Araştırma Makalesi
BibTex RIS Kaynak Göster

A Multi-Criteria Decision-Making Approach Enriched with Machine Learning: The Electre Tree Method and an Illustrative Example on Sustainable Development Education Indicators

Yıl 2025, Cilt: 9 Sayı: 1, 26 - 47, 20.04.2025
https://doi.org/10.59293/anadoluiid.1636927

Öz

The integration of Multi-Criteria Decision-Making (MCDM) methods with Machine Learning (ML) algorithms, which have become increasingly widespread in recent years, stands out as a significant development in improving the accuracy and dynamism of complex decision-making processes. This study mainly aims to introduce the ELECTRE Tree method, a classification approach based on MCDM-ML, to the Turkish literature which was first presented by Montenegro de Barros et al. (2021). The study includes an example illustrative application utilizing statistics published by the European Union's Statistical Office (EUROSTAT) to analyze indicators related to the fourth Sustainable Development Goal (SDG 4): Quality Education. According to the results, four distinct classes obtained, with Denmark, Ireland, the Netherlands, Finland, and Sweden emerging as the top-performing countries; while Türkiye was classified in the third group. The accurate classifications indicate that the integration of this method can provide effective.

Kaynakça

  • Alkan Şener, S. (2020). ELECTRE III, ELECTRE TRI ve TOPSIS Yöntemleri ile İş Yapma Kolaylığı Endeksi Verileri Üzerine Bir Uygulama, (Doktora Tezi), Sivas Cumhuriyet Üniversitesi.
  • Almeida-Dias, J., Figueira, J. R., Roy, B. (2010), “Electre Tri-C: A Multiple Criteria Sorting Method Based on Characteristic Reference Actions”, European Journal of Operational Research, 204(3): 565-580.
  • Alpaydın, E. (2004), Introduction to Machine Learning, The MIT Press, Cambridge.
  • Ananda, J., Herath, G. (2009), “A Critical Review of Multi-Criteria Decision Making Methods with Special Reference to Forest Management and Planning”, Ecological Economics, 68(10): 2535-2548.
  • Arondel, C., Girardin, P. (2000), “Sorting Cropping Systems on the Basis of Their Impact on Groundwater Quality”, European Journal of Operational Research, 127(3): 467-482.
  • Arthur, D., Vassilvitskii, S. (2007), “K-means++: The Advantages of Careful Seeding”, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), Philadelphia, USA, 1027-1035.
  • Balali, F., Nouri, J., Nasiri, A., Zhao, T. (2020), Data Intensive Industrial Asset Management, Springer, Cham.
  • Bao, W., Lianju, N., Yue, K. (2019), “Integration of Unsupervised and Supervised Machine Learning Algorithms for Credit Risk Assessment”, Expert Systems with Applications, 128: 301-315.
  • Brito, A. J., de Almeida, A. T., Mota, C. M. (2010), “A Multicriteria Model for Risk Sorting of Natural Gas Pipelines Based on ELECTRE TRI Integrating Utility Theory”, European Journal of Operational Research , 200(3): 812-821.
  • Buchholz, O., Grote, T. (2023), “Predicting and Explaining with Machine Learning Models: Social Science as a Touchstone”, Studies in History and Philosophy of Science, 102: 60-69.
  • Carriço, N., Covas, D. I., Almeida, M. C., Leitão, J. P., Alegre, H. (2012), “Prioritization of Rehabilitation Interventions for Urban Water Assets Using Multiple Criteria Decision-Aid Methods”, Water Science and Technology, 66(5): 1007-1014.
  • Chen, Y., Wu, X., Hu, A., He, G., Ju, G. (2021), “Social Prediction: A New Research Paradigm Based on Machine Learning”, Journal of Chinese Sociology, 8: 1-21.
  • Da Silva Sales, I. J., De Amorim, P. L., De Souza, R. G. (2024), “Multi-Criteria Analysis of The Feasibility of E-Waste Pre-Treatment Units in a Brazilian City”, Environment Systems and Decisions, 44(2): 412-423.
  • De Souza, J. L., Costa, S. W., Costa, F. A., Medeiros, A. M., DeSouza, G. N., Seruffo, M. C. (2023), “A Classification Model for Municipalities in the Paraense Amazon Regarding the Risk of Violence Against Women: A Multicriteria Approach”, PLoS one, 18(10): e0292323.
  • Dell’Anna, F. (2023), “An ELECTRE TRI B-Based Decision Framework to Support the Energy Project Manager in Dealing with Retrofit Processes at District Scale”, Sustainability, 15(2): 1250.
  • El-Morr, C., Jammal, M., Ali-Hassan, H., El-Hallak, W. (2022), Machine Learning for Practical Decision Making, Springer, Cham.
  • Emamat, M. S., Mota, C. M., Mehregan, M. R., Sadeghi Moghadam, M. R., Nemery, P. (2022), “Using ELECTRE-TRI and FlowSort Methods in a Stock Portfolio Selection Context”, Financial Innovation, 8(1): 11.
  • Estran, R., Souchaud, A., Abitbol, D. (2022), “Using a Genetic Algorithm to Optimize an Expert Credit Rating Model”, Expert Systems with Applications, 203: 117506.
  • EU. (2023), Sustainable Development Goals Database, https://ec.europa.eu/eurostat/web/sdi/database, (19.01.2025).
  • Fu, S., Lyu, H., Wang, Z., Hao, X., Zhang, C. (2022), “Extracting Historical Flood Locations from News Media Data by the Named Entity Recognition (NER) Model to Assess Urban Flood Susceptibility”, Journal of Hydrology, 612: 128312.
  • Georgopoulou, E., Sarafidis, Y., Mirasgedis, S., Zaimi, S., Lalas, D. P. (2003), “A Multiple Criteria Decision-Aid Approach in Defining National Priorities for Greenhouse Gases Emissions Reduction in the Energy Sector”, European Journal of Operational Research, 146(1): 199-215.
  • Hu, S., Dong, Z. S., Dai, R. (2024), “A Machine Learning Based Sample Average Approximation for Supplier Selection with Option Contract in Humanitarian Relief”, Transportation Research Part E: Logistics and Transportation Review, 186: 103531.
  • Kacprzak, D. (2024), “A New Extension of the EDAS Method in a fuzzy Environment for Group Decision-Making”, Decision, 51(3): 263-277.
  • Karakosta, C., Doukas, H., Psarras, J. (2009), “Directing Clean Development Mechanism Towards Developing Countries' Sustainable Development Priorities”, Energy for Sustainable Development, 13(2): 77-84.
  • Karsak, E. E., Ucar, E. (2024). “Education Policy Assessment of Countries Using an Integrated Decision-Making Approach”, e-mentor, 107(5): 20-28.
  • Kaya, S. K., Ayçin, E., Pamucar, D. (2023), “Evaluation of Social Factors within the Circular Economy Concept for European Countries”, Central European Journal of Operations Research, 31(1): 73-108.
  • Khedkar, R. A., Vyas, V. (2008). “Real Coded Genetic Algorithm for Minimizing Wavelength and Number of Hops in Virtual Wavelength Path Routed WDM Network”, 2008 IET International Conference on Wireless, Mobile and Multimedia Networks, Beijing, China, 113-116.
  • Kuc-Czarnecka, M., Markowicz, I., Sompolska-Rzechuła, A. (2023), “SDGs Implementation, Their Synergies, and Trade-Offs in EU Countries–Sensitivity Analysis-Based Approach”, Ecological Indicators, 146: 109888.
  • Kumar, R. (2025), “A Comprehensive Review of MCDM Methods, Applications, and Emerging Trends”, Decision Making Advances, 3(1): 185-199.
  • Kumar, R., Pal, K. K. (2024), “Artificial Intelligence (AI)-Driven Transformation: Sustainable Development of Agro-Based Industries in Bihar”, International Journal for Multidisciplinary Research, 6(2): 1-8.
  • Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D. (2018), “Machine Learning in Agriculture: A Review”, Sensors, 18(8): 2674-2703.
  • Liang, W., Rodríguez, R. M., Wang, Y. M., Goh, M., Ye, F. (2023), “The Extended ELECTRE III Group Decision Making Method Based on Regret Theory Under Probabilistic Interval-Valued Hesitant Fuzzy Environments”, Expert Systems with Applications, 231: 120618.
  • Liu, X., Wan, S. P. (2019), “A Method to Calculate the Ranges of Criteria Weights in ELECTRE I and II Methods”, Computers & Industrial Engineering, 137: 106067.
  • MacKay, D. J. (2003), Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge.
  • Matenga, Z. (2022), “Assessment of Energy Market’s Progress Towards Achieving Sustainable Development Goal 7: A Clustering Approach”, Sustainable Energy Technologies and Assessments, 52: 102224.
  • Mohanty, A., Mohapatra, A. G., Mohanty, S. K., Mohanty, A. (2025), “Fuzzy Systems”, Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide, V. Nguyen, N. Vo, V. Truong, V. Nguyen (Eds.), CRC Press, Boca Raton: 4-46.
  • Montenegro de Barros, G. M., Pereira, V., Roboredo, M. C. (2021), “ELECTRE Tree: A Machine Learning Approach to Infer ELECTRE Tri-B Parameters”, Data Technologies and Applications, 55(4): 586-608.
  • Mousseau, V., Slowinski, R. (1998), “Inferring an ELECTRE TRI Model from Assignment Examples”, Journal of Global Optimization, 12: 157-174.
  • Nepomuceno, L. D., Costa, H. G. (2015), “Analyzing Perceptions About the Influence of a Master Course over the Professional Skills of Its Alumni: A Multicriteria Approach”, Pesquisa Operacional, 35(1): 187-211.
  • Ömürbek, N., Karaatlı, M., Cömert, H. G. (2016), “AHP-SAW ve AHP-ELECTRE Yöntemleri ile Yapı Denetim Firmalarının Değerlendirmesi”, Yönetim Bilimleri Dergisi, 14(27): 171-199.
  • Pereira, V., Basilio, M. P., Santos, C. H. (2024), Enhancing decision analysis with a large language model: pydecision a comprehensive library of MCDA methods in python, https://arxiv.org/pdf/2404.06370 (10.01.2025).
  • Piekut, M. (2021), “The Consumption of Renewable Energy Sources (RES) by the European Union Households Between 2004 and 2019”, Energies, 14(17): 5560.
  • Popelo, O., Kholiavko, N., Hryhorkiv, M., Kosmii, O., Oleksiienko, O., Zhavoronok, A. (2023), “EU Higher Education Institution Toward the Sustainable Development”, Management Theory and Studies for Rural Business and Infrastructure Development, 45(2): 124.
  • Ramezanian, R. (2019), “Estimation of the Profiles in Posteriori ELECTRE TRI: A Mathematical Programming Model”, Computers & Industrial Engineering, 128: 47-59.
  • Rodrigues, K. T., Martins, C. L., dos Santos Neto, J. B., Fogaça, D. R., Ensslin, S. R. (2022), “Decision-Making Model to Assess Organizational Climate in Healthcare Organizations”, International Journal of Decision Support System Technology, 14(1): 1-19.
  • Roy, B. (1968), “Classement et Choix en Présence de Points de Vue Multiples”, Revue Française D'informatique Et De Recherche Opérationnelle, 2(8): 57-75.
  • Roy, B., Bouyssou, D. (1993), Aide Multicritère à la Décision: Méthodes et Cas, Economica, Paris.
  • Roszkowska, E., Filipowicz-Chomko, M. (2020). “Measuring Sustainable Development in the Education Area Using Multi-Criteria Methods: A Case Study”, Central European Journal of Operations Research, 28(4): 1219-1241.
  • Sánchez-Lozano, J. M., García-Cascales, M. S., Lamata, M. T. (2016), “Comparative TOPSIS-ELECTRE TRI Methods for Optimal Sites for Photovoltaic Solar Farms: Case Study in Spain”, Journal of Cleaner Production, 127: 387-398.
  • Saini, M., Sengupta, E., Singh, M., Singh, H., Singh, J. (2023), “Sustainable Development Goal for Quality Education (SDG 4): A Study on SDG 4 to Extract the Pattern of Association Among the Indicators of SDG 4 Employing a Genetic Algorithm”, Education and Information Technologies, 28(2): 2031-2069.
  • Shidik, G. F., Saputra, F. O., Saraswati, G. W., Winarsih, N. A., Rohman, M. S., Pramunendar, R. A., … , Hasibuan, Z. A. (2024), “Indonesian Disaster Named Entity Recognition from Multi Source Information Using Bidirectional LSTM (BILSTM)”, Journal of Open Innovation: Technology, Market, and Complexity, 10(3): 100358.
  • Shu, X., Ye, Y. (2023), “Knowledge Discovery: Methods from Data Mining and Machine Learning”, Social Science Research, 110: 102817.
  • Sun, W., Xu, Y. (2016), “Financial Security Evaluation of the Electric Power Industry in China Based on a Back Propagation Neural Network Optimized by Genetic Algorithm”, Energy, 101: 366-379.
  • Şahin, M., Ulucan, A., Yurdugül, H. (2021), “Learner Classification Based on Interaction Data in E-learning Environments: the ELECTRE TRI Method”, Education and Information Technologies, 26(2): 2309-2326.
  • Taherdoost, H., Madanchian, M. (2023), “Multi-Criteria Decision Making (MCDM) Methods and Concepts”, Encyclopedia, 3(1): 77-87.
  • Tinsley, H. E., Brown, S. D. (2000), Handbook of Applied Multivariate Statistics and Mathematical Modeling, Academic Press, Cambridge.
  • Trojan, F., Morais, D. C. (2012), “Using Electre TRI to Support Maintenance of Water Distribution Networks”, Pesquisa Operacional, 32: 423-442.
  • UN. (2015), Transforming Our World: The 2030 Agenda for Sustainable Development, https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf, (19.01.2025).
  • Uğuz, S. (2021), Makine Öğrenmesi - Teorik Yönü ve Python Uygulamaları ile Bir Yapay Zeka Ekolü, Nobel Akademik Yayıncılık, Ankara.
  • Wu, R., Kang, D., Chen, Y., Chen, C. (2023), “Assessing Academic Impacts of Machine Learning Applications on a Social Science: Bibliometric Evidence from Economics”, Journal of Informetrics, 17(3): 101436.
  • Xu, N. (2019), “Understanding the Reinforcement Learning”, Journal of Physics: Conference Series, 1207: 1-6. Yaralıoğlu, K. (2010), Karar Verme Yöntemleri, Detay Yayıncılık, Ankara.
  • Yu, W. (1992), “ELECTRE TRI: Aspects Méthodologiques et Manuel D'utilisation”, Document du LAMSADE, 74.

Makine Öğrenmesi ile Zenginleştirilmiş Çok Kriterli Bir Karar Verme Yaklaşımı: Electre Ağacı Yöntemi ve Sürdürülebilir Kalkınma Eğitim Göstergeleri Üzerine Bir Örnek Uygulama

Yıl 2025, Cilt: 9 Sayı: 1, 26 - 47, 20.04.2025
https://doi.org/10.59293/anadoluiid.1636927

Öz

Çok Kriterli Karar Verme (ÇKKV) yöntemlerinin özellikle son yıllarda sıklıkla kullanılmaya başlayan Makine Öğrenmesi (Machine Learning (ML)) algoritmaları ile entegrasyonu, karmaşık karar verme süreçlerini daha doğru ve dinamik hale getiren önemli bir gelişme olarak öne çıkmaktadır. Bu çalışma, esas olarak Montenegro de Barros vd. (2021)’nin çalışmaları ile literatüre giren ancak henüz Türkçe literatürde kullanılmamış bir ÇKKV-ML temelli sınıflandırma yaklaşımı olan ELECTRE Ağacı (ELECTRE Tree) yönteminin tanıtılmasını amaçlamaktadır. Bu doğrultuda çalışmada Avrupa Birliği İstatistik Ofisinin (EUROSTAT) yayınladığı istatistiklerden yararlanılarak Sürdürülebilir Kalkınma Amaçları (SKA)’ndan 4.sü olan Nitelikli Eğitim amacına ait göstergelerin dahil olduğu bir de örnek illüstratif uygulama yapılmıştır. Örnek uygulama sonucunda dört farklı sınıf elde edilmiş ve SKA 4’e göre en başarılı ülkelerin Danimarka, İrlanda, Hollanda, Finlandiya ve İsveç olmuş; Türkiye ise üçüncü sınıfta yer almıştır. Elde edilen isabetli sınıflandırmalar uyarınca yöntemin etkin çözümler sunabileceği görülmüştür.

Kaynakça

  • Alkan Şener, S. (2020). ELECTRE III, ELECTRE TRI ve TOPSIS Yöntemleri ile İş Yapma Kolaylığı Endeksi Verileri Üzerine Bir Uygulama, (Doktora Tezi), Sivas Cumhuriyet Üniversitesi.
  • Almeida-Dias, J., Figueira, J. R., Roy, B. (2010), “Electre Tri-C: A Multiple Criteria Sorting Method Based on Characteristic Reference Actions”, European Journal of Operational Research, 204(3): 565-580.
  • Alpaydın, E. (2004), Introduction to Machine Learning, The MIT Press, Cambridge.
  • Ananda, J., Herath, G. (2009), “A Critical Review of Multi-Criteria Decision Making Methods with Special Reference to Forest Management and Planning”, Ecological Economics, 68(10): 2535-2548.
  • Arondel, C., Girardin, P. (2000), “Sorting Cropping Systems on the Basis of Their Impact on Groundwater Quality”, European Journal of Operational Research, 127(3): 467-482.
  • Arthur, D., Vassilvitskii, S. (2007), “K-means++: The Advantages of Careful Seeding”, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), Philadelphia, USA, 1027-1035.
  • Balali, F., Nouri, J., Nasiri, A., Zhao, T. (2020), Data Intensive Industrial Asset Management, Springer, Cham.
  • Bao, W., Lianju, N., Yue, K. (2019), “Integration of Unsupervised and Supervised Machine Learning Algorithms for Credit Risk Assessment”, Expert Systems with Applications, 128: 301-315.
  • Brito, A. J., de Almeida, A. T., Mota, C. M. (2010), “A Multicriteria Model for Risk Sorting of Natural Gas Pipelines Based on ELECTRE TRI Integrating Utility Theory”, European Journal of Operational Research , 200(3): 812-821.
  • Buchholz, O., Grote, T. (2023), “Predicting and Explaining with Machine Learning Models: Social Science as a Touchstone”, Studies in History and Philosophy of Science, 102: 60-69.
  • Carriço, N., Covas, D. I., Almeida, M. C., Leitão, J. P., Alegre, H. (2012), “Prioritization of Rehabilitation Interventions for Urban Water Assets Using Multiple Criteria Decision-Aid Methods”, Water Science and Technology, 66(5): 1007-1014.
  • Chen, Y., Wu, X., Hu, A., He, G., Ju, G. (2021), “Social Prediction: A New Research Paradigm Based on Machine Learning”, Journal of Chinese Sociology, 8: 1-21.
  • Da Silva Sales, I. J., De Amorim, P. L., De Souza, R. G. (2024), “Multi-Criteria Analysis of The Feasibility of E-Waste Pre-Treatment Units in a Brazilian City”, Environment Systems and Decisions, 44(2): 412-423.
  • De Souza, J. L., Costa, S. W., Costa, F. A., Medeiros, A. M., DeSouza, G. N., Seruffo, M. C. (2023), “A Classification Model for Municipalities in the Paraense Amazon Regarding the Risk of Violence Against Women: A Multicriteria Approach”, PLoS one, 18(10): e0292323.
  • Dell’Anna, F. (2023), “An ELECTRE TRI B-Based Decision Framework to Support the Energy Project Manager in Dealing with Retrofit Processes at District Scale”, Sustainability, 15(2): 1250.
  • El-Morr, C., Jammal, M., Ali-Hassan, H., El-Hallak, W. (2022), Machine Learning for Practical Decision Making, Springer, Cham.
  • Emamat, M. S., Mota, C. M., Mehregan, M. R., Sadeghi Moghadam, M. R., Nemery, P. (2022), “Using ELECTRE-TRI and FlowSort Methods in a Stock Portfolio Selection Context”, Financial Innovation, 8(1): 11.
  • Estran, R., Souchaud, A., Abitbol, D. (2022), “Using a Genetic Algorithm to Optimize an Expert Credit Rating Model”, Expert Systems with Applications, 203: 117506.
  • EU. (2023), Sustainable Development Goals Database, https://ec.europa.eu/eurostat/web/sdi/database, (19.01.2025).
  • Fu, S., Lyu, H., Wang, Z., Hao, X., Zhang, C. (2022), “Extracting Historical Flood Locations from News Media Data by the Named Entity Recognition (NER) Model to Assess Urban Flood Susceptibility”, Journal of Hydrology, 612: 128312.
  • Georgopoulou, E., Sarafidis, Y., Mirasgedis, S., Zaimi, S., Lalas, D. P. (2003), “A Multiple Criteria Decision-Aid Approach in Defining National Priorities for Greenhouse Gases Emissions Reduction in the Energy Sector”, European Journal of Operational Research, 146(1): 199-215.
  • Hu, S., Dong, Z. S., Dai, R. (2024), “A Machine Learning Based Sample Average Approximation for Supplier Selection with Option Contract in Humanitarian Relief”, Transportation Research Part E: Logistics and Transportation Review, 186: 103531.
  • Kacprzak, D. (2024), “A New Extension of the EDAS Method in a fuzzy Environment for Group Decision-Making”, Decision, 51(3): 263-277.
  • Karakosta, C., Doukas, H., Psarras, J. (2009), “Directing Clean Development Mechanism Towards Developing Countries' Sustainable Development Priorities”, Energy for Sustainable Development, 13(2): 77-84.
  • Karsak, E. E., Ucar, E. (2024). “Education Policy Assessment of Countries Using an Integrated Decision-Making Approach”, e-mentor, 107(5): 20-28.
  • Kaya, S. K., Ayçin, E., Pamucar, D. (2023), “Evaluation of Social Factors within the Circular Economy Concept for European Countries”, Central European Journal of Operations Research, 31(1): 73-108.
  • Khedkar, R. A., Vyas, V. (2008). “Real Coded Genetic Algorithm for Minimizing Wavelength and Number of Hops in Virtual Wavelength Path Routed WDM Network”, 2008 IET International Conference on Wireless, Mobile and Multimedia Networks, Beijing, China, 113-116.
  • Kuc-Czarnecka, M., Markowicz, I., Sompolska-Rzechuła, A. (2023), “SDGs Implementation, Their Synergies, and Trade-Offs in EU Countries–Sensitivity Analysis-Based Approach”, Ecological Indicators, 146: 109888.
  • Kumar, R. (2025), “A Comprehensive Review of MCDM Methods, Applications, and Emerging Trends”, Decision Making Advances, 3(1): 185-199.
  • Kumar, R., Pal, K. K. (2024), “Artificial Intelligence (AI)-Driven Transformation: Sustainable Development of Agro-Based Industries in Bihar”, International Journal for Multidisciplinary Research, 6(2): 1-8.
  • Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D. (2018), “Machine Learning in Agriculture: A Review”, Sensors, 18(8): 2674-2703.
  • Liang, W., Rodríguez, R. M., Wang, Y. M., Goh, M., Ye, F. (2023), “The Extended ELECTRE III Group Decision Making Method Based on Regret Theory Under Probabilistic Interval-Valued Hesitant Fuzzy Environments”, Expert Systems with Applications, 231: 120618.
  • Liu, X., Wan, S. P. (2019), “A Method to Calculate the Ranges of Criteria Weights in ELECTRE I and II Methods”, Computers & Industrial Engineering, 137: 106067.
  • MacKay, D. J. (2003), Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge.
  • Matenga, Z. (2022), “Assessment of Energy Market’s Progress Towards Achieving Sustainable Development Goal 7: A Clustering Approach”, Sustainable Energy Technologies and Assessments, 52: 102224.
  • Mohanty, A., Mohapatra, A. G., Mohanty, S. K., Mohanty, A. (2025), “Fuzzy Systems”, Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide, V. Nguyen, N. Vo, V. Truong, V. Nguyen (Eds.), CRC Press, Boca Raton: 4-46.
  • Montenegro de Barros, G. M., Pereira, V., Roboredo, M. C. (2021), “ELECTRE Tree: A Machine Learning Approach to Infer ELECTRE Tri-B Parameters”, Data Technologies and Applications, 55(4): 586-608.
  • Mousseau, V., Slowinski, R. (1998), “Inferring an ELECTRE TRI Model from Assignment Examples”, Journal of Global Optimization, 12: 157-174.
  • Nepomuceno, L. D., Costa, H. G. (2015), “Analyzing Perceptions About the Influence of a Master Course over the Professional Skills of Its Alumni: A Multicriteria Approach”, Pesquisa Operacional, 35(1): 187-211.
  • Ömürbek, N., Karaatlı, M., Cömert, H. G. (2016), “AHP-SAW ve AHP-ELECTRE Yöntemleri ile Yapı Denetim Firmalarının Değerlendirmesi”, Yönetim Bilimleri Dergisi, 14(27): 171-199.
  • Pereira, V., Basilio, M. P., Santos, C. H. (2024), Enhancing decision analysis with a large language model: pydecision a comprehensive library of MCDA methods in python, https://arxiv.org/pdf/2404.06370 (10.01.2025).
  • Piekut, M. (2021), “The Consumption of Renewable Energy Sources (RES) by the European Union Households Between 2004 and 2019”, Energies, 14(17): 5560.
  • Popelo, O., Kholiavko, N., Hryhorkiv, M., Kosmii, O., Oleksiienko, O., Zhavoronok, A. (2023), “EU Higher Education Institution Toward the Sustainable Development”, Management Theory and Studies for Rural Business and Infrastructure Development, 45(2): 124.
  • Ramezanian, R. (2019), “Estimation of the Profiles in Posteriori ELECTRE TRI: A Mathematical Programming Model”, Computers & Industrial Engineering, 128: 47-59.
  • Rodrigues, K. T., Martins, C. L., dos Santos Neto, J. B., Fogaça, D. R., Ensslin, S. R. (2022), “Decision-Making Model to Assess Organizational Climate in Healthcare Organizations”, International Journal of Decision Support System Technology, 14(1): 1-19.
  • Roy, B. (1968), “Classement et Choix en Présence de Points de Vue Multiples”, Revue Française D'informatique Et De Recherche Opérationnelle, 2(8): 57-75.
  • Roy, B., Bouyssou, D. (1993), Aide Multicritère à la Décision: Méthodes et Cas, Economica, Paris.
  • Roszkowska, E., Filipowicz-Chomko, M. (2020). “Measuring Sustainable Development in the Education Area Using Multi-Criteria Methods: A Case Study”, Central European Journal of Operations Research, 28(4): 1219-1241.
  • Sánchez-Lozano, J. M., García-Cascales, M. S., Lamata, M. T. (2016), “Comparative TOPSIS-ELECTRE TRI Methods for Optimal Sites for Photovoltaic Solar Farms: Case Study in Spain”, Journal of Cleaner Production, 127: 387-398.
  • Saini, M., Sengupta, E., Singh, M., Singh, H., Singh, J. (2023), “Sustainable Development Goal for Quality Education (SDG 4): A Study on SDG 4 to Extract the Pattern of Association Among the Indicators of SDG 4 Employing a Genetic Algorithm”, Education and Information Technologies, 28(2): 2031-2069.
  • Shidik, G. F., Saputra, F. O., Saraswati, G. W., Winarsih, N. A., Rohman, M. S., Pramunendar, R. A., … , Hasibuan, Z. A. (2024), “Indonesian Disaster Named Entity Recognition from Multi Source Information Using Bidirectional LSTM (BILSTM)”, Journal of Open Innovation: Technology, Market, and Complexity, 10(3): 100358.
  • Shu, X., Ye, Y. (2023), “Knowledge Discovery: Methods from Data Mining and Machine Learning”, Social Science Research, 110: 102817.
  • Sun, W., Xu, Y. (2016), “Financial Security Evaluation of the Electric Power Industry in China Based on a Back Propagation Neural Network Optimized by Genetic Algorithm”, Energy, 101: 366-379.
  • Şahin, M., Ulucan, A., Yurdugül, H. (2021), “Learner Classification Based on Interaction Data in E-learning Environments: the ELECTRE TRI Method”, Education and Information Technologies, 26(2): 2309-2326.
  • Taherdoost, H., Madanchian, M. (2023), “Multi-Criteria Decision Making (MCDM) Methods and Concepts”, Encyclopedia, 3(1): 77-87.
  • Tinsley, H. E., Brown, S. D. (2000), Handbook of Applied Multivariate Statistics and Mathematical Modeling, Academic Press, Cambridge.
  • Trojan, F., Morais, D. C. (2012), “Using Electre TRI to Support Maintenance of Water Distribution Networks”, Pesquisa Operacional, 32: 423-442.
  • UN. (2015), Transforming Our World: The 2030 Agenda for Sustainable Development, https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf, (19.01.2025).
  • Uğuz, S. (2021), Makine Öğrenmesi - Teorik Yönü ve Python Uygulamaları ile Bir Yapay Zeka Ekolü, Nobel Akademik Yayıncılık, Ankara.
  • Wu, R., Kang, D., Chen, Y., Chen, C. (2023), “Assessing Academic Impacts of Machine Learning Applications on a Social Science: Bibliometric Evidence from Economics”, Journal of Informetrics, 17(3): 101436.
  • Xu, N. (2019), “Understanding the Reinforcement Learning”, Journal of Physics: Conference Series, 1207: 1-6. Yaralıoğlu, K. (2010), Karar Verme Yöntemleri, Detay Yayıncılık, Ankara.
  • Yu, W. (1992), “ELECTRE TRI: Aspects Méthodologiques et Manuel D'utilisation”, Document du LAMSADE, 74.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekonometrik ve İstatistiksel Yöntemler
Bölüm Makaleler
Yazarlar

Hasan Arda Burhan 0000-0003-4043-2652

Erken Görünüm Tarihi 19 Nisan 2025
Yayımlanma Tarihi 20 Nisan 2025
Gönderilme Tarihi 10 Şubat 2025
Kabul Tarihi 14 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Burhan, H. A. (2025). Makine Öğrenmesi ile Zenginleştirilmiş Çok Kriterli Bir Karar Verme Yaklaşımı: Electre Ağacı Yöntemi ve Sürdürülebilir Kalkınma Eğitim Göstergeleri Üzerine Bir Örnek Uygulama. Anadolu İktisat ve İşletme Dergisi, 9(1), 26-47. https://doi.org/10.59293/anadoluiid.1636927