Derleme
BibTex RIS Kaynak Göster

Endoplazmik Retikulumda Katlanmamış Protein Cevabı ile İlişkili Hastalıklar

Yıl 2022, Cilt: 31 Sayı: 1, 35 - 45, 31.03.2022
https://doi.org/10.17827/aktd.984446

Öz

Endoplazmik retikulum (ER), sekretuar yolağın ilk kompartımanı olup eritrosit ve sperm hücreleri gibi oldukça özelleşmiş ökaryotik hücreler hariç büyük ölçüde tüm hücrelerde bulunan, çift katmanlı membranöz intraselüler bir organeldir. ER birçok hücresel fonksiyona dahil olmaktadır. Hücresel proteinlerin yaklaşık 1/3’ünün üretiminde ve katlanmasında görev alıp hücresel homeostazın devamlılığını sürdürmekle görevlidir. Protein üretim fabrikası gibi çalışması yanında, Ca+2 depolama ve düzenleme, lipit üretme ve depolama ve glikoz metabolizması işlemlerine de dahil olmaktadır. Bu görevlerin yanında ER homeostazını sürdürebilmek için, ER stres sinyal yolakları olan “Katlanmamış Protein Cevabı” ile hücre homeostazı sağlanmaya çalışılır. ER homeostazı, hatalı ya da katlanmamış protein katlanması ve mutant protein birikmesinin dahil olduğu birçok patolojik olayla ilişkili olarak ER stresine sebebiyet verebilmektedir. Bu derlemede endoplazmik retikulumun katlanmamış protein cevabı ve katlanmamış protein cevabı ile ilişkili hastalıklar tartışılmıştır.

Destekleyen Kurum

Derleme makalesi olduğu için herhangi finansal bir destek alınmamıştır.

Proje Numarası

Derleme makalesi olduğu için herhangi bir etik kurul onayı alınmamıştır.

Kaynakça

  • 1. Porter KR, Claude A, Fullam EF. A study of tissue culture cells by electron microscopy. J Exp Med. 1945;81:233-56.
  • 2. Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50:311-16.
  • 3. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988;107:2587-2600.
  • 4. Voeltz GK, Rolls MM, Rapoport TA. Structural organization of endoplasmic reticulum. EMBO Rep. 2002;3:944-50.
  • 5. Flis VV, Daum G. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harbor Perpect Biol. 2013;5:1-22.
  • 6. Okeke E, Dingsdale H, Parker T, Voronina S, Tepikin AV. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. J Physiol. 2016; 594:2837-47.
  • 7. Shao S, Hegde RS. Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol. 2011;27:25-56.
  • 8. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chain on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975;67:835-51.
  • 9. Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci. 2012;21(1):13-25.
  • 10. Schlosser E, Otero C, Wuensch C, Kessler B, Edelmann M, Brunisholz R, et al. A novel cytosolic class I antigen-processing pathway for endoplasmic-reticulum-targeted proteins. EMBO rep. 2007;8(10):945-51.
  • 11. Kopito RR. ER quality control: the cytoplasmic connection. Cell. 1997; 88: 427-30.
  • 12. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, et al. Endoplasmic reticulum and the unfolded protein response: Dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215-90.
  • 13. Ni M and Lee AS. ER chaperons in mammalian development and human diseases FEBS Lett. 2007;581:3641-51.
  • 14. Brodsky JL. Cleaning Up:ER-associated degradation to the rescue. Cell. 2012;151:1163-67.
  • 15. Wormald MR, Dwek RA. Glycoproteins:Glycan presentation and protein-fold stability. Structure. 1999;7:155-60.
  • 16. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucose-regulated proteins (GRP78 and GRP94): Functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr. 1994;4:1-18.
  • 17. Hendershot LM. The ER chaperone BiP is a master regulator of ER function. Mt Sinai J Med. 2004;71:289-97.
  • 18. Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11:2307-16.
  • 19. Misra UK, Deedwania R, Pizzo SV. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem. 2006;281:13694-707.
  • 20. Lee AS. GRP78 induction in cancer: Therapeutic and prognostic implications. Cancer Res. 2007;67:3496-99.
  • 21. Lu G, Luo H, Zhu X. Targeting the GRP78 Pathway for Cancer Therapy. Front Med (Lausanne). 2020;7:351.
  • 22. Argon Y, Simen BB. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol. 1999;10:495-505.
  • 23. Maattanen P, Gehring K, Bergeron JJ, Bergeron JJM, Thomas DY. Protein quality control in the ER: The recognition of misfolded proteins. Semin Cell Dev Biol. 2010;21:500-11.
  • 24. Bernales S, Papa FR, Walter P. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol. 2006;22:487-508.
  • 25. Lai ED, Teodoro T, Volchuk A. Endoplasmic reticulum stress: Signaling the unfolded protein response. Physiology (Bethesda). 2007;22:193-201.
  • 26. Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis. 2009;13:581-90.
  • 27. Conn KJ, Gao WW, Ullman MD, McKeon-O’Malley C, Eisenhauer PB, Fine RE, et al. Specific up-regulation of GADD153/CHOP in 1-methyl-4-phenyl-pyridinium-treated SH-SY5Y cells. J Neurosci Res. 2002;68:755-60.
  • 28. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519-29.
  • 29. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101:451-54.
  • 30. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplamic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23:7448-59.
  • 31. Ron D. Translational control in the endoplasmic reticulum stress response. J of Clin Invest. 2002; 110: 1383-88.
  • 32. Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem. 2000;275:24881-85.
  • 33. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415:92-96.
  • 34. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol. 2001;21:1239-48.
  • 35. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455-62.
  • 36. Naidoo N. ER and aging-Protein folding and the ER stress response. Ageing Res Rev. 2009;8:150-9.
  • 37. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-89.
  • 38. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110:1389-98.
  • 39. McQuiston A, Diehl JA. Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Res. 2017;6:1897.
  • 40. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211-33.
  • 41. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165-76.
  • 42. Huang RF, Huang SM, Lin BS, Wei JS, Liu TZ. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci. 2001;68:2799-811.
  • 43. Düzgün A, Alaçam H, Okuyucu A. Endoplazmik retikulum stresi ve katlanmamış protein cevabı. J Exp Clin Med. 2012;29:95-100.
  • 44. Dickens JA, Melzer E, Chambers JE, Marciniak SJ. Pulmanory endoplasmic reticulum stress- scars, smoke and suffocation. FEBS J. 2019;286:322-41.
  • 45. Ozcan L and Tabas I. Role of endoplasmic reticulum stres in metabolic disease and other disorders. Annu Rev Med. 2012;53:317-28.
  • 46. Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, et al. The ER Stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life (Basel). 2020;11(1):1.
  • 47. Athanasiou D, Aguila M, Bellingham J, Kanuga N, Adamson P, Cheetham ME. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa. Hum Mol Genet. 2017;26(24):4896-905.
  • 48. Chiang WC, Chan P, Wissinger B, Vincent A, Skorczyk-Werner A, Krawczynski MR, et al. Achromatopsia mutations target sequential steps ofATF6 activation. Proc Natl Acad Sci U S A. 2017;114:400-5.
  • 49. Skorczyk-Werner A, Chiang WC, Wawrocka A, Wicher K, Jarmuz-Szymczak M, Kostrzewska-Poczekaj M, et al. Autosomal recessive cone-rod dystrophy can be caused by mutations in the ATF6 gene. Eur J Hum Genet. 2017;25:1210-16.
  • 50. Tao T, Wang J, Wang X, Wang Y, Mao H, Liu X. The PERK/Nrf2 pathway mediates endoplasmic reticulum stress-induced injury by upregulating endoplasmic reticulophagy in H9c2 cardiomyoblasts. Life Sci. 2019;237:116944.
  • 51. Liu Z, Cai H, Zhu H, Toque H, Zhao N, Qui C, et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK)/calcineurin signaling is a novel pathway regulating intracellular calcium accumulation which might be involved in ventricular arrhythmias in diabetic cardiomyopathy. Cell Signal. 2014;26(12):2591-600.
  • 52. Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell. 2012;149(6):1257-68.
  • 53. Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res. 2006;98(9):1186-93.
  • 54. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell. 2014;156(6):1179-92.
  • 55. Park BW, Ha JM, Cho EB, Jin JK, Park EJ, Park HR, et al. A study on vitamin D and cathelicidin status in patients with rosacea: serum level and tissue expression. Ann Dermatol. 2018;30:136-42.
  • 56. Tay KH, Luan Q, Croft A, Jiang CC, Jin L, Zhang XD, et al. Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal. 2014;26(2):287-94.
  • 57. Frisoli ML, Harris JE. Vitiligo: mechanistic insights lead to novel treatments. J Allergy Clin Immunol. 2017;140:654-62.
  • 58. Eigner K, Filik Y, Mark F, Schütz B, Klambauer G, Moriggl R, et al. The unfolded protein response impacts melanoma progression by enhancing FGF expression and can be antagonized by a chemical chaperone. Sci Rep. 2017;7(1):17498.
  • 59. Çetinkaya S, Çınar İ, Dursun HG. Endoplazmik retikulum stresinin tümör sürecindeki rolü ve antikanser uygulamaları. Harran Tıp Fakültesi Dergisi 2015;13(1):124-33.
  • 60. Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol. 2015;17:829-38.
  • 61. Obacz J, Avril T, Rubio-Patino C, Bossowski JP, Igbaria A, Ricci JE, et al. Regulation of tumor-stroma interactions by the unfolded protein response. FEBS J. 2017;286:279-96.
  • 62. Gruffat D, Durand D, Graulet B, Bauchart D. Regulation of VLDL synthesis and secretion in the liver. Reprod Nutr Dev. 1996;36:375-89.
  • 63. Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer’s disease. J Mol Med. 2020;98:633-50.
  • 64. Gerakis Y and Hetz C. Emerging roles of ER stres in the etiology and pathogenesis of Alzheimer’s disease. FEBS J. 2018;285:995-1011.
  • 65. Smith JA. Regulation of cytokine production by the unfolded protein response: Implications for infection and autoimmunity. Front Immunol. 2018;9:1-21.
  • 66. Martínez G, Duran-Aniotz C, Cabral-Miranda F, Vivar JP, Hetz C. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell. 2017;16(4):615-23.
  • 67. Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell. 2013;153(7):1435-47.
  • 68. Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. FEBS J. 2018;285(6):995-1011.
  • 69. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396-405.
  • 70. Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V. The ECM path of senescence in aging: components and modifiers. FEBS J. 2020;287(13):2636-46.
  • 71. Robert L, Labat-Robert J. Longevity and aging: role of genes and of the extracellular matrix. Biogerontology. 2015;16(1):125-9.
  • 72. Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl). 2020;98(5):633-50.

Unfolded Protein Response Related Diseases in Endoplasmic Reticulum

Yıl 2022, Cilt: 31 Sayı: 1, 35 - 45, 31.03.2022
https://doi.org/10.17827/aktd.984446

Öz

The endoplasmic reticulum (ER) is the first compartment of the secretory pathway and is a bilayer membranous intracellular organelle found in almost all cells except highly specialized eukaryotic cells such as erythrocytes and sperm cells. The ER is involved in many different cellular functions. ER contributes to the production and folding of approximately one-third of cellular proteins, and plays an important role for the maintenance of cellular homeostasis. In addition to, it acts as a protein synthesis factory, contributes to the storage and regulation of calcium, to the synthesis and storage of lipids, and glucose metabolism. Besides these features, specific ER stress signaling pathways, known as the ‘unfolded protein response’, are required for maintaining ER homeostasis. ER homeostasis can be given cause for many pathological events, including protein misfolding or accumulation of mutant protein, which can lead to ER stress. In this review, unfolded protein response of the endoplasmic reticulum and diseases associated with unfolded protein response are discussed.

Proje Numarası

Derleme makalesi olduğu için herhangi bir etik kurul onayı alınmamıştır.

Kaynakça

  • 1. Porter KR, Claude A, Fullam EF. A study of tissue culture cells by electron microscopy. J Exp Med. 1945;81:233-56.
  • 2. Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50:311-16.
  • 3. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988;107:2587-2600.
  • 4. Voeltz GK, Rolls MM, Rapoport TA. Structural organization of endoplasmic reticulum. EMBO Rep. 2002;3:944-50.
  • 5. Flis VV, Daum G. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harbor Perpect Biol. 2013;5:1-22.
  • 6. Okeke E, Dingsdale H, Parker T, Voronina S, Tepikin AV. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. J Physiol. 2016; 594:2837-47.
  • 7. Shao S, Hegde RS. Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol. 2011;27:25-56.
  • 8. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chain on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975;67:835-51.
  • 9. Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci. 2012;21(1):13-25.
  • 10. Schlosser E, Otero C, Wuensch C, Kessler B, Edelmann M, Brunisholz R, et al. A novel cytosolic class I antigen-processing pathway for endoplasmic-reticulum-targeted proteins. EMBO rep. 2007;8(10):945-51.
  • 11. Kopito RR. ER quality control: the cytoplasmic connection. Cell. 1997; 88: 427-30.
  • 12. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, et al. Endoplasmic reticulum and the unfolded protein response: Dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215-90.
  • 13. Ni M and Lee AS. ER chaperons in mammalian development and human diseases FEBS Lett. 2007;581:3641-51.
  • 14. Brodsky JL. Cleaning Up:ER-associated degradation to the rescue. Cell. 2012;151:1163-67.
  • 15. Wormald MR, Dwek RA. Glycoproteins:Glycan presentation and protein-fold stability. Structure. 1999;7:155-60.
  • 16. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucose-regulated proteins (GRP78 and GRP94): Functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr. 1994;4:1-18.
  • 17. Hendershot LM. The ER chaperone BiP is a master regulator of ER function. Mt Sinai J Med. 2004;71:289-97.
  • 18. Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11:2307-16.
  • 19. Misra UK, Deedwania R, Pizzo SV. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem. 2006;281:13694-707.
  • 20. Lee AS. GRP78 induction in cancer: Therapeutic and prognostic implications. Cancer Res. 2007;67:3496-99.
  • 21. Lu G, Luo H, Zhu X. Targeting the GRP78 Pathway for Cancer Therapy. Front Med (Lausanne). 2020;7:351.
  • 22. Argon Y, Simen BB. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol. 1999;10:495-505.
  • 23. Maattanen P, Gehring K, Bergeron JJ, Bergeron JJM, Thomas DY. Protein quality control in the ER: The recognition of misfolded proteins. Semin Cell Dev Biol. 2010;21:500-11.
  • 24. Bernales S, Papa FR, Walter P. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol. 2006;22:487-508.
  • 25. Lai ED, Teodoro T, Volchuk A. Endoplasmic reticulum stress: Signaling the unfolded protein response. Physiology (Bethesda). 2007;22:193-201.
  • 26. Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis. 2009;13:581-90.
  • 27. Conn KJ, Gao WW, Ullman MD, McKeon-O’Malley C, Eisenhauer PB, Fine RE, et al. Specific up-regulation of GADD153/CHOP in 1-methyl-4-phenyl-pyridinium-treated SH-SY5Y cells. J Neurosci Res. 2002;68:755-60.
  • 28. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519-29.
  • 29. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101:451-54.
  • 30. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplamic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23:7448-59.
  • 31. Ron D. Translational control in the endoplasmic reticulum stress response. J of Clin Invest. 2002; 110: 1383-88.
  • 32. Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem. 2000;275:24881-85.
  • 33. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415:92-96.
  • 34. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol. 2001;21:1239-48.
  • 35. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455-62.
  • 36. Naidoo N. ER and aging-Protein folding and the ER stress response. Ageing Res Rev. 2009;8:150-9.
  • 37. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-89.
  • 38. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110:1389-98.
  • 39. McQuiston A, Diehl JA. Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Res. 2017;6:1897.
  • 40. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211-33.
  • 41. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165-76.
  • 42. Huang RF, Huang SM, Lin BS, Wei JS, Liu TZ. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci. 2001;68:2799-811.
  • 43. Düzgün A, Alaçam H, Okuyucu A. Endoplazmik retikulum stresi ve katlanmamış protein cevabı. J Exp Clin Med. 2012;29:95-100.
  • 44. Dickens JA, Melzer E, Chambers JE, Marciniak SJ. Pulmanory endoplasmic reticulum stress- scars, smoke and suffocation. FEBS J. 2019;286:322-41.
  • 45. Ozcan L and Tabas I. Role of endoplasmic reticulum stres in metabolic disease and other disorders. Annu Rev Med. 2012;53:317-28.
  • 46. Aghaei M, Dastghaib S, Aftabi S, Aghanoori MR, Alizadeh J, Mokarram P, et al. The ER Stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life (Basel). 2020;11(1):1.
  • 47. Athanasiou D, Aguila M, Bellingham J, Kanuga N, Adamson P, Cheetham ME. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa. Hum Mol Genet. 2017;26(24):4896-905.
  • 48. Chiang WC, Chan P, Wissinger B, Vincent A, Skorczyk-Werner A, Krawczynski MR, et al. Achromatopsia mutations target sequential steps ofATF6 activation. Proc Natl Acad Sci U S A. 2017;114:400-5.
  • 49. Skorczyk-Werner A, Chiang WC, Wawrocka A, Wicher K, Jarmuz-Szymczak M, Kostrzewska-Poczekaj M, et al. Autosomal recessive cone-rod dystrophy can be caused by mutations in the ATF6 gene. Eur J Hum Genet. 2017;25:1210-16.
  • 50. Tao T, Wang J, Wang X, Wang Y, Mao H, Liu X. The PERK/Nrf2 pathway mediates endoplasmic reticulum stress-induced injury by upregulating endoplasmic reticulophagy in H9c2 cardiomyoblasts. Life Sci. 2019;237:116944.
  • 51. Liu Z, Cai H, Zhu H, Toque H, Zhao N, Qui C, et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK)/calcineurin signaling is a novel pathway regulating intracellular calcium accumulation which might be involved in ventricular arrhythmias in diabetic cardiomyopathy. Cell Signal. 2014;26(12):2591-600.
  • 52. Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell. 2012;149(6):1257-68.
  • 53. Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res. 2006;98(9):1186-93.
  • 54. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell. 2014;156(6):1179-92.
  • 55. Park BW, Ha JM, Cho EB, Jin JK, Park EJ, Park HR, et al. A study on vitamin D and cathelicidin status in patients with rosacea: serum level and tissue expression. Ann Dermatol. 2018;30:136-42.
  • 56. Tay KH, Luan Q, Croft A, Jiang CC, Jin L, Zhang XD, et al. Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal. 2014;26(2):287-94.
  • 57. Frisoli ML, Harris JE. Vitiligo: mechanistic insights lead to novel treatments. J Allergy Clin Immunol. 2017;140:654-62.
  • 58. Eigner K, Filik Y, Mark F, Schütz B, Klambauer G, Moriggl R, et al. The unfolded protein response impacts melanoma progression by enhancing FGF expression and can be antagonized by a chemical chaperone. Sci Rep. 2017;7(1):17498.
  • 59. Çetinkaya S, Çınar İ, Dursun HG. Endoplazmik retikulum stresinin tümör sürecindeki rolü ve antikanser uygulamaları. Harran Tıp Fakültesi Dergisi 2015;13(1):124-33.
  • 60. Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol. 2015;17:829-38.
  • 61. Obacz J, Avril T, Rubio-Patino C, Bossowski JP, Igbaria A, Ricci JE, et al. Regulation of tumor-stroma interactions by the unfolded protein response. FEBS J. 2017;286:279-96.
  • 62. Gruffat D, Durand D, Graulet B, Bauchart D. Regulation of VLDL synthesis and secretion in the liver. Reprod Nutr Dev. 1996;36:375-89.
  • 63. Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer’s disease. J Mol Med. 2020;98:633-50.
  • 64. Gerakis Y and Hetz C. Emerging roles of ER stres in the etiology and pathogenesis of Alzheimer’s disease. FEBS J. 2018;285:995-1011.
  • 65. Smith JA. Regulation of cytokine production by the unfolded protein response: Implications for infection and autoimmunity. Front Immunol. 2018;9:1-21.
  • 66. Martínez G, Duran-Aniotz C, Cabral-Miranda F, Vivar JP, Hetz C. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell. 2017;16(4):615-23.
  • 67. Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell. 2013;153(7):1435-47.
  • 68. Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. FEBS J. 2018;285(6):995-1011.
  • 69. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396-405.
  • 70. Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V. The ECM path of senescence in aging: components and modifiers. FEBS J. 2020;287(13):2636-46.
  • 71. Robert L, Labat-Robert J. Longevity and aging: role of genes and of the extracellular matrix. Biogerontology. 2015;16(1):125-9.
  • 72. Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl). 2020;98(5):633-50.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Figen Abatay Sel 0000-0002-1155-1284

Fatma Savran Oğuz 0000-0002-6018-8936

Proje Numarası Derleme makalesi olduğu için herhangi bir etik kurul onayı alınmamıştır.
Yayımlanma Tarihi 31 Mart 2022
Kabul Tarihi 27 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 31 Sayı: 1

Kaynak Göster

AMA Abatay Sel F, Oğuz FS. Endoplazmik Retikulumda Katlanmamış Protein Cevabı ile İlişkili Hastalıklar. aktd. Mart 2022;31(1):35-45. doi:10.17827/aktd.984446