Research Article
BibTex RIS Cite

Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case

Year 2025, Volume: 31 Issue: 2, 447 - 469, 25.03.2025
https://doi.org/10.15832/ankutbd.1509731

Abstract

Evaporation is a critical component in the management of water resources. Due to the complex interactions between various meteorological variables involved in evaporation calculations, numerous nonlinear models have been developed. The applicability and performance of these models vary depending on the specific climatic conditions of each region. This study evaluates the impacts of climate change on evaporation and precipitation patterns in the Quri Gol Wetland, located in East Azerbaijan, Iran, using machine learning models and climate change projections. Evaporation values for the present period (1991-2020) were estimated using six machine learning models: Random Forest (RF), Gradient Boosted Tree (GBT), Generalized Linear Model (GLM), Support Vector Machine (SVM), Gaussian Process Regression (GPR), and deep learning (DL). Future projections (2021-2050, 2051- 2080, 2081-2100) were based on the LARS-WG and SDSM models under three climate scenarios (RCP 2.6, RCP 4.5, and RCP 8.5). The performance of the machine learning models was assessed using statistical metrics including R2, Scatter Index (SI), Mean Absolute Error (MAE), Willmott’s Index (WI), and Kling-Gupta Efficiency (KGE). The RF and DL models provided the most accurate predictions, with RF achieving an R2 of 0.821 and an MAE of 0.902, while DL reached an R2 of 0.822 and an MAE of 0.915 in the validation phase. Results from climate change projections indicated a significant increase in evaporation over the next century, with cumulative evaporation rising by up to 50.01% under the RCP 8.5 scenario by 2081-2100. In contrast, the projected increase in precipitation was much smaller, reaching a maximum of 16% in the same period. This imbalance between evaporation and precipitation highlights the potential for increasing water stress in the Quri Gol Wetland. The findings emphasize the need for adaptive water management strategies to mitigate the effects of increased evaporation and maintain ecological stability in the region.

References

  • Ahmadaali J, Barani G A, Qaderi K, Hessari B (2018). Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake basin, Iran. Water 10: 160
  • Azizi G, Nazif S, Abbasi F (2017). An assessment of the influence of climate change on Urmia Lake water level reduction. Journal of Interdisciplinary Studies in the Humanities 9(4): 1-21
  • Bilali A E, Abdeslam T, Ayoub N, Lamane H, Ezzaouini M A, Elbeltagi A (2023). An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. J. Environ. Manage. 327: 116890
  • Bengio Y (2009). Learning Deep Architectures for Artificial Intelligence. Found. Trends Mach. Learn. 2(1): 1-127
  • Breiman L (1999). Using adaptive bagging to debias regressions. Technical Report 547, Statistics Department, University of California.
  • Breiman L (2001). Random forests. Mach. Learn. 45(1): 5-32
  • Chandler R E & Wheater H S (2002). Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour. Res. 38(10): 1-10
  • Dibike Y B & Coulibaly P (2005). Hydrologic impact of climate change in the Saguenay Watershed: Comparison of Ownscaling Methods and Hydrologic Models. J. Hydrol. 307: 145-163
  • Ghaemi A, Rezaie-Balf M, Adamowski J, Kisi O, Quilty J (2019). On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agric. For. Meteorol. 278:107647. https://doi.org/10.1016/j.agrformet.2019.107647.
  • Ghorbani M A, Deo R C, Karimi V, Yaseen Z M, Terzi O (2018). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch. Env. Res. Risk Assess. 32(6): 1683-1697. https://doi.org/10.1007/s00477-017-1474-0.
  • Glorot X & Bengio Y (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of Machine Learning Research 9:249-256
  • Goyal M K, Bharti B, Quilty J, Adamowski J & Pandey A (2014). Modeling of daily pan evaporation in sub tropical climates using ANN, LS- SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 41(11): 5267-5276
  • Goyal M K & Ojha C S P (2014). Evaluation of rule and decision tree induction algorithms for generating climate change scenarios for temperature and pan evaporation on a lake basin. J. Hydrol. Eng. 19:828-835
  • Guven A & Kisi O (2013). Monthly pan evaporation modeling using linear genetic programming. J. Hydrol. 503:178-185
  • Hamel L (2009). Knowledge Discovery with Support Vector Machines. John Wiley, Hoboken, New Jersey.
  • Hay L E, Wilby R L & Leavesley G H (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 36: 387-397
  • Helfer F, Lemckert C H & Zhang H (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. J. Hydrol. 1-38
  • Hinton G E, Osindero Y W S (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18(7): 1527-1554
  • Keshtegar B, Piri J & Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput. Electron. Agric. 127:120-130
  • Keyvanrad MA, Homayounpour MM (2015) Deep belief network training improvement using elite samples minimizing free energy. Int. J. Pattern Recognit. Artif. 29(5): 155-166
  • Kilsby C G, Jones P D, Burton A, Ford A C, Fowler H J, Harpham C, James P, Smith A & Wilby R L (2007). A daily weather generator for use in climate change studies. Environ. Model. Softw. 22: 1705-1719
  • Kim S, Shiri J, Kisi O (2012). Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour. Manage. 26(11):3231-3249.
  • Kisi O (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 528: 312-320
  • Kisi O & Heddam S (2019). Evaporation modelling by heuristic regression approaches using only temperature data. Hydrol. Sci. J. 64(6):653- 672
  • Kotsiantis S & Pintelas P (2004). Combining bagging and boosting. Int. J. Comput. Intell. Syst. 1(4):324-333
  • Lu X, Ju Y, Wu L, Fan J, Zhang F & Li Z (2018). Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. J. Hydrol. 566: 668-684
  • Majhi B, Naidu D, Mishra A P & Satapathy S C (2020). Improved prediction of daily pan evaporation using Deep-LSTM model. Neural Comput. Appl. pp. 1-16
  • Malik A, Saggi M K, Rehman S, Sajjad H, Inyurt S, Bhatia A S, Farooque A A, Oudah A Y & Yaseen Z M (2022). Deep learning versus gradient boosting machine for pan evaporation prediction, Eng. Appl. Comput. Fluid Mech. 16(1): 570-587
  • Malohlava M & Candel A (2018). Gradient boosting machine with H2O. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html .Accessed 24 FEBRUARY 2020.
  • McCullagh P (1984). Generalized linear models. Eur. J. Oper. Res. 16(3): 285-292
  • Nelder J A & Baker R J (1972). Generalized Linear Models. Wiley Online Library, New Jersey.
  • Pregibon D& Hastie T J (2017). Generalized linear models. In: Statistical Models in S. Routledge.
  • Quinlan J R (1993). C4.5 programs for machine learning. Morgan Kaurmann, San Mateo, CA.
  • Rezaie-Balf M, Kisi O & Chua L H C (2019). Application of ensemble empirical mode decomposition based on machine learning methodologies in forecasting monthly pan evaporation. Hydrol. res. 50(2): 498-516
  • Schapire R (1990). The strength of weak learnability. Journal of Machine learning 5: 197-227
  • Seifi A & Soroush F (2020). Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid meta-heuristic ANN based methods in different climates of Iran. Comput. Electron. Agric. 173: 105418
  • Semenov M A & Stratonovitch P (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 41:1-14
  • Shiri J (2019). Evaluation of a neuro-fuzzy technique in estimating pan evaporation values in low-altitude locations. Meteorol. Appl. 26(2):204- 212
  • Shaker Sureh F, Sattari M T, Rostamzadeh H & Kahya E (2024). Meteorological Drought Assessment and Prediction in Association with Combination of Atmospheric Circulations and Meteorological Parameters via Rule Based Models. J Agr Sci-Tarim Bili. 30(1):61-78. doi:10.15832/ankutbd.1067486
  • Tatsumi K, Oizumi T & Yamashiki Y (2013). Introduction of daily minimum and maximum temperature change signals in the Shikoku region using the statistical downscaling method by GCMs. Hydrol. Res. Lett. 7(3): 48-53
  • Terzi O (2010). Modeling of daily pan evaporation of lake Egirdir using data-driven techniques. International symposium on innovations in Intelligent systems and Applications. Istanbul. Turkey. pp. 320-324
  • Tezel G & Buyukyildiz M (2016). Monthly evaporation forecasting using artificial neural networks and support vector machines. Theor. Appl. Climatol. 124: 69-80
  • Vapnik V (1995). The Nature of Statistical Learning Theory. Springer, New York.
  • Vapnik V (1998). Statistical Learning Theory. Wiley, New York.
  • Wang L, Kisi O, Zounemat-Kermani M & Li H (2017a). Pan evaporation modeling using six different heuristic computing methods in different climates of China. J. Hydrol. 544: 407-427
  • Wang L, Niu Z, Kisi O, Li C & Yu D (2017b). Pan evaporation modeling using four different heuristic approaches. Comput. Electron. Agric. 140: 203-213
  • Wang H, Yan H, Zeng W, Lei G, Ao C & Zha Y (2020). A novel nonlinear Arps decline model with salp swarm algorithm for predicting pan evaporation in the arid and semi-arid regions of China. J. Hydrol. 582: 124545
  • Wang H, Sun F, Liu F, Wang T, Liu W & Feng Y (2023). Reconstruction of the pan evaporation based on meteorological factors with machine learning method over China. Agric. Water Manag. 287:108416.
  • Wilby R L, Dawson C W & Barrow E M (2002). SDSM a decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 17:147-159
  • Wilby RL, Harris I (2006). A frame work for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames, UK. Water Resour. Res. https://doi.org/10.1029/2005wr004065
  • Wilby R L, Tomlinson O J, Dawson C W (2007). Multi-site simulation of precipitation by condition resampling. J. Clim. Res. 23: 183-194
  • Williams C K I, Barber D (1998). Bayesian classification with gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 20(12): 1342-1351
  • Williams C K I, Rasmussen C E (1996). Gaussian processes for regression. In: Advances in Neural Information Processing Systems. MIT Press, pp. 514–520
  • Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y İ & Kanani R (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob Planet Change 78: 137-146
  • Zounemat-Kermani M, Kisi O, Piri J & Mahdavi-Meymand A (2019). Assessment of artificial intelligence–based models and metaheuristic algorithms in modeling evaporation. J. Hydrol. Eng. 24(10): 04019033. https://doi.org/10.1061/(ASCE)HE. 1943-5584.0001835
Year 2025, Volume: 31 Issue: 2, 447 - 469, 25.03.2025
https://doi.org/10.15832/ankutbd.1509731

Abstract

References

  • Ahmadaali J, Barani G A, Qaderi K, Hessari B (2018). Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake basin, Iran. Water 10: 160
  • Azizi G, Nazif S, Abbasi F (2017). An assessment of the influence of climate change on Urmia Lake water level reduction. Journal of Interdisciplinary Studies in the Humanities 9(4): 1-21
  • Bilali A E, Abdeslam T, Ayoub N, Lamane H, Ezzaouini M A, Elbeltagi A (2023). An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. J. Environ. Manage. 327: 116890
  • Bengio Y (2009). Learning Deep Architectures for Artificial Intelligence. Found. Trends Mach. Learn. 2(1): 1-127
  • Breiman L (1999). Using adaptive bagging to debias regressions. Technical Report 547, Statistics Department, University of California.
  • Breiman L (2001). Random forests. Mach. Learn. 45(1): 5-32
  • Chandler R E & Wheater H S (2002). Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour. Res. 38(10): 1-10
  • Dibike Y B & Coulibaly P (2005). Hydrologic impact of climate change in the Saguenay Watershed: Comparison of Ownscaling Methods and Hydrologic Models. J. Hydrol. 307: 145-163
  • Ghaemi A, Rezaie-Balf M, Adamowski J, Kisi O, Quilty J (2019). On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agric. For. Meteorol. 278:107647. https://doi.org/10.1016/j.agrformet.2019.107647.
  • Ghorbani M A, Deo R C, Karimi V, Yaseen Z M, Terzi O (2018). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch. Env. Res. Risk Assess. 32(6): 1683-1697. https://doi.org/10.1007/s00477-017-1474-0.
  • Glorot X & Bengio Y (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of Machine Learning Research 9:249-256
  • Goyal M K, Bharti B, Quilty J, Adamowski J & Pandey A (2014). Modeling of daily pan evaporation in sub tropical climates using ANN, LS- SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 41(11): 5267-5276
  • Goyal M K & Ojha C S P (2014). Evaluation of rule and decision tree induction algorithms for generating climate change scenarios for temperature and pan evaporation on a lake basin. J. Hydrol. Eng. 19:828-835
  • Guven A & Kisi O (2013). Monthly pan evaporation modeling using linear genetic programming. J. Hydrol. 503:178-185
  • Hamel L (2009). Knowledge Discovery with Support Vector Machines. John Wiley, Hoboken, New Jersey.
  • Hay L E, Wilby R L & Leavesley G H (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 36: 387-397
  • Helfer F, Lemckert C H & Zhang H (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. J. Hydrol. 1-38
  • Hinton G E, Osindero Y W S (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18(7): 1527-1554
  • Keshtegar B, Piri J & Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput. Electron. Agric. 127:120-130
  • Keyvanrad MA, Homayounpour MM (2015) Deep belief network training improvement using elite samples minimizing free energy. Int. J. Pattern Recognit. Artif. 29(5): 155-166
  • Kilsby C G, Jones P D, Burton A, Ford A C, Fowler H J, Harpham C, James P, Smith A & Wilby R L (2007). A daily weather generator for use in climate change studies. Environ. Model. Softw. 22: 1705-1719
  • Kim S, Shiri J, Kisi O (2012). Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour. Manage. 26(11):3231-3249.
  • Kisi O (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 528: 312-320
  • Kisi O & Heddam S (2019). Evaporation modelling by heuristic regression approaches using only temperature data. Hydrol. Sci. J. 64(6):653- 672
  • Kotsiantis S & Pintelas P (2004). Combining bagging and boosting. Int. J. Comput. Intell. Syst. 1(4):324-333
  • Lu X, Ju Y, Wu L, Fan J, Zhang F & Li Z (2018). Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. J. Hydrol. 566: 668-684
  • Majhi B, Naidu D, Mishra A P & Satapathy S C (2020). Improved prediction of daily pan evaporation using Deep-LSTM model. Neural Comput. Appl. pp. 1-16
  • Malik A, Saggi M K, Rehman S, Sajjad H, Inyurt S, Bhatia A S, Farooque A A, Oudah A Y & Yaseen Z M (2022). Deep learning versus gradient boosting machine for pan evaporation prediction, Eng. Appl. Comput. Fluid Mech. 16(1): 570-587
  • Malohlava M & Candel A (2018). Gradient boosting machine with H2O. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html .Accessed 24 FEBRUARY 2020.
  • McCullagh P (1984). Generalized linear models. Eur. J. Oper. Res. 16(3): 285-292
  • Nelder J A & Baker R J (1972). Generalized Linear Models. Wiley Online Library, New Jersey.
  • Pregibon D& Hastie T J (2017). Generalized linear models. In: Statistical Models in S. Routledge.
  • Quinlan J R (1993). C4.5 programs for machine learning. Morgan Kaurmann, San Mateo, CA.
  • Rezaie-Balf M, Kisi O & Chua L H C (2019). Application of ensemble empirical mode decomposition based on machine learning methodologies in forecasting monthly pan evaporation. Hydrol. res. 50(2): 498-516
  • Schapire R (1990). The strength of weak learnability. Journal of Machine learning 5: 197-227
  • Seifi A & Soroush F (2020). Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid meta-heuristic ANN based methods in different climates of Iran. Comput. Electron. Agric. 173: 105418
  • Semenov M A & Stratonovitch P (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 41:1-14
  • Shiri J (2019). Evaluation of a neuro-fuzzy technique in estimating pan evaporation values in low-altitude locations. Meteorol. Appl. 26(2):204- 212
  • Shaker Sureh F, Sattari M T, Rostamzadeh H & Kahya E (2024). Meteorological Drought Assessment and Prediction in Association with Combination of Atmospheric Circulations and Meteorological Parameters via Rule Based Models. J Agr Sci-Tarim Bili. 30(1):61-78. doi:10.15832/ankutbd.1067486
  • Tatsumi K, Oizumi T & Yamashiki Y (2013). Introduction of daily minimum and maximum temperature change signals in the Shikoku region using the statistical downscaling method by GCMs. Hydrol. Res. Lett. 7(3): 48-53
  • Terzi O (2010). Modeling of daily pan evaporation of lake Egirdir using data-driven techniques. International symposium on innovations in Intelligent systems and Applications. Istanbul. Turkey. pp. 320-324
  • Tezel G & Buyukyildiz M (2016). Monthly evaporation forecasting using artificial neural networks and support vector machines. Theor. Appl. Climatol. 124: 69-80
  • Vapnik V (1995). The Nature of Statistical Learning Theory. Springer, New York.
  • Vapnik V (1998). Statistical Learning Theory. Wiley, New York.
  • Wang L, Kisi O, Zounemat-Kermani M & Li H (2017a). Pan evaporation modeling using six different heuristic computing methods in different climates of China. J. Hydrol. 544: 407-427
  • Wang L, Niu Z, Kisi O, Li C & Yu D (2017b). Pan evaporation modeling using four different heuristic approaches. Comput. Electron. Agric. 140: 203-213
  • Wang H, Yan H, Zeng W, Lei G, Ao C & Zha Y (2020). A novel nonlinear Arps decline model with salp swarm algorithm for predicting pan evaporation in the arid and semi-arid regions of China. J. Hydrol. 582: 124545
  • Wang H, Sun F, Liu F, Wang T, Liu W & Feng Y (2023). Reconstruction of the pan evaporation based on meteorological factors with machine learning method over China. Agric. Water Manag. 287:108416.
  • Wilby R L, Dawson C W & Barrow E M (2002). SDSM a decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 17:147-159
  • Wilby RL, Harris I (2006). A frame work for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames, UK. Water Resour. Res. https://doi.org/10.1029/2005wr004065
  • Wilby R L, Tomlinson O J, Dawson C W (2007). Multi-site simulation of precipitation by condition resampling. J. Clim. Res. 23: 183-194
  • Williams C K I, Barber D (1998). Bayesian classification with gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 20(12): 1342-1351
  • Williams C K I, Rasmussen C E (1996). Gaussian processes for regression. In: Advances in Neural Information Processing Systems. MIT Press, pp. 514–520
  • Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y İ & Kanani R (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob Planet Change 78: 137-146
  • Zounemat-Kermani M, Kisi O, Piri J & Mahdavi-Meymand A (2019). Assessment of artificial intelligence–based models and metaheuristic algorithms in modeling evaporation. J. Hydrol. Eng. 24(10): 04019033. https://doi.org/10.1061/(ASCE)HE. 1943-5584.0001835
There are 55 citations in total.

Details

Primary Language English
Subjects Climate Change Impacts and Adaptation (Other), Water Resources Engineering
Journal Section Makaleler
Authors

Mohammad Reza Abdollahpour Azad This is me 0009-0002-6924-361X

Mohammad Reza Jalali This is me 0000-0003-0826-8303

Mohammad Taghi Sattari 0000-0002-5139-2118

Reza Mastouri This is me 0000-0003-0870-040X

Publication Date March 25, 2025
Submission Date July 3, 2024
Acceptance Date December 5, 2024
Published in Issue Year 2025 Volume: 31 Issue: 2

Cite

APA Abdollahpour Azad, M. R., Jalali, M. R., Sattari, M. T., Mastouri, R. (2025). Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case. Journal of Agricultural Sciences, 31(2), 447-469. https://doi.org/10.15832/ankutbd.1509731
AMA Abdollahpour Azad MR, Jalali MR, Sattari MT, Mastouri R. Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case. J Agr Sci-Tarim Bili. March 2025;31(2):447-469. doi:10.15832/ankutbd.1509731
Chicago Abdollahpour Azad, Mohammad Reza, Mohammad Reza Jalali, Mohammad Taghi Sattari, and Reza Mastouri. “Evaporation and Precipitation Prediction for Future Time Frames via Combined Machine Learning-Climate Change Models: Quri Gol Wetland Case”. Journal of Agricultural Sciences 31, no. 2 (March 2025): 447-69. https://doi.org/10.15832/ankutbd.1509731.
EndNote Abdollahpour Azad MR, Jalali MR, Sattari MT, Mastouri R (March 1, 2025) Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case. Journal of Agricultural Sciences 31 2 447–469.
IEEE M. R. Abdollahpour Azad, M. R. Jalali, M. T. Sattari, and R. Mastouri, “Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case”, J Agr Sci-Tarim Bili, vol. 31, no. 2, pp. 447–469, 2025, doi: 10.15832/ankutbd.1509731.
ISNAD Abdollahpour Azad, Mohammad Reza et al. “Evaporation and Precipitation Prediction for Future Time Frames via Combined Machine Learning-Climate Change Models: Quri Gol Wetland Case”. Journal of Agricultural Sciences 31/2 (March 2025), 447-469. https://doi.org/10.15832/ankutbd.1509731.
JAMA Abdollahpour Azad MR, Jalali MR, Sattari MT, Mastouri R. Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case. J Agr Sci-Tarim Bili. 2025;31:447–469.
MLA Abdollahpour Azad, Mohammad Reza et al. “Evaporation and Precipitation Prediction for Future Time Frames via Combined Machine Learning-Climate Change Models: Quri Gol Wetland Case”. Journal of Agricultural Sciences, vol. 31, no. 2, 2025, pp. 447-69, doi:10.15832/ankutbd.1509731.
Vancouver Abdollahpour Azad MR, Jalali MR, Sattari MT, Mastouri R. Evaporation and precipitation prediction for future time frames via combined machine learning-climate change models: Quri Gol Wetland Case. J Agr Sci-Tarim Bili. 2025;31(2):447-69.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).