Research Article
BibTex RIS Cite

Non-destructive Weight Prediction Model of Spherical Fruits and Vegetables using U-Net Image Segmentation and Machine Learning Methods

Year 2024, Volume: 30 Issue: 4, 735 - 747, 22.10.2024
https://doi.org/10.15832/ankutbd.1434767

Abstract

Artificial intelligence has become increasingly prominent in agriculture and other fields. Prediction of body weight in animals and plants has been done by humans using many different methods and observations from the past to the present. Although there has been extensive research on predicting the live body weight of animals, weight prediction of vegetables and fruits is not widely. As spherical or round-shaped fruits and vegetables are sold by weighing in the fields, markets and greengrocers, it is important to make weight predictions. Based on this, a model was developed to predict the weight of fruits and vegetables such as watermelons, melons, apples, oranges and tomatoes with the data obtained from their images. The fruit and vegetable weights were predicted by regression models using data obtained from images segmented by the U-Net architecture. Machine learning models such as Multi-Layer Perceptron (MLP), Random Forest (RF), Decision Trees (DT), Support Vector Machines (SVM), Linear and Stochastic Gradient Descent (SGD) regression models were used for weight predictions. The most effective regression models are the RF and DT models. For regression training, the best success rates were calculated as 0.9112 for watermelon, 0.9944 for apple, 0.9989 for tomato and 0.9996 for orange. In addition, the results were evaluated by comparing them to the studies of weight prediction. The weight prediction model will help to sell round-shaped fruits and vegetables in the fields, markets and gardens using the weight predictions from the images. It is also a guideline for studies that follow the growth of fruit and vegetables according to their weight.

References

  • Akkol S, Akilli A & Cemal I (2017). Comparison of artificial neural network and multiple linear regression for prediction of live weight in hair goats. Yyu J. Agric. Sci 27: 21-29. DOI: 10.29133/yyutbd.263968
  • Alzubaidi L, Zhang J, Humaidi A J, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaria J, Fadhel M A, Al-Amidie M & Farhan L (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data 8(1): 1-74. DOI: 10.1186/s40537-021-00444-8
  • Babajide O, Hissam T, Anna P, Anatoliy G, Astrup A, Alfredo Martinez J, Oppert J M & Sørensen T I (2020). A machine learning approach to short-term body weight prediction in a dietary intervention program. In Computational Science–ICCS 2020: 20th International Conference, Proceedings, Part IV 20 (pp. 441-455). DOI: 10.1007/978-3-030-50423-6_33
  • Bangdiwala S I (2018). Regression: simple linear. International journal of injury control and safety promotion 25(1): 113-115. DOI: 10.1080/17457300.2018.1426702
  • Barbole D K, Jadhav P M & Patil S B (2021). A review on fruit detection and segmentation techniques in agricultural field. In International Conference on Image Processing and Capsule Networks (pp. 269-288). Springer, Cham. DOI: 10.1007/978-3-030-84760-9_24
  • Bargoti S & Underwood J P (2017). Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics 34(6): 1039-1060. DOI:10.1002/rob.21699
  • Breiman L (2001). Random forests. Machine learning, 45: 5-32. DOI: 10.1023/A:1010933404324
  • Castro C A D O, Resende R T, Kuki K N, Carneiro V Q, Marcatti G E, Cruz C D & Motoike S Y (2017). High-performance prediction of macauba fruit biomass for agricultural and industrial purposes using Artificial Neural Networks. Industrial Crops and Products, 108: 806-813. DOI: 10.1016/j.indcrop.2017.07.031
  • Chicchón Apaza M Á, Monzón H M B & Alcarria R (2020). Semantic segmentation of weeds and crops in multispectral images by using a Convolutional Neural Networks based on u-net. In International Conference on Applied Technologies (pp. 473-485). Springer, Cham. DOI: 10.1007/978-3-030-42520-3_38
  • Cornelis C, Deschrijver G & Kerre E E (2006). Advances and challenges in interval-valued fuzzy logic. Fuzzy sets and systems, 157(5): 622-627. DOI: 10.1016/j.fss.2005.10.007
  • Duc N T, Ramlal A, Rajendran A, Raju D, Lal S K, Kumar S, Sahoo R N & Chinnusamy V (2023). Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean. Frontiers in Plant Science, 14: 1206357. DOI: 10.3389/fpls.2023.1206357
  • Faisal M, Albogamy F, Elgibreen H, Algabri M & Alqershi F A (2020). Deep learning and computer vision for estimating date fruits type, maturity level, and weight. IEEE Access, 8: 206770-206782. DOI: 10.1109/ACCESS.2020.3037948
  • Fernandes A F, Turra E M, de Alvarenga É R, Passafaro T L, Lopes F B, Alves G F, Singh V & Rosa G J (2020). Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Computers and electronics in agriculture, 170: 105274. DOI: 10.1016/j.compag.2020.105274
  • Friha O, Ferrag M A, Shu L, Maglaras L & Wang X (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies, IEEE/CAA J. Autom. Sinica, 8(4): 718-752. DOI: 10.1109/JAS.2021.1003925
  • Gondchawar N & Kawitkar R S (2016). IoT based smart agriculture. International Journal of advanced research in Computer and Communication Engineering, 5(6): 838-842. DOI: 10.1088/1757-899X/1212/1/012047
  • Guo Y, Liu Y, Georgiou T & Lew M S (2018). A review of semantic segmentation using deep neural networks. International journal of multimedia information retrieval, 7(2): 87-93. DOI: 10.1007/s13735-017-0141-z
  • Han H G & Qiao J F (2013). A structure optimisation algorithm for feedforward neural network construction. Neurocomputing, 99: 347-357. DOI: 10.1016/j.neucom.2012.07.023
  • Huynh T, Tran L & Dao S (2020). Real-time size and mass estimation of slender axi-symmetric fruit/vegetable using a single top view image. Sensors, 20(18): 5406. DOI: 10.3390/s20185406
  • Jeong H, Moon H, Jeong Y, Kwon H, Kim C, Lee Y, Yang S M & Kim S (2024). Automated Technology for Strawberry Size Measurement and Weight Prediction Using AI. IEEE Access. 12: 14157-14167. DOI: 10.1109/ACCESS.2024.3356118
  • Kang H & Chen C (2020). Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Computers and Electronics in Agriculture, 171: 105302. DOI: 10.1016/j.compag.2020.105302
  • Kassim M R M (2020). Iot applications in smart agriculture: Issues and challenges. In 2020 IEEE conference on open systems (ICOS) (pp. 19-24). IEEE. DOI: 10.1109/ICOS50156.2020.9293672
  • Kamiwaki Y & Fukuda S (2024). A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae, 10(2): 142. DOI: 10.3390/horticulturae10020142
  • Lee C Y (2023). Fruit Weight Predicting by Using Hybrid Learning. In International Conference on Technologies and Applications of Artificial Intelligence, (pp. 81-91). Singapore. DOI: 26912554
  • Li J, Sarma K V, Ho K C, Gertych A, Knudsen B S & Arnold C W (2017). A multi-scale u-net for semantic segmentation of histological images from radical prostatectomies. In AMIA Annual Symposium Proceedings. (pp. 1140). American Medical Informatics Association. DOI: PMC5977596
  • Lin B W, Yoshida D, Quinn J & Strehlow M (2009). A better way to estimate adult patients' weights. The American journal of emergency medicine, 27(9): 1060-1064. DOI: 10.1016/j.ajem.2008.08.018
  • Mahesh B (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9: 381-386. DOI: 10.21275/ART20203995
  • Naroui Rad M R, Ghalandarzehi A & Koohpaygani J A (2017). Predicting eggplant individual fruit weight using an artificial neural network. International Journal of Vegetable Science, 23(4): 331-339. DOI: 10.1080/19315260.2017.1290001
  • Nyalala I, Okinda C, Nyalala L, Makange N, Chao Q, Chao L, Yousaf K & Chen K (2019). Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. Journal of Food Engineering, 263: 288-298. DOI: 10.1016/j.jfoodeng.2019.07.012
  • O'Grady M J, Langton D & O'Hare G M P (2019). Edge computing: A tractable model for smart agriculture. Artificial Intelligence in Agriculture, 3: 42-51. DOI: 10.1016/j.aiia.2019.12.001
  • Ozkaya S (2013). The prediction of live weight from body measurements on female Holstein calves by digital image analysis. The Journal of Agricultural Science, 151(4): 570-576. DOI: 10.1017/S002185961200086X
  • Park J, Kwak Y H, Jung J Y, Lee J H, Jang H Y, Kim H B & Hong K J (2012). A new age-based formula for estimating weight of Korean children. Resuscitation, 83(9): 1129-1134. DOI: https://doi.org/10.1016/j.resuscitation.2012.01.023
  • Pathan M, Patel N, Yagnik H & Shah M (2020). Artificial cognition for applications in smart agriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4: 81-95. DOI: 10.1016/j.aiia.2020.06.001
  • Pekel E (2020). Estimation of soil moisture using decision tree regression. Theoretical and Applied Climatology, 139(3-4): 1111-1119. DOI: 10.1007/s00704-019-03048-8
  • Rad M R N, Fanaei H R & Rad M R P (2015). Application of Artificial Neural Networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo L.). Scientia Horticulturae, 181: 108-112. DOI: https://doi.org/10.1016/j.scienta.2014.10.025
  • Rozario L J, Rahman T & Uddin M S (2016). Segmentation of the region of defects in fruits and vegetables. International Journal of Computer Science and Information Security, 14(5): 399-406. https://www.researchgate.net/publication/304253402
  • Rudenko O, Megel Y, Bezsonov O & Rybalka A (2020). Cattle breed identification and live weight evaluation on the basis of machine learning and computer vision. In CMIS (pp.939-954). https://ceur-ws.org/Vol-2608/paper70.pdf
  • Teoh C C & Syaifudin A M (2007). Image processing and analysis techniques for estimating weight of Chokanan mangoes. Journal of Tropical Agriculture and Food Science, 35(1): 183. DOI: http://jtafs.mardi.gov.my/jtafs/35-1/Chokanan%20mangoes.pdf
  • Xiao J & Zhou Z (2020). Research progress of RNN language model. In 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 1285-1288). IEEE. DOI: 10.1109/ICAICA50127.2020.9182390
  • Xu J, Lu Y, Olaniyi E & Harvey L (2024). Online volume measurement of sweetpotatoes by A LiDAR-based machine vision system. Journal of Food Engineering, 361: 111725. DOI: 10.1016/j.jfoodeng.2023.111725
  • Xu W, Yang W, Chen S, Wu C, Chen P & Lan Y (2020). Establishing a model to predict the single boll weight of cotton in northern Xinjiang by using high resolution UAV remote sensing data. Computers and Electronics in Agriculture, 179: 105762. DOI: https://doi.org/10.1016/j.compag.2020.105762
  • Wu C H, Ho J M & Lee D T (2004). Travel-time prediction with support vector regression. IEEE transactions on intelligent transportation systems, 5(4): 276-281. DOI: 10.1109/TITS.2004.837813
  • Yan Q, Ding L, Wei H, Wang X, Jiang C & Degen A (2019). Body weight estimation of yaks using body measurements from image analysis. Measurement, 140: 76-80. DOI: 10.1016/j.measurement.2019.03.021
  • Ying-kai L, Feng-nan S, Qiao C, Ming-wei X, Chen-di L, Wen-tao L & Xue-cheng Z (2023). Dragon fruit weight estimation based on machine vision and machine learning. Food and Machinery, 39(7): 99-103. DOI: https://www.ifoodmm.cn/journal/vol39/iss7/15/
  • Yu Y, Si X, Hu C & Zhang J (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation 31(7): 1235-1270. DOI: 10.1162/neco_a_01199
  • Zhou X Y & Yang G Z (2019). Normalization in training U-Net for 2-D biomedical semantic segmentation. IEEE Robotics and Automation Letters, 4(2): 1792-1799. DOI: 10.1109/LRA.2019.2896518
Year 2024, Volume: 30 Issue: 4, 735 - 747, 22.10.2024
https://doi.org/10.15832/ankutbd.1434767

Abstract

References

  • Akkol S, Akilli A & Cemal I (2017). Comparison of artificial neural network and multiple linear regression for prediction of live weight in hair goats. Yyu J. Agric. Sci 27: 21-29. DOI: 10.29133/yyutbd.263968
  • Alzubaidi L, Zhang J, Humaidi A J, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaria J, Fadhel M A, Al-Amidie M & Farhan L (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data 8(1): 1-74. DOI: 10.1186/s40537-021-00444-8
  • Babajide O, Hissam T, Anna P, Anatoliy G, Astrup A, Alfredo Martinez J, Oppert J M & Sørensen T I (2020). A machine learning approach to short-term body weight prediction in a dietary intervention program. In Computational Science–ICCS 2020: 20th International Conference, Proceedings, Part IV 20 (pp. 441-455). DOI: 10.1007/978-3-030-50423-6_33
  • Bangdiwala S I (2018). Regression: simple linear. International journal of injury control and safety promotion 25(1): 113-115. DOI: 10.1080/17457300.2018.1426702
  • Barbole D K, Jadhav P M & Patil S B (2021). A review on fruit detection and segmentation techniques in agricultural field. In International Conference on Image Processing and Capsule Networks (pp. 269-288). Springer, Cham. DOI: 10.1007/978-3-030-84760-9_24
  • Bargoti S & Underwood J P (2017). Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics 34(6): 1039-1060. DOI:10.1002/rob.21699
  • Breiman L (2001). Random forests. Machine learning, 45: 5-32. DOI: 10.1023/A:1010933404324
  • Castro C A D O, Resende R T, Kuki K N, Carneiro V Q, Marcatti G E, Cruz C D & Motoike S Y (2017). High-performance prediction of macauba fruit biomass for agricultural and industrial purposes using Artificial Neural Networks. Industrial Crops and Products, 108: 806-813. DOI: 10.1016/j.indcrop.2017.07.031
  • Chicchón Apaza M Á, Monzón H M B & Alcarria R (2020). Semantic segmentation of weeds and crops in multispectral images by using a Convolutional Neural Networks based on u-net. In International Conference on Applied Technologies (pp. 473-485). Springer, Cham. DOI: 10.1007/978-3-030-42520-3_38
  • Cornelis C, Deschrijver G & Kerre E E (2006). Advances and challenges in interval-valued fuzzy logic. Fuzzy sets and systems, 157(5): 622-627. DOI: 10.1016/j.fss.2005.10.007
  • Duc N T, Ramlal A, Rajendran A, Raju D, Lal S K, Kumar S, Sahoo R N & Chinnusamy V (2023). Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean. Frontiers in Plant Science, 14: 1206357. DOI: 10.3389/fpls.2023.1206357
  • Faisal M, Albogamy F, Elgibreen H, Algabri M & Alqershi F A (2020). Deep learning and computer vision for estimating date fruits type, maturity level, and weight. IEEE Access, 8: 206770-206782. DOI: 10.1109/ACCESS.2020.3037948
  • Fernandes A F, Turra E M, de Alvarenga É R, Passafaro T L, Lopes F B, Alves G F, Singh V & Rosa G J (2020). Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Computers and electronics in agriculture, 170: 105274. DOI: 10.1016/j.compag.2020.105274
  • Friha O, Ferrag M A, Shu L, Maglaras L & Wang X (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies, IEEE/CAA J. Autom. Sinica, 8(4): 718-752. DOI: 10.1109/JAS.2021.1003925
  • Gondchawar N & Kawitkar R S (2016). IoT based smart agriculture. International Journal of advanced research in Computer and Communication Engineering, 5(6): 838-842. DOI: 10.1088/1757-899X/1212/1/012047
  • Guo Y, Liu Y, Georgiou T & Lew M S (2018). A review of semantic segmentation using deep neural networks. International journal of multimedia information retrieval, 7(2): 87-93. DOI: 10.1007/s13735-017-0141-z
  • Han H G & Qiao J F (2013). A structure optimisation algorithm for feedforward neural network construction. Neurocomputing, 99: 347-357. DOI: 10.1016/j.neucom.2012.07.023
  • Huynh T, Tran L & Dao S (2020). Real-time size and mass estimation of slender axi-symmetric fruit/vegetable using a single top view image. Sensors, 20(18): 5406. DOI: 10.3390/s20185406
  • Jeong H, Moon H, Jeong Y, Kwon H, Kim C, Lee Y, Yang S M & Kim S (2024). Automated Technology for Strawberry Size Measurement and Weight Prediction Using AI. IEEE Access. 12: 14157-14167. DOI: 10.1109/ACCESS.2024.3356118
  • Kang H & Chen C (2020). Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Computers and Electronics in Agriculture, 171: 105302. DOI: 10.1016/j.compag.2020.105302
  • Kassim M R M (2020). Iot applications in smart agriculture: Issues and challenges. In 2020 IEEE conference on open systems (ICOS) (pp. 19-24). IEEE. DOI: 10.1109/ICOS50156.2020.9293672
  • Kamiwaki Y & Fukuda S (2024). A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae, 10(2): 142. DOI: 10.3390/horticulturae10020142
  • Lee C Y (2023). Fruit Weight Predicting by Using Hybrid Learning. In International Conference on Technologies and Applications of Artificial Intelligence, (pp. 81-91). Singapore. DOI: 26912554
  • Li J, Sarma K V, Ho K C, Gertych A, Knudsen B S & Arnold C W (2017). A multi-scale u-net for semantic segmentation of histological images from radical prostatectomies. In AMIA Annual Symposium Proceedings. (pp. 1140). American Medical Informatics Association. DOI: PMC5977596
  • Lin B W, Yoshida D, Quinn J & Strehlow M (2009). A better way to estimate adult patients' weights. The American journal of emergency medicine, 27(9): 1060-1064. DOI: 10.1016/j.ajem.2008.08.018
  • Mahesh B (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9: 381-386. DOI: 10.21275/ART20203995
  • Naroui Rad M R, Ghalandarzehi A & Koohpaygani J A (2017). Predicting eggplant individual fruit weight using an artificial neural network. International Journal of Vegetable Science, 23(4): 331-339. DOI: 10.1080/19315260.2017.1290001
  • Nyalala I, Okinda C, Nyalala L, Makange N, Chao Q, Chao L, Yousaf K & Chen K (2019). Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. Journal of Food Engineering, 263: 288-298. DOI: 10.1016/j.jfoodeng.2019.07.012
  • O'Grady M J, Langton D & O'Hare G M P (2019). Edge computing: A tractable model for smart agriculture. Artificial Intelligence in Agriculture, 3: 42-51. DOI: 10.1016/j.aiia.2019.12.001
  • Ozkaya S (2013). The prediction of live weight from body measurements on female Holstein calves by digital image analysis. The Journal of Agricultural Science, 151(4): 570-576. DOI: 10.1017/S002185961200086X
  • Park J, Kwak Y H, Jung J Y, Lee J H, Jang H Y, Kim H B & Hong K J (2012). A new age-based formula for estimating weight of Korean children. Resuscitation, 83(9): 1129-1134. DOI: https://doi.org/10.1016/j.resuscitation.2012.01.023
  • Pathan M, Patel N, Yagnik H & Shah M (2020). Artificial cognition for applications in smart agriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4: 81-95. DOI: 10.1016/j.aiia.2020.06.001
  • Pekel E (2020). Estimation of soil moisture using decision tree regression. Theoretical and Applied Climatology, 139(3-4): 1111-1119. DOI: 10.1007/s00704-019-03048-8
  • Rad M R N, Fanaei H R & Rad M R P (2015). Application of Artificial Neural Networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo L.). Scientia Horticulturae, 181: 108-112. DOI: https://doi.org/10.1016/j.scienta.2014.10.025
  • Rozario L J, Rahman T & Uddin M S (2016). Segmentation of the region of defects in fruits and vegetables. International Journal of Computer Science and Information Security, 14(5): 399-406. https://www.researchgate.net/publication/304253402
  • Rudenko O, Megel Y, Bezsonov O & Rybalka A (2020). Cattle breed identification and live weight evaluation on the basis of machine learning and computer vision. In CMIS (pp.939-954). https://ceur-ws.org/Vol-2608/paper70.pdf
  • Teoh C C & Syaifudin A M (2007). Image processing and analysis techniques for estimating weight of Chokanan mangoes. Journal of Tropical Agriculture and Food Science, 35(1): 183. DOI: http://jtafs.mardi.gov.my/jtafs/35-1/Chokanan%20mangoes.pdf
  • Xiao J & Zhou Z (2020). Research progress of RNN language model. In 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 1285-1288). IEEE. DOI: 10.1109/ICAICA50127.2020.9182390
  • Xu J, Lu Y, Olaniyi E & Harvey L (2024). Online volume measurement of sweetpotatoes by A LiDAR-based machine vision system. Journal of Food Engineering, 361: 111725. DOI: 10.1016/j.jfoodeng.2023.111725
  • Xu W, Yang W, Chen S, Wu C, Chen P & Lan Y (2020). Establishing a model to predict the single boll weight of cotton in northern Xinjiang by using high resolution UAV remote sensing data. Computers and Electronics in Agriculture, 179: 105762. DOI: https://doi.org/10.1016/j.compag.2020.105762
  • Wu C H, Ho J M & Lee D T (2004). Travel-time prediction with support vector regression. IEEE transactions on intelligent transportation systems, 5(4): 276-281. DOI: 10.1109/TITS.2004.837813
  • Yan Q, Ding L, Wei H, Wang X, Jiang C & Degen A (2019). Body weight estimation of yaks using body measurements from image analysis. Measurement, 140: 76-80. DOI: 10.1016/j.measurement.2019.03.021
  • Ying-kai L, Feng-nan S, Qiao C, Ming-wei X, Chen-di L, Wen-tao L & Xue-cheng Z (2023). Dragon fruit weight estimation based on machine vision and machine learning. Food and Machinery, 39(7): 99-103. DOI: https://www.ifoodmm.cn/journal/vol39/iss7/15/
  • Yu Y, Si X, Hu C & Zhang J (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation 31(7): 1235-1270. DOI: 10.1162/neco_a_01199
  • Zhou X Y & Yang G Z (2019). Normalization in training U-Net for 2-D biomedical semantic segmentation. IEEE Robotics and Automation Letters, 4(2): 1792-1799. DOI: 10.1109/LRA.2019.2896518
There are 45 citations in total.

Details

Primary Language English
Subjects Post Harvest Horticultural Technologies (Incl. Transportation and Storage), Fruit-Vegetables Technology, Sustainable Agricultural Development
Journal Section Makaleler
Authors

Savaş Koç 0000-0002-5257-3287

Halil Kayra This is me 0000-0003-1609-5908

Publication Date October 22, 2024
Submission Date February 10, 2024
Acceptance Date May 21, 2024
Published in Issue Year 2024 Volume: 30 Issue: 4

Cite

APA Koç, S., & Kayra, H. (2024). Non-destructive Weight Prediction Model of Spherical Fruits and Vegetables using U-Net Image Segmentation and Machine Learning Methods. Journal of Agricultural Sciences, 30(4), 735-747. https://doi.org/10.15832/ankutbd.1434767

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).