  • 5. Bergsbaken T, Fink SL and Cookson BT et al: Pyroptosis: host cell death and inflammation. Nature Reviews Microbiology. 2009;7: 99–109.
  • 6. Monack DM, Raupach B, Hromockyj AE, Falkow S et al: Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proceedings of the National Academy of Sciences. 1996;93:9833–9838.
  • 7. Zychlinsky A, Prevost MC, Sansonetti PJ et al: Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358:167–169 .
  • 8. Hilbi H, Chen Y, Thirumalai K, Zychlinsky A et al: The interleukin-1 beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun. 1997;65:5165–5170.
  • 9. Hersh D et al: The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci. 1999;96:2396–2401.
  • 10. Boise LH, Collins CM et al: Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends in Microbiology. 2001;9:64–67.
  • 11. Fujii T, Tamura M, Tanaka S, Kato Y et al: Gasdermin D (Gsdmd) Is Dispensable for Mouse Intestinal Epithelium Development. Genesis. 2008;46:418-23.
  • 12. Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42:245–254.
  • 13. Galluzzi L et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486.
  • 14. Lamkanfi M, Dixit VM: Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–1022.
  • 15. Zhang Y, Chen X, Gueydan C, Han J: Plasma membrane changes during programmed cell deaths. Cell Research. 2017;133:1-13.
  • 16. Lamkanfi M, Dixit VM: Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–1022.
  • 17. Van Opdenbosch N et al: Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun. 2014;5:3209. 18. Karki R, Kanneganti T: Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19:197.
  • 19. Wang Y, Sun B: Advances in inflammasome and inflammasome-related diseases. Chin J Immunol. 2015;31:72172.
  • 20. Kesikli SA, Güç D: Steril inflamasyon ve inflamazom. Ankem Derg. 2011;25:102-109.
  • 21. Jorgensen I, Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–142.
  • 22. Man SM, Karki R, Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61–75.
  • 23. Fink SL, Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–1825.
  • 24. Shi J et al: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014;514:187–192.
  • 25. Kayagaki N et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526:666–671.
  • 26. Kang SJ et al: Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. Journal of Cell Biol. 2000;149:613–622.
  • 27. Kayagaki N et al: Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117.
  • 28. Wang S et al: Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92:501–509.
  • 29. Crawford ED, Wells JA: Caspase substrates and cellular remodeling. Annu Rev Biochem. 2011;80:1055–1087.
  • 30. Liu X et al: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–158.
  • 31. Aglietti RA et al: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci. 2016;113:7858–7863.
  • 32. Sborgi L et al: GSDMD membrane pore formation con-stitutes the mechanism of pyroptotic cell death. EMBO J. 2016;35:1766–1778.
  • 33. Rogers C et al: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.
  • 34. Wang Y et al: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99–103.
  • 35. Burgener SS et al: Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Rep. 2019;27:3646–3656.
  • 36. Nagarajan K, Soundarapandian K, Thorne RF, Li D and Deyu Li: Activation of Pyroptotic Cell Death Pathways in Cancer: An Alternative Therapeutic Approach. Translational Oncology. 2019;12:925-931.
  • 37. Wei Q et al: Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest. 2014;94:52–62.
  • 38. Zaki MH, Lamkanfi M, Kanneganti TD: The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 2011;32:171–179.
  • 39. Wei Q, Zhu R, Zhu, J, Zhao, R, Li M et al: E2-induced activation of the NLRP3 inflammasome triggers pyroptosis and inhibits autophagy in HCC cells. Oncol Res. 2019;27:827.
  • 40. Ma X et al: Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget. 2016;7:36185–36197.
  • 41. Chen YF, Qi HY, Wu FL: Euxanthone exhibits anti-proliferative and anti-invasive activities in hepatocellular carcinoma by inducing pyroptosis: preliminary results. Eur Rev Med Pharm Sci. 2018;22:8186–8196.
  • 42. Hergueta RM et al: Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS ONE 2014;9 e90099.
  • 43. Thompson DA, Weigel RJ: Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE-1) in breast carcinomas. Eur J Biochem. 1998;252:169.
  • 44. Shi Y et al: GSDME influences sensitivity of breast cancer MCF-7 cells to paclitaxel by regulating cell pyroptosis. Chin. J Cancer Biother 2019;26:146–151.
  • 45. Lee BL et al: ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci Rep. 2018;8:3788.
  • 46. Saeki N et al: Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer 2019;48:261–271.
  • 47. Chien H, Dix RD: Evidence for multiple cell death pathways during development of experimental cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression: apoptosis, necroptosis, and pyroptosis. J Virol. 2012;86:10961-10978.
  • 48. Song J, Du L, Feng Y, Wu W, Yan Z: Pyroptosis induced by zinc oxide nanoparticles in A549 cells. Wei Sheng Yan Jiu 2013;42:273–276.
  • 49. Draganov D et al: Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222.
  • 50. Pizato N et al: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep 2018;8:1952.
  • 51. Chu Q et al: Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget. 2016;7:84658–84665.
  • 52. Jiang Z et al: miRNA-214 inhibits cellular proliferation and migration in glioma cells targeting caspase 1 involved in pyroptosis. Oncol Res. 2017;25:1009–1019.
  • 53. Wang L et al: Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019;450:22–31.
  • 54. Derangere V et al: Liver X receptor beta activation induces pyroptosis of human and murine colon cancer cells. Cell Death Differ. 2014;21:1914–1924.
  • 55. Tabraue C et al: LXR signaling regulates macrophage survival and inflammation in response to ionizing radiation. Int J Radiat Oncol Biol Phys. 2019;104:913–923.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Kezban Kartlaşmış 0000-0001-5090-0013

Nurten Dikmen 0000-0002-7411-9640

Yayımlanma Tarihi 30 Eylül 2020
Kabul Tarihi 13 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 29 Sayı: 3

Kaynak Göster

AMA Kartlaşmış K, Dikmen N. Piroptozise Biyokimyasal Yaklaşım ve Kanserdeki Rolü. aktd. Eylül 2020;29(3):181-189. doi:10.17827/aktd.673798