Derleme
BibTex RIS Kaynak Göster

Ferroptosis as A New Cell Death

Yıl 2021, Cilt: 30 Sayı: 4, 258 - 268, 30.12.2021
https://doi.org/10.17827/aktd.980659

Öz

Ferroptosis is a newly discovered cell death form originates from iron-dependent lipid peroxide accumulation, which differs from traditional apoptosis and necrosis. This is characterized by cytological changes including cell death, shrinkage of cell volume and increased mitochondrial membrane density. Morphologically, mitochondrial membrane condensation, impairment or destruction of the mitochondria crista, and mitochondrial membrane rupture, and smaller mitochondria than normal mitochondria can be seen. Ferroptosis can be induced by class of two small molecule substances known as class 1 and class 2 ferroptosis inducers. In addition to these substances, it can also be induced by drugs such as Sorafenib and artemisine derivative. In cancer cells and some normal cells, such as renal tubule cells, it can be triggered by these drugs and class 1 and 2 ferroptosis inducers. Activation of mitochondrial voltage-dependent anion channels and mitogen-activated protein kinases, increased endoplasmic reticulum stress, and inhibition of the cystine-glutamate delivery system have been implicated in the induction of ferroptosis. This process is caused by the accumulation of lipid peroxidation products and reactive oxygen species (ROS) derived from iron metabolism. Ferroptosis may be inhibited by iron chelators (eg, Deferoxamine) and lipid peroxidation inhibitors (eg, Ferrostatin). Ferroptosis plays an undeniable role in the proliferation of some tumor cells such as lymphocytoma, pancreatic ductal cell cancer, renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC).

Kaynakça

  • 1. Frey PA, Reed GH. The ubiquity of iron. ACS Chem Biol;2017: 1477-81.
  • 2. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016; 41: 274–86.
  • 3. Manz DH, Blanchette NL, Paul BT,Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci. 2016; 1368: 149–61.
  • 4. Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res. 2011; 44: 458–67.
  • 5. Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012; 24: 981–90.
  • 6. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149: 1060–72.
  • 7. Dolma S, Lessnick SL, Hahn WC,Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003; 3: 285–96.
  • 8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008; 15: 234–45.
  • 9. Louandre C, Ezzoukhry Z, Godin C,Barbare JC,Maziêre JC, Chauffert B, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013; 133: 1732–42.
  • 10. Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015; 22: 1045–54.
  • 11. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience J. 2015; 2: 517–32.
  • 12. Abrams RP, Carroll WL, Woerpel KA. Fivemembered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol. 2016; 11: 1305–12.
  • 13. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014; 156: 317–31.
  • 14. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell mol Life sci. 2016; 73:2195–209.
  • 15. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016; 23: 369–79.
  • 16. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26: 239–57.
  • 17. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973; 7: 253–66.
  • 18. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol. 1990; 181: 195–213.
  • 19. Shimada K, Hayano M, Pagano NC, Stockwell BR. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem Biol. 2016; 23: 225–35.
  • 20. Dong T, Liao D, Liu X, Lei X. Using small molecules to dissect non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis. Chembiochem. 2015;16: 2557–61.
  • 21. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/ glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999; 274: 11455–8.
  • 22. Bridges RJ, Natale NR, Patel SA. System xc (-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012; 165: 20–34.
  • 23. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front. Pharmacol.2018; 8:992.
  • 24. Lo M, Ling V, Wang YZ, Gout PW. The xccystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer. 2008; 99: 464–72.
  • 25. Ishii T, Bannai S, Sugita Y. Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem. 1981; 256: 12387–92.
  • 26. Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001; 1: 497–506.
  • 27. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014; 10: 9–17.
  • 28. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989; 2: 1547–58.
  • 29. Bannai S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem. 1980; 255: 2372–6.
  • 30. Wolpaw AJ, Shimada K, Skouta R, Welsch ME, Akavia UD, Pe’er D, et al. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci USA. 2011; 108: E771–80.
  • 31. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982; 710: 197–211.
  • 32. Thomas JP, Geiger PG, Maiorino M, Ursini F, Girotti AW. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta. 1990; 1045: 252–60.
  • 33. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018; 172, 409–422.
  • 34. Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, et al. Diversity of glutathione peroxidases. Methods Enzymol. 1995; 252: 38–53.
  • 35. Brigelius-Flohe R, Maiorino M. Glutathioneperoxidases. Biochim Biophys Acta. 1830;2013: 3289–303.
  • 36. Weiwer M, Bittker JA, Lewis TA,Shimada K, Yang WS, MacPherson L, et al. Development of small-molecule probes that selectively kill cells induced to Express mutant RAS. Bioorg Med Chem Lett. 2012; 22: 1822–6.
  • 37. Yang WS, Shimada K, Delva D, Patel M, Ode E, Skouta R, et al. Identification of simple compounds with microtubule-binding activity that inhibit cancer cell growth with high potency. ACS Med Chem Lett. 2012; 3: 35–8.
  • 38. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 2015; 10: 1604 1609.
  • 39. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16: 1180–1191.
  • 40. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 2014; 136: 4551–4556.
  • 41. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al. RAS-RAFMEK- dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447: 864–868.
  • 42. Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2015 May 26. doi:10.1080/23723556.2015.1054549.
  • 43. McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids. 2012; 42: 199–205.
  • 44. Shoveller AK, Brunton JA, House JD, Pencharz PB, Ball RO.Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets. J Nutr. 2003; 133: 4215–24.
  • 45. Ball RO, Courtney-Martin G, Pencharz PB. The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J Nutr. 2006; 136: 1682s–93s.
  • 46. Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 2016; 23: 270–8.
  • 47. Carver JA, Rekas A, Thorn DC, Wilson MR. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life. 2003; 55: 661–8.
  • 48. Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993; 268: 1517–20.
  • 49. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995; 11: 441–69.
  • 50. Sun X, Ou Z, Xie M,Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015; 34: 5617–25.
  • 51. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med. Vol 21, No 4, 2017 pp. 648-657
  • 52. Gao M, Monian P, Jiang X. Metabolism and iron signaling in ferroptotic cell death. Oncotarget. 2015; 6: 35145–6.
  • 53. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015; 59: 298–308.
  • 54. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore, MD). 2016; 63: 173–84.
  • 55. Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget. 2016; 7: 11756–69.
  • 56. Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase- accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015; 6: 24393–403.
  • 57. Lorincz T, Jemnitz K, Kardon T, Mandl J, Szarka A. Ferroptosis is Involved in Acetaminophen Induced Cell Death. Pathol Oncol Res 2015; 21: 1115–1121.
  • 58. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 2015; 356: 971–977.
  • 59. Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 2014; 34: 6417–6422.
  • 60. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014; 3: e02523.
  • 61. Nils Eling, Lukas Reuter, Hazin John, Hamacher-Brady Anne, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2015; 2: 517–532.
  • 62. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, Zen FD, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA. 2014; 111: 16836–41.
  • 63. Yamaguchi H, Hsu JL, Chen CT,Wang YN, Hsu MC, Chang SS, et al. Caspase- independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non-small cell lung cancer cells. Clin Cancer Res. 2013; 19: 845–54.
  • 64. Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-gammalyase function. Oncol Rep. 2015; 33:1465–74.

Yeni Bir Hücre Ölüm Şekli Olarak Ferroptozis

Yıl 2021, Cilt: 30 Sayı: 4, 258 - 268, 30.12.2021
https://doi.org/10.17827/aktd.980659

Öz

Ferroptozis, geleneksel apoptoz ve nekrozdan farklılık gösteren, demir bağımlı lipid peroksit birikiminden kaynaklanan ve yeni keşfedilen bir hücre ölüm şeklidir. Bu hücre ölümü, hücre hacminin küçülmesi ve artan mitokondriyal membran yoğunluğu dahil olmak üzere sitolojik değişiklikler ile karakterize edilmektedir. Morfolojik olarak, mitokondriyal membran yoğunlaşması ve ruptürü, mitokondriyon kristalarının küçülmesi veya yok olması ile mitokondri normalden daha küçük görülebilir. Ferroptozis, sınıf 1 ve sınıf 2 ferroptozis indükleyiciler olarak bilinen iki küçük molekül sınıfı ile indüklenebilir. Bu moleküllere ek olarak sorafenib ve artemisin türevi ilaçlar tarafından da uyarılabilmektedir. Kanser hücrelerinde ve böbrek tübül hücreleri gibi bazı normal hücrelerde, bu ilaçlar ve sınıf 1 ve 2 ferroptozis indükleyiciler ile ferroptozis tetiklenebilmektedir. Mitokondriyal voltaj bağımlı anyon kanallarının ve mitojen ile aktive olan protein kinazların aktivasyonu, endoplazmik retikulum stresinin artması ve sistin-glutamat taşıma sisteminin inhibisyonu da ferroptozisin indüklenmesinde rol oynamaktadır. Bu durum, demir metabolizmasından türetilen lipit peroksidasyon ürünlerinin ve reaktif oksijen türlerinin (ROS) birikmesi ile oluşmaktadır. Ferroptozis, demir şelatörler (örn., Deferoksamin) ve lipid peroksidasyon inhibitörleri (örn., Ferrostatin) tarafından inhibe edilebilir. Ferroptozis, lenfositoma, pankreas duktal hücre kanseri, renal hücreli karsinoma (RCC) ve hepatosellüler karsinoma (HCC) gibi bazı tümör hücrelerinin proliferasyonunda etkin bir rol oynamaktadır.

Kaynakça

  • 1. Frey PA, Reed GH. The ubiquity of iron. ACS Chem Biol;2017: 1477-81.
  • 2. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016; 41: 274–86.
  • 3. Manz DH, Blanchette NL, Paul BT,Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci. 2016; 1368: 149–61.
  • 4. Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res. 2011; 44: 458–67.
  • 5. Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012; 24: 981–90.
  • 6. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149: 1060–72.
  • 7. Dolma S, Lessnick SL, Hahn WC,Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003; 3: 285–96.
  • 8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008; 15: 234–45.
  • 9. Louandre C, Ezzoukhry Z, Godin C,Barbare JC,Maziêre JC, Chauffert B, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013; 133: 1732–42.
  • 10. Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015; 22: 1045–54.
  • 11. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience J. 2015; 2: 517–32.
  • 12. Abrams RP, Carroll WL, Woerpel KA. Fivemembered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol. 2016; 11: 1305–12.
  • 13. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014; 156: 317–31.
  • 14. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell mol Life sci. 2016; 73:2195–209.
  • 15. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016; 23: 369–79.
  • 16. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26: 239–57.
  • 17. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973; 7: 253–66.
  • 18. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol. 1990; 181: 195–213.
  • 19. Shimada K, Hayano M, Pagano NC, Stockwell BR. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem Biol. 2016; 23: 225–35.
  • 20. Dong T, Liao D, Liu X, Lei X. Using small molecules to dissect non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis. Chembiochem. 2015;16: 2557–61.
  • 21. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/ glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999; 274: 11455–8.
  • 22. Bridges RJ, Natale NR, Patel SA. System xc (-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012; 165: 20–34.
  • 23. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front. Pharmacol.2018; 8:992.
  • 24. Lo M, Ling V, Wang YZ, Gout PW. The xccystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer. 2008; 99: 464–72.
  • 25. Ishii T, Bannai S, Sugita Y. Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem. 1981; 256: 12387–92.
  • 26. Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001; 1: 497–506.
  • 27. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014; 10: 9–17.
  • 28. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989; 2: 1547–58.
  • 29. Bannai S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem. 1980; 255: 2372–6.
  • 30. Wolpaw AJ, Shimada K, Skouta R, Welsch ME, Akavia UD, Pe’er D, et al. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci USA. 2011; 108: E771–80.
  • 31. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982; 710: 197–211.
  • 32. Thomas JP, Geiger PG, Maiorino M, Ursini F, Girotti AW. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta. 1990; 1045: 252–60.
  • 33. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018; 172, 409–422.
  • 34. Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, et al. Diversity of glutathione peroxidases. Methods Enzymol. 1995; 252: 38–53.
  • 35. Brigelius-Flohe R, Maiorino M. Glutathioneperoxidases. Biochim Biophys Acta. 1830;2013: 3289–303.
  • 36. Weiwer M, Bittker JA, Lewis TA,Shimada K, Yang WS, MacPherson L, et al. Development of small-molecule probes that selectively kill cells induced to Express mutant RAS. Bioorg Med Chem Lett. 2012; 22: 1822–6.
  • 37. Yang WS, Shimada K, Delva D, Patel M, Ode E, Skouta R, et al. Identification of simple compounds with microtubule-binding activity that inhibit cancer cell growth with high potency. ACS Med Chem Lett. 2012; 3: 35–8.
  • 38. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 2015; 10: 1604 1609.
  • 39. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16: 1180–1191.
  • 40. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 2014; 136: 4551–4556.
  • 41. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al. RAS-RAFMEK- dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447: 864–868.
  • 42. Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2015 May 26. doi:10.1080/23723556.2015.1054549.
  • 43. McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids. 2012; 42: 199–205.
  • 44. Shoveller AK, Brunton JA, House JD, Pencharz PB, Ball RO.Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets. J Nutr. 2003; 133: 4215–24.
  • 45. Ball RO, Courtney-Martin G, Pencharz PB. The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J Nutr. 2006; 136: 1682s–93s.
  • 46. Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 2016; 23: 270–8.
  • 47. Carver JA, Rekas A, Thorn DC, Wilson MR. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life. 2003; 55: 661–8.
  • 48. Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993; 268: 1517–20.
  • 49. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995; 11: 441–69.
  • 50. Sun X, Ou Z, Xie M,Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015; 34: 5617–25.
  • 51. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med. Vol 21, No 4, 2017 pp. 648-657
  • 52. Gao M, Monian P, Jiang X. Metabolism and iron signaling in ferroptotic cell death. Oncotarget. 2015; 6: 35145–6.
  • 53. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015; 59: 298–308.
  • 54. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore, MD). 2016; 63: 173–84.
  • 55. Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget. 2016; 7: 11756–69.
  • 56. Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase- accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015; 6: 24393–403.
  • 57. Lorincz T, Jemnitz K, Kardon T, Mandl J, Szarka A. Ferroptosis is Involved in Acetaminophen Induced Cell Death. Pathol Oncol Res 2015; 21: 1115–1121.
  • 58. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 2015; 356: 971–977.
  • 59. Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 2014; 34: 6417–6422.
  • 60. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014; 3: e02523.
  • 61. Nils Eling, Lukas Reuter, Hazin John, Hamacher-Brady Anne, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2015; 2: 517–532.
  • 62. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, Zen FD, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA. 2014; 111: 16836–41.
  • 63. Yamaguchi H, Hsu JL, Chen CT,Wang YN, Hsu MC, Chang SS, et al. Caspase- independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non-small cell lung cancer cells. Clin Cancer Res. 2013; 19: 845–54.
  • 64. Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y, et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-gammalyase function. Oncol Rep. 2015; 33:1465–74.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Alper Çelenk 0000-0002-9669-9535

Yayımlanma Tarihi 30 Aralık 2021
Kabul Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 30 Sayı: 4

Kaynak Göster

AMA Çelenk A. Yeni Bir Hücre Ölüm Şekli Olarak Ferroptozis. aktd. Aralık 2021;30(4):258-268. doi:10.17827/aktd.980659