Derleme
BibTex RIS Kaynak Göster

Katı veya Sıvı Formdaki Yüksek Sukroz İçerikli Diyet Tüketimi Farklı Metabolik Etkilere Yol Açar Mı?

Yıl 2024, Cilt: 33 Sayı: 4, 273 - 279, 31.12.2024
https://doi.org/10.17827/aktd.1539872

Öz

Sukroz, insan metabolizması için önemli bir enerji kaynağı olmasına rağmen, diyetle alımının formuna bağlı olarak sağlık üzerinde farklı etkileri bulunmaktadır. Yüksek sukroz içerikli diyetlerin metabolik etkileri, özellikle diyetin katı ve sıvı formlarının farklılıkları bağlamında incelenmesi gereken önemli bir konu alanıdır. Bu derleme, sukrozun biyokimyasal yapısı ve metabolizmadaki rolüne genel bir bakış sunarak, özellikle sıvı formdaki sukrozun katı formdan daha ciddi metabolik bozukluklara neden olup olmadığını araştırmayı amaçlamaktadır. Günümüzde artan obezite ve Tip II diyabet vakaları, bu konuda derinlemesine araştırmalar yapılmasını gerektirmektedir. Derlemede, sukrozun sindirimi ve metabolizması, insülin direnci, hepatik steatoz ve inflamasyon gibi metabolik süreçlere etkisi üzerinde durulmuştur. Sıvı sukroz tüketiminin, katı sukroza kıyasla daha fazla kilo alımı, karaciğer yağlanması ve metabolik sendrom gibi olumsuz sonuçlara yol açtığı deneysel verilerle desteklenmiştir. Sonuç olarak, sukroz tüketiminin metabolik sağlık üzerindeki olası etkileri dikkatle değerlendirilmeli ve beslenme stratejilerinin sukrozun tüketim şekline göre yeniden gözden geçirilmelidir. Özellikle sıvı formdaki sukrozun, metabolik bozukluklar için bir risk faktörü olabileceği göz önünde bulundurulmalı ve bu konuda daha fazla ileri düzey klinik ve deneysel çalışmalara ihtiyaç duyulmaktadır.

Etik Beyan

Derlememizde herhangi bir etik kurul belgesine ihtiyaç bulunmamaktadır.

Kaynakça

  • 1. Kolderup A, Svihus B. Fructose Metabolism and Relation to Atherosclerosis, Type 2 Diabetes, and Obesity. Journal of Nutrition and Metabolism. 2015; 2015:823081.
  • 2. Asatkar A, Basak RK. Carbohydrate: Introduction and fundamentals. Handbook of Biomolecules: Fundamentals, Properties and Applications, 1st Ed (Eds Verma C, Verma DK): 25-55. India, Elsevier, 2023.
  • 3. Delikanlı A, Sökmen M, Koçak A. Pancar Şekeri Üretiminde Organik Asitlerin Giderilmesi ve Renk İyileştirmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi. 2022; 48:15-8.
  • 4. Pérez S. The structure of sucrose in the crystal and in solution. In Sucrose: Properties and Applications. Eds. M. Mathlouthi, P. Reiser: 11-32. Boston, MA: Springer US, 1995.
  • 5. Önder H, Aydar AY. Şekerleme Üretiminde Kullanılan Hammaddeler ve Fonksiyonel Yumuşak Şekerleme Üretimi. Aydın Gastronomy. 2022; 6:65-78.
  • 6. Manhani TM, Campos MVM, Donati FP, Moreno ADH (2014). Sacarose, suas propriedades e os novos edulcorantes. Revista Brasileira Multidisciplinar. 2014; 17: 113-125.
  • 7. Liu J, Liu H, Teng Y, Qin N, Ren X, Xia X. A high-sucrose diet causes microbiota composition shift and promotes the susceptibility of mice to Salmonella Typhimurium infection. Food & Function. 2023; 14: 2836-46.
  • 8. Liu T, Mo W, Zou X, Luo B, Zhang S, Liu Y et al. Liquid–solid triboelectric probes for real‐time monitoring of sucrose fluid status. Advanced Functional Materials. 2023; 33: 2304321.
  • 9. Lorch CM, Hayes NW, Xia JL, Fleps SW, McMorrow HE, Province HS, Frydman JA, Parker JG, Beutler LR. Sucrose overconsumption impairs AgRP neuron dynamics and promotes palatable food intake. Cell Reports. 2024; 43:113675.
  • 10. Elferink H, Bruekers JP, Veeneman GH, Boltje TJ (2020). A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine: “A gut feeling”. Cellular and Molecular Life Sciences. 2020; 77: 4799-4826.
  • 11. Teysseire F, Bordier V, Beglinger C, Wölnerhanssen BK, Meyer-Gerspach AC. Metabolic Effects of Selected Conventional and Alternative Sweeteners: A Narrative Review. Nutrients. 2024;16622.
  • 12. Pasmans K, Meex RC, Trommelen J, Senden JM, Vaughan EE, van Loon LJ, et al. L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women: a double-blind, randomised crossover trial. British Journal of Nutrition. 2022; 128:1072-81.
  • 13. Taskinen MR, Packard CJ, Borén J. Dietary fructose and the metabolic syndrome. Nutrients. 2019; 11: 1987.
  • 14. Mitchell SB, Hung YH, Thorn TL, Zou J, Baser F, Gulec S et al. Sucrose-induced hyperglycemia dysregulates intestinal zinc metabolism and integrity: risk factors for chronic diseases. Frontiers in Nutrition. 2023; 10:1220533.
  • 15. Di Monaco R, Miele NA, Cabisidan EK, Cavella S. Strategies to reduce sugars in food. Current Opinion in Food Science. 2018; 19: 92-97.
  • 16. Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metabolism. 2021; 33: 2329-54.
  • 17. O’Brien P, Han G, Ganpathy P, Pitre S, Zhang Y, Ryan J et al. Chronic effects of a high sucrose diet on murine gastrointestinal nutrient sensor gene and protein expression levels and lipid metabolism. International Journal of Molecular Sciences. 2020; 22: 137.
  • 18. Pennington KA, van der Walt N, Pollock KE, Talton OO, Schulz LC. Effects of acute exposure to a high-fat, high-sucrose diet on gestational glucose tolerance and subsequent maternal health in mice. Biology of Reproduction. 2017; 96: 435-45.
  • 19. Ganguly S, Chattopadhyay T, Kazi R, Das S, Malik B, ML, Uthpala et al. Consumption of human-relevant levels of sucrose-water rewires macronutrient uptake and utilization mechanisms in a tissue specific manner. BioRxiv. 2024; 2024-08.
  • 20. Aimaretti E, Chimienti G, Rubeo C, Di Lorenzo R, Trisolini L, Dal Bello F, et al. Different effects of high-fat/high-sucrose and high-fructose diets on advanced glycation end-product accumulation and on mitochondrial involvement in heart and skeletal muscle in mice. Nutrients. 2023; 15:4874
  • 21. Acosta-Cota SDJ, Aguilar-Medina EM, Ramos-Payán R, Ruiz-Quiñónez AK, Romero-Quintana JG, Montes-Avila J et al. Histopathological and biochemical changes in the development of nonalcoholic fatty liver disease induced by high-sucrose diet at different times. Canadian Journal of Physiology And Pharmacology. 2019; 97: 23-36.
  • 22. Lovat NE, Legare DJ, Lautt WW. An animal model of gestational obesity and prediabetes: HISS-dependent insulin resistance induced by a high-sucrose diet in Sprague Dawley rats. Canadian Journal of Physiology and Pharmacology. 2021; 99: 599-608.
  • 23. Guzmán-Gerónimo RI, Alarcón-Zavaleta TM, Oliart-Ros RM, Meza-Alvarado JE, Herrera-Meza S, Chávez-Servia JL. Blue maize extract improves blood pressure, lipid profiles, and adipose tissue in high-sucrose diet-induced metabolic syndrome in rats. Journal of Medicinal Food. 2017; 20: 110-15.
  • 24. da Silva BS, Paulino AMB, Taffarel M, Borba IG, Telles, LO, Lima VV et al. High sucrose diet attenuates oxidative stress, inflammation and liver injury in thioacetamide-induced liver cirrhosis. Life Sciences. 2021; 267: 118944.
  • 25. Burgeiro A, Cerqueira MG, Varela-Rodríguez BM, Nunes S, Neto P, Pereira FC et al. Glucose and lipid dysmetabolism in a rat model of prediabetes induced by a high-sucrose diet. Nutrients. 2017; 9: 638.
  • 26. Oliveira LSC, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. The inflammatory profile and liver damage of a sucrose-rich diet in mice. The Journal of Nutritional Biochemistry. 2014; 25: 193-200.
  • 27. Sun S, Araki Y, Hanzawa F, Umeki M, Kojima T, Nishimura N et al. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. The Journal of Nutritional Biochemistry. 2021; 93: 108621.
  • 28. Zhu W, Hong Y, Li Y, Li Y, Zhong J, He X et al. Microbial and transcriptomic profiling reveals diet-related alterations of metabolism in metabolic disordered mice. Frontiers in Nutrition. 2022; 9: 923377.
  • 29. Cao L, Liu X, Cao H, Lv Q, Tong N. Modified high‐sucrose diet‐induced abdominally obese and normal‐weight rats developed high plasma free fatty acid and insulin resistance. Oxidative medicine and cellular longevity. 2012; 2012(1): 374346.
  • 30. Kanazawa M, Xue CY, Kageyama H, Suzuki E, Ito R, Namba Y et al. Effects of a high-sucrose diet on body weight, plasma triglycerides, and stress tolerance. Nutrition Reviews. 2003; 61(Suppl 5): 27-33.
  • 31. Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Archives of Biochemistry and Biophysics. 2019; 665: 46-56.
  • 32. Tillman EJ, Morgan DA, Rahmouni K, Swoap SJ. Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PLoS one. 2014; 9: e107206.
  • 33. Ahmed S, Kashem MA, Sarker R, Ahmed EU, Hargreaves GA, McGregor IS. Neuroadaptations in the striatal proteome of the rat following prolonged excessive sucrose intake. Neurochemical Research. 2014;39:815-24.
  • 34. Xiaojuan Wang, Zhipeng Li, Lili Zhang et al. Long-time high-sucrose intake induced metabolic dysfunction via disrupting the balance of intestinal microenvironment. 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3849756/v1]
  • 35. Song Q, Nishitani S, Saito S, Nishimura N, Mochizuki S, Oda H. Inositol and taurine ameliorate abnormal liver lipid metabolism induced by high sucrose intake. Food Bioscience. 2024; 60: 104368.
  • 36. Togo J, Hu S, Li M, Niu C, Speakman JR. Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid. Molecular Metabolism. 2019; 27: 22-32.
  • 37. Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiological Reviews. 2010; 90: 23-46.
  • 38. Lustig RH, Schmidt LA, Brindis CD. The toxic truth about sugar. Nature. 2012; 482: 27-29.
  • 39. Sakamoto E, Seino Y, Fukami A, Mizutani N, Tsunekawa S, Ishikawa K et al. Ingestion of a moderate high-sucrose diet results in glucose intolerance with reduced liver glucokinase activity and impaired glucagon-like peptide-1 secretion. Journal of Diabetes Investigation. 2012; 3: 432–40.
  • 40. Lewandowski P, McAnich A, Cameron-Smith D. Effect of sucrose feeding on genes associated with liver fat metabolism. Asia Pacific Journal of Clinical Nutrition. 2004; 13: S88 [Suppl].
  • 41. Yamazaki T, Ihato M. Peroxisome proliferator-activated receptor α has a protective effect on fatty liver caused by excessive sucrose intake. Biomedicines. 2022; 10: 2199.
  • 42. Park SH, Fadhul TI, Ronald Kahn C, Softıc S. 292-Or: High-Fat Diets Containing Sucrose and Fructose, but Not Glucose, Induce Obesity and Hepatic Insulin Resistance via Accumulation of Diacylglycerols. Diabetes. 2023; 72(Supplement_1).
  • 43. Tryndyak VP, Willett RA, Nagumalli SK, Li D, Avigan MI, Beland FA, Rusyn I, Pogribny IP. Effect of an obesogenic high-fat and high-sucrose diet on hepatic gene expression signatures in male Collaborative Cross mice. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2023; 324: G232-G243.
  • 44. Sumiyoshi M, Sakanaka M, Kimura Y. Chronic intake of high-fat and high-sucrose diets differentially affects glucose intolerance in mice. The Journal of Nutrition. 2006; 136: 582-87.
  • 45. Burke SJ, Batdorf HM, Martin TM, Burk DH, Noland RC, Cooley CR et al. Liquid Sucrose Consumption Promotes Obesity and Impairs Glucose Tolerance Without Altering Circulating Insulin Levels. Obesity (Silver Spring). 2018; 26: 1188-96.
  • 46. Rasool S, Geetha T, Broderick TL, Babu JR. High Fat with High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Frontiers in Physiology. 2018; 9: 1054.
  • 47. Wang X, Li Z, Zhang L et al. Long-time high-sucrose intake induced metabolic dysfunction via disrupting the balance of intestinal microenvironment. 2024; Preprint (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3849756/v1]
  • 48. Stephenson EJ, Stayton AS, Sethuraman A, Rao PK, Meyer A, Gomes CK, Han JC. Chronic intake of high dietary sucrose induces sexually dimorphic metabolic adaptations in mouse liver and adipose tissue. Nature Communications. 2022; 13: 6062.
  • 49. Korgan AC, Oliveira-Abreu K, Wei W, Martin SL, Bridges ZJ, Leal-Cardoso JH, O’Connell KM. High sucrose consumption decouples intrinsic and synaptic excitability of AgRP neurons without altering body weight. International Journal of Obesity. 2023; 47: 224-35.
  • 50. Mohamed SM, Shalaby MA, El-Shiekh RA, El-Banna HA, Emam SR, Bakr AF. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chemistry Advances. 2023; 3: 100335.
  • 51. Abubakar U, Wasagu HI, Mohammed MO, Tsamiya RI, Mohammed I, Avwioro OG et al. Effect of Biochemical Parameters and Histology of Liver on Sucrose-Induced Metabolic Syndrome in Wistar Rats. Journal of Complementary and Alternative Medical Research. 2022; 17: 30-36.
  • 52. Kobi JBBS, Matias AM, Gasparini PVF, Torezani-Sales S, Madureira AR, da Silva DS et al. High-fat, high-sucrose, and combined high-fat/high-sucrose diets effects in oxidative stress and inflammation in male rats under presence or absence of obesity. Physiological Reports. 2023;11: e15635.
Yıl 2024, Cilt: 33 Sayı: 4, 273 - 279, 31.12.2024
https://doi.org/10.17827/aktd.1539872

Öz

Sucrose, while an important energy source for human metabolism, has varying health effects depending on the form in which it is consumed. The metabolic effects of high-sucrose diets, particularly in the context of differences between solid and liquid forms, are a significant area of study. This review aims to provide an overview of the biochemical structure of sucrose and its role in metabolism, with a specific focus on investigating whether liquid sucrose leads to more severe metabolic dysfunctions compared to its solid form. The increasing prevalence of obesity and Type II diabetes underscores the need for in-depth research on this topic. The review emphasizes the effects of sucrose on metabolic processes, including its digestion and metabolism, insulin resistance, hepatic steatosis, and inflammation. Experimental data supports the notion that liquid sucrose consumption is associated with greater weight gain, liver fat accumulation, and metabolic syndrome compared to solid sucrose. In conclusion, the potential impacts of sucrose consumption on metabolic health should be carefully considered, and dietary strategies should be reassessed based on the form in which sucrose is consumed. Given the potential risk of sucrose, particularly in its liquid form, as a contributing factor to metabolic disorders, it is imperative that further clinical and experimental studies are needed.

Kaynakça

  • 1. Kolderup A, Svihus B. Fructose Metabolism and Relation to Atherosclerosis, Type 2 Diabetes, and Obesity. Journal of Nutrition and Metabolism. 2015; 2015:823081.
  • 2. Asatkar A, Basak RK. Carbohydrate: Introduction and fundamentals. Handbook of Biomolecules: Fundamentals, Properties and Applications, 1st Ed (Eds Verma C, Verma DK): 25-55. India, Elsevier, 2023.
  • 3. Delikanlı A, Sökmen M, Koçak A. Pancar Şekeri Üretiminde Organik Asitlerin Giderilmesi ve Renk İyileştirmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi. 2022; 48:15-8.
  • 4. Pérez S. The structure of sucrose in the crystal and in solution. In Sucrose: Properties and Applications. Eds. M. Mathlouthi, P. Reiser: 11-32. Boston, MA: Springer US, 1995.
  • 5. Önder H, Aydar AY. Şekerleme Üretiminde Kullanılan Hammaddeler ve Fonksiyonel Yumuşak Şekerleme Üretimi. Aydın Gastronomy. 2022; 6:65-78.
  • 6. Manhani TM, Campos MVM, Donati FP, Moreno ADH (2014). Sacarose, suas propriedades e os novos edulcorantes. Revista Brasileira Multidisciplinar. 2014; 17: 113-125.
  • 7. Liu J, Liu H, Teng Y, Qin N, Ren X, Xia X. A high-sucrose diet causes microbiota composition shift and promotes the susceptibility of mice to Salmonella Typhimurium infection. Food & Function. 2023; 14: 2836-46.
  • 8. Liu T, Mo W, Zou X, Luo B, Zhang S, Liu Y et al. Liquid–solid triboelectric probes for real‐time monitoring of sucrose fluid status. Advanced Functional Materials. 2023; 33: 2304321.
  • 9. Lorch CM, Hayes NW, Xia JL, Fleps SW, McMorrow HE, Province HS, Frydman JA, Parker JG, Beutler LR. Sucrose overconsumption impairs AgRP neuron dynamics and promotes palatable food intake. Cell Reports. 2024; 43:113675.
  • 10. Elferink H, Bruekers JP, Veeneman GH, Boltje TJ (2020). A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine: “A gut feeling”. Cellular and Molecular Life Sciences. 2020; 77: 4799-4826.
  • 11. Teysseire F, Bordier V, Beglinger C, Wölnerhanssen BK, Meyer-Gerspach AC. Metabolic Effects of Selected Conventional and Alternative Sweeteners: A Narrative Review. Nutrients. 2024;16622.
  • 12. Pasmans K, Meex RC, Trommelen J, Senden JM, Vaughan EE, van Loon LJ, et al. L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women: a double-blind, randomised crossover trial. British Journal of Nutrition. 2022; 128:1072-81.
  • 13. Taskinen MR, Packard CJ, Borén J. Dietary fructose and the metabolic syndrome. Nutrients. 2019; 11: 1987.
  • 14. Mitchell SB, Hung YH, Thorn TL, Zou J, Baser F, Gulec S et al. Sucrose-induced hyperglycemia dysregulates intestinal zinc metabolism and integrity: risk factors for chronic diseases. Frontiers in Nutrition. 2023; 10:1220533.
  • 15. Di Monaco R, Miele NA, Cabisidan EK, Cavella S. Strategies to reduce sugars in food. Current Opinion in Food Science. 2018; 19: 92-97.
  • 16. Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metabolism. 2021; 33: 2329-54.
  • 17. O’Brien P, Han G, Ganpathy P, Pitre S, Zhang Y, Ryan J et al. Chronic effects of a high sucrose diet on murine gastrointestinal nutrient sensor gene and protein expression levels and lipid metabolism. International Journal of Molecular Sciences. 2020; 22: 137.
  • 18. Pennington KA, van der Walt N, Pollock KE, Talton OO, Schulz LC. Effects of acute exposure to a high-fat, high-sucrose diet on gestational glucose tolerance and subsequent maternal health in mice. Biology of Reproduction. 2017; 96: 435-45.
  • 19. Ganguly S, Chattopadhyay T, Kazi R, Das S, Malik B, ML, Uthpala et al. Consumption of human-relevant levels of sucrose-water rewires macronutrient uptake and utilization mechanisms in a tissue specific manner. BioRxiv. 2024; 2024-08.
  • 20. Aimaretti E, Chimienti G, Rubeo C, Di Lorenzo R, Trisolini L, Dal Bello F, et al. Different effects of high-fat/high-sucrose and high-fructose diets on advanced glycation end-product accumulation and on mitochondrial involvement in heart and skeletal muscle in mice. Nutrients. 2023; 15:4874
  • 21. Acosta-Cota SDJ, Aguilar-Medina EM, Ramos-Payán R, Ruiz-Quiñónez AK, Romero-Quintana JG, Montes-Avila J et al. Histopathological and biochemical changes in the development of nonalcoholic fatty liver disease induced by high-sucrose diet at different times. Canadian Journal of Physiology And Pharmacology. 2019; 97: 23-36.
  • 22. Lovat NE, Legare DJ, Lautt WW. An animal model of gestational obesity and prediabetes: HISS-dependent insulin resistance induced by a high-sucrose diet in Sprague Dawley rats. Canadian Journal of Physiology and Pharmacology. 2021; 99: 599-608.
  • 23. Guzmán-Gerónimo RI, Alarcón-Zavaleta TM, Oliart-Ros RM, Meza-Alvarado JE, Herrera-Meza S, Chávez-Servia JL. Blue maize extract improves blood pressure, lipid profiles, and adipose tissue in high-sucrose diet-induced metabolic syndrome in rats. Journal of Medicinal Food. 2017; 20: 110-15.
  • 24. da Silva BS, Paulino AMB, Taffarel M, Borba IG, Telles, LO, Lima VV et al. High sucrose diet attenuates oxidative stress, inflammation and liver injury in thioacetamide-induced liver cirrhosis. Life Sciences. 2021; 267: 118944.
  • 25. Burgeiro A, Cerqueira MG, Varela-Rodríguez BM, Nunes S, Neto P, Pereira FC et al. Glucose and lipid dysmetabolism in a rat model of prediabetes induced by a high-sucrose diet. Nutrients. 2017; 9: 638.
  • 26. Oliveira LSC, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. The inflammatory profile and liver damage of a sucrose-rich diet in mice. The Journal of Nutritional Biochemistry. 2014; 25: 193-200.
  • 27. Sun S, Araki Y, Hanzawa F, Umeki M, Kojima T, Nishimura N et al. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. The Journal of Nutritional Biochemistry. 2021; 93: 108621.
  • 28. Zhu W, Hong Y, Li Y, Li Y, Zhong J, He X et al. Microbial and transcriptomic profiling reveals diet-related alterations of metabolism in metabolic disordered mice. Frontiers in Nutrition. 2022; 9: 923377.
  • 29. Cao L, Liu X, Cao H, Lv Q, Tong N. Modified high‐sucrose diet‐induced abdominally obese and normal‐weight rats developed high plasma free fatty acid and insulin resistance. Oxidative medicine and cellular longevity. 2012; 2012(1): 374346.
  • 30. Kanazawa M, Xue CY, Kageyama H, Suzuki E, Ito R, Namba Y et al. Effects of a high-sucrose diet on body weight, plasma triglycerides, and stress tolerance. Nutrition Reviews. 2003; 61(Suppl 5): 27-33.
  • 31. Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Archives of Biochemistry and Biophysics. 2019; 665: 46-56.
  • 32. Tillman EJ, Morgan DA, Rahmouni K, Swoap SJ. Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PLoS one. 2014; 9: e107206.
  • 33. Ahmed S, Kashem MA, Sarker R, Ahmed EU, Hargreaves GA, McGregor IS. Neuroadaptations in the striatal proteome of the rat following prolonged excessive sucrose intake. Neurochemical Research. 2014;39:815-24.
  • 34. Xiaojuan Wang, Zhipeng Li, Lili Zhang et al. Long-time high-sucrose intake induced metabolic dysfunction via disrupting the balance of intestinal microenvironment. 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3849756/v1]
  • 35. Song Q, Nishitani S, Saito S, Nishimura N, Mochizuki S, Oda H. Inositol and taurine ameliorate abnormal liver lipid metabolism induced by high sucrose intake. Food Bioscience. 2024; 60: 104368.
  • 36. Togo J, Hu S, Li M, Niu C, Speakman JR. Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid. Molecular Metabolism. 2019; 27: 22-32.
  • 37. Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiological Reviews. 2010; 90: 23-46.
  • 38. Lustig RH, Schmidt LA, Brindis CD. The toxic truth about sugar. Nature. 2012; 482: 27-29.
  • 39. Sakamoto E, Seino Y, Fukami A, Mizutani N, Tsunekawa S, Ishikawa K et al. Ingestion of a moderate high-sucrose diet results in glucose intolerance with reduced liver glucokinase activity and impaired glucagon-like peptide-1 secretion. Journal of Diabetes Investigation. 2012; 3: 432–40.
  • 40. Lewandowski P, McAnich A, Cameron-Smith D. Effect of sucrose feeding on genes associated with liver fat metabolism. Asia Pacific Journal of Clinical Nutrition. 2004; 13: S88 [Suppl].
  • 41. Yamazaki T, Ihato M. Peroxisome proliferator-activated receptor α has a protective effect on fatty liver caused by excessive sucrose intake. Biomedicines. 2022; 10: 2199.
  • 42. Park SH, Fadhul TI, Ronald Kahn C, Softıc S. 292-Or: High-Fat Diets Containing Sucrose and Fructose, but Not Glucose, Induce Obesity and Hepatic Insulin Resistance via Accumulation of Diacylglycerols. Diabetes. 2023; 72(Supplement_1).
  • 43. Tryndyak VP, Willett RA, Nagumalli SK, Li D, Avigan MI, Beland FA, Rusyn I, Pogribny IP. Effect of an obesogenic high-fat and high-sucrose diet on hepatic gene expression signatures in male Collaborative Cross mice. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2023; 324: G232-G243.
  • 44. Sumiyoshi M, Sakanaka M, Kimura Y. Chronic intake of high-fat and high-sucrose diets differentially affects glucose intolerance in mice. The Journal of Nutrition. 2006; 136: 582-87.
  • 45. Burke SJ, Batdorf HM, Martin TM, Burk DH, Noland RC, Cooley CR et al. Liquid Sucrose Consumption Promotes Obesity and Impairs Glucose Tolerance Without Altering Circulating Insulin Levels. Obesity (Silver Spring). 2018; 26: 1188-96.
  • 46. Rasool S, Geetha T, Broderick TL, Babu JR. High Fat with High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Frontiers in Physiology. 2018; 9: 1054.
  • 47. Wang X, Li Z, Zhang L et al. Long-time high-sucrose intake induced metabolic dysfunction via disrupting the balance of intestinal microenvironment. 2024; Preprint (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3849756/v1]
  • 48. Stephenson EJ, Stayton AS, Sethuraman A, Rao PK, Meyer A, Gomes CK, Han JC. Chronic intake of high dietary sucrose induces sexually dimorphic metabolic adaptations in mouse liver and adipose tissue. Nature Communications. 2022; 13: 6062.
  • 49. Korgan AC, Oliveira-Abreu K, Wei W, Martin SL, Bridges ZJ, Leal-Cardoso JH, O’Connell KM. High sucrose consumption decouples intrinsic and synaptic excitability of AgRP neurons without altering body weight. International Journal of Obesity. 2023; 47: 224-35.
  • 50. Mohamed SM, Shalaby MA, El-Shiekh RA, El-Banna HA, Emam SR, Bakr AF. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chemistry Advances. 2023; 3: 100335.
  • 51. Abubakar U, Wasagu HI, Mohammed MO, Tsamiya RI, Mohammed I, Avwioro OG et al. Effect of Biochemical Parameters and Histology of Liver on Sucrose-Induced Metabolic Syndrome in Wistar Rats. Journal of Complementary and Alternative Medical Research. 2022; 17: 30-36.
  • 52. Kobi JBBS, Matias AM, Gasparini PVF, Torezani-Sales S, Madureira AR, da Silva DS et al. High-fat, high-sucrose, and combined high-fat/high-sucrose diets effects in oxidative stress and inflammation in male rats under presence or absence of obesity. Physiological Reports. 2023;11: e15635.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derleme
Yazarlar

Akın Bodur 0000-0001-7413-2717

Solmaz Susam 0000-0002-7503-2416

Katip Korkmaz 0000-0002-3326-9255

Hüseyin Çınar Zihni 0000-0001-8032-6040

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 28 Ağustos 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 33 Sayı: 4

Kaynak Göster

AMA Bodur A, Susam S, Korkmaz K, Zihni HÇ. Katı veya Sıvı Formdaki Yüksek Sukroz İçerikli Diyet Tüketimi Farklı Metabolik Etkilere Yol Açar Mı?. aktd. Aralık 2024;33(4):273-279. doi:10.17827/aktd.1539872