Derleme
BibTex RIS Kaynak Göster

Kümes Hayvancılığı Barınaklarında Toksik Gazlar: Çoklu Sistemleri Etkileyen Sağlık Sonuçları ve Emisyon Kontrol Stratejileri

Yıl 2025, Cilt: 4 Sayı: 2, 33 - 41, 31.12.2025

Öz

Yoğun kanatlı üretim sistemlerinde barınak havasında biriken zararlı gazlar (özellikle amonyak (NH₃), hidrojen sülfür (H₂S) ve karbondioksit (CO₂)) hayvan sağlığı, refahı ve üretim performansı üzerinde çok yönlü toksikolojik etkilere neden olmaktadır. Bu derleme çalışmasında, söz konusu gazların başta solunum sistemi olmak üzere bağışıklık, endokrin ve sinir sistemleri üzerindeki etkileri güncel literatür ışığında değerlendirilmiştir. NH₃'nin mukosiliyer bariyeri zayıflatarak enfeksiyöz etkenlere duyarlılığı artırdığı; lenfoid organlarda atrofi ve oksidatif stres yanıtına yol açtığı gösterilmiştir. H₂S’nin ise düşük konsantrasyonlarda dahi konjonktivit, pulmoner disfonksiyon ve belirgin nörotoksik etkiler oluşturabileceği saptanmıştır. CO₂ maruziyetinin artması, hipoksemi, davranışsal stres belirtileri ve çeşitli fizyolojik bozukluklara neden olabilmektedir. Ayrıca, mevcut maruziyet sınırlarının çoğunlukla insan sağlığına yönelik belirlenmiş olduğu ve hayvan refahını tam olarak gözetmediği vurgulanmaktadır. Barınak tasarımı, altlık yönetimi, biyofiltrasyon sistemleri, IoT tabanlı gaz sensörleri ve yem katkı maddeleri gibi teknolojik ve yönetsel stratejilerin uygulanması ile bu gazların emisyonunun büyük ölçüde kontrol altına alınabileceği düşünülmektedir. Bu kapsamda, tür özgü maruziyet sınırlarının yeniden belirlenmesi, multidisipliner yaklaşımların benimsenmesi ve sürdürülebilir hayvancılık ilkeleri doğrultusunda bilimsel ve mevzuat temelli düzenlemelerin geliştirilmesi önerilmektedir.

Kaynakça

  • Abbas, I.e., & Comini, E. (2025). Gas sensing for poultry farm air quality monitoring to enhance welfare and sustainability. Chemosensors, 13, 347. https://doi.org/10.3390/chemosensors13090347
  • Adamu, G., Hassim, H. A., Kumar, P., Sazili, A. Q., & Mohd Zainudin, M. H. (2024). Controlling odour emissions in poultry production through dietary interventions: prospects and challenges. World’s Poultry Science Journal, 80(4), 1101–1122. https://doi.org/10.1080/00439339.2024.2384868
  • Batterman, S., Grant-Alfieri, A., & Seo, S. H. (2023). Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Critical Reviews in Toxicology, 53(4), 244–295. https://doi.org/10.1080/10408444.2023.2229925
  • Blachier, F., Andriamihaja, M., Larraufie, P., Ahn, E., Lan, A., & Kim, E. (2021). Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. American Journal of Physiology - Gastrointestinal and Liver Physiology, 320(2), 125–135. https://doi.org/10.1152/AJPGI.00261.2020
  • George, A. S., & Hovan George, A. S. (2023). Optimizing poultry production through advanced monitoring and control systems. Partners Universal International Innovation Journal, 1(5), 77–97. https://doi.org/10.5281/zenodo.10050352
  • Gerritzen, M. A., Reimert, H. G. M., Lourens, A., Bracke, M. B. M., & Verhoeven, M. T. W. (2013). Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon. Animal Welfare, 22(1), 5–12. https://doi.org/10.7120/09627286.22.1.005
  • Gerritzen, M., Lambooij, B., Reimert, H., Stegeman, A., & Spruijt, B. (2007). A note on behaviour of poultry exposed to increasing carbon dioxide concentrations. Applied Animal Behaviour Science, 108(1–2), 179–185. https://doi.org/10.1016/j.applanim.2006.11.014
  • Guo, L., Zhao, B., Jia, Y., He, F., & Chen, W. (2022). Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing—A review. Atmosphere, 13, 452. https://doi.org/10.3390/atmos13030452
  • Guo, Y., Zhang, J., Li, X., Wu, J., Han, J., Yang, G., & Zhang, L. (2023). Oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers. British Poultry Science, 64(1), 36–46. https://doi.org/10.1080/00071668.2022.2122025
  • Hao, Z., Qiu, M., Liu, Y., Liu, Y., Chang, M., Liu, X., Wang, Y., Sun, W., Teng, X., & Tang, Y. (2025). Co-exposure to ammonia and lipopolysaccharide-induced impaired energy metabolism via the miR-1599/HK2 axis and triggered autophagy, ER stress, and apoptosis in chicken cardiomyocytes. Poultry Science, 104(4), 104965. https://doi.org/10.1016/j.psj.2025.104965
  • Hoerr, F. J. (2010). Clinical aspects of immunosuppression in poultry. Avian diseases, 54(1), 2–15. https://doi.org/10.1637/8909-043009 -Review.1
  • Kim, K. Y., & Kim, J. K. (2024). Indoor concentration distributions of ammonia and sulfur-based odorous substances according to types of laying hen houses in South Korea. Atmosphere, 15, 980. https://doi.org/10.3390/atmos15080980
  • Kristensen, H. H., & Wathes, C. M. (2000). Ammonia and poultry welfare: A review. World’s Poultry Science Journal, 56(3), 241–245. https://doi.org/10.1079/wps20000018
  • Li, D., Li, F., Liu, W., Han, H., Wang, J., Hao, D., & Sun, Y. (2025). Physiological responses of laying hens to chronic cold stress and ammonia exposure: Implications for environmental management and poultry welfare. Animals, 15, 1769. https://doi.org/10.3390/ani15121769
  • Liu, H., Pan, S., Wang, C., Yang, W., Wei, X., He, Y., Xu, T., Shi, K., & Si, H. (2025). Review of respiratory syndromes in poultry: pathogens, prevention, and control measures. Veterinary research, 56(1), 101. https://doi.org/10.1186/s13567-025-01506-y
  • Lu, D., Mi, J., Wu, Y., Liang, J., Liao, X., & Wang, Y. (2020). Effects of different laying hen species on odour emissions. Animals, 10(11), 1–13. https://doi.org/10.3390/ani10112172
  • Luo, J., Rong, J., Zhou, S., Wang, H., Li, M., Yan, X., Wu, Y., & Wang, Y. (2025). A low-cost mitigation system for ammonia removal from broiler house exhaust air. Poultry Science, 104(10), 105529. https://doi.org/10.1016/j.psj.2025.105529
  • Miles, D. M., Rowe, D. E., & Owens, P. R. (2008). Winter broiler litter gases and nitrogen compounds: Temporal and spatial trends. Atmospheric Environment, 42(14), 3351–3363. https://doi.org/10.1016/j.atmosenv.2006.11.056
  • Ni, J. Q., Liu, S., Diehl, C. A., Lim, T. T., Bogan, B. W., Chen, L., Chai, L., Wang, K., & Heber, A. J. (2017). Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses. Atmospheric Environment, 154, 260–273. https://doi.org/10.1016/j.atmosenv.2017.01.050
  • Okubanjo, A. A., Okakwu, I. K., Alao, O. P., Lawal, N. S., Babalola, A. A., & Olayiwola, A. (2025). Sustainable poultry farming: A concept of IoT-based poultry management system for small-scale farmers. Al-Bahir, 6(2), 111–132. https://doi.org/10.55810/2313-0083.1093
  • Palii, A. P., Pylypenko, S. H., Lukyanov, I. M., Zub, O. V, Dombrovska, A. V, Zagumenna, K. V, Kovalchuk, Y. O., Ihnatieva, T. M., Ishchenko, K. V, Paliy, A. P., & Orobchenko, O. L. (2019). Research of techniques of microclimate improvement in poultry houses. Ukrainian Journal of Ecology, 9(3), 41-51.
  • Rattanapan, C., & Ounsaneha, W. (2012). Removal of hydrogen sulfide gas using biofiltration – A review. Walailak Journal of Science and Technology, 9(1), 9–18.
  • Rumbeiha, W. K., & Kim, D. S. (2025). Neurological sequelae of acute hydrogen sulfide poisoning: A literature review, controversies, and knowledge gaps. Neurology International, 17,71. https://doi.org/10.3390/neurolint17050071
  • Rumbeiha, W., Whitley, E., Anantharam, P., Kim, D. S., & Kanthasamy, A. (2016). Acute hydrogen sulfide–induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Annals of the New York Academy of Sciences, 1378(1), 5–16. https://doi.org/10.1111/nyas.13148
  • Saksrithai, K., & King, A. J. (2018). Controlling hydrogen sulfide emissions during poultry productions. Journal of Animal Research and Nutrition, 3(1), 1–14. https://doi.org/10.21767/2572-5459.100040
  • Santana Maldonado, C., Weir, A., & Rumbeiha, W. K. (2023). A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicology Mechanisms and Methods, 33(3), 183–196. https://doi.org/10.1080/15376516.2022.2121192
  • Scanes, C. G., & Pierzchała-Koziec, K. (2024). Poultry and Livestock Production: Environmental Impacts. In Modern Technology and Traditional Husbandry of Broiler Farming (pp. 1–22). https://doi.org/10.5772/intechopen.1005641
  • Shah, S. W. A., Ishfaq, M., Nasrullah, M., Qayum, A., Akhtar, M. U., Jo, H., Hussain, M., & Teng, X. (2020). Ammonia inhalation-induced inflammation and structural impairment in the bursa of fabricius and thymus of broilers through NF-κκB signaling pathway. Environmental Science and Pollution Research, 27(11), 11596–11607. https://doi.org/10.1007/s11356-020-07743-2
  • Sheikh, I., Nissa, S., Zaffer, B., Bulbul, K., Akand, A., Ahmed, H., Hasin, D., Hussain, I., & Hussain, S. (2018). Ammonia production in the poultry houses and its harmful effects. International Journal of Veterinary Sciences and Animal Husbandry, 3(4), 30–33. https://doi.org/10.1079/WPS19840008
  • Tegün, E., Özüiçli, M., Gökmen, M., & Aydın, R. (2023). Kanatlılarda koksidiyozise karşı probiyotiklerin kullanım olanakları. Antakya Veteriner Bilimleri Dergisi, 2(2), 61-67.
  • Vilela, M. de O., Gates, R. S., Souza, C. F., Teles Junior, C. G. S., & Sousa, F. C. (2020). Nitrogen transformation stages into ammonia in broiler production: Sources, deposition, transformation, and emission into the environment. DYNA, 87(214), 221–228. https://doi.org/10.15446/DYNA.V87N214.83318
  • Wang, R. (2021). Hydrogen sulfide, microbiota, and sulfur amino acid restriction diet. Frigid Zone Medicine, 1(1), 9–16. https://doi.org/10.2478/fzm-2021-0003
  • Witkowska, D., & Sowinska, J. (2017). Identification of microbial and gaseous contaminants in poultry farms and developing methods for contamination prevention at the source. In Poultry Science (pp. 51–72). InTech. https://doi.org/10.5772/64891

Toxic Gases in Poultry Housing: Multisystemic Health Effects and Strategies for Emission Control

Yıl 2025, Cilt: 4 Sayı: 2, 33 - 41, 31.12.2025

Öz

In intensive poultry production systems, the accumulation of airborne noxious gases—particularly ammonia (NH₃), hydrogen sulphide (H₂S), and carbon dioxide (CO₂)—within housing environments exerts multifaceted toxicological effects on animal health, welfare, and production performance. This review evaluates the impacts of these gases on the respiratory system, as well as on the immune, endocrine, and nervous systems, based on current scientific literature. Ammonia has been shown to impair the mucociliary barrier, thereby increasing susceptibility to infectious agents, and to induce lymphoid organ atrophy alongside oxidative stress responses. Hydrogen sulphide, even at low concentrations, has been associated with conjunctivitis, pulmonary dysfunction, and marked neurotoxicity. Elevated exposure to carbon dioxide may result in hypoxaemia, behavioural stress manifestations, and various physiological disturbances. Furthermore, it is highlighted that existing exposure limits are primarily derived from human health standards and often fail to adequately address animal welfare thresholds. Technological and managerial interventions—such as improved housing design, litter management, biofiltration systems, IoT-based gas sensors, and dietary additives—are considered effective in substantially reducing gas emissions. In this context, it is recommended that species-specific exposure thresholds be redefined, multidisciplinary approaches adopted, and science-based legislative frameworks aligned with the principles of sustainable animal production be further developed.

Kaynakça

  • Abbas, I.e., & Comini, E. (2025). Gas sensing for poultry farm air quality monitoring to enhance welfare and sustainability. Chemosensors, 13, 347. https://doi.org/10.3390/chemosensors13090347
  • Adamu, G., Hassim, H. A., Kumar, P., Sazili, A. Q., & Mohd Zainudin, M. H. (2024). Controlling odour emissions in poultry production through dietary interventions: prospects and challenges. World’s Poultry Science Journal, 80(4), 1101–1122. https://doi.org/10.1080/00439339.2024.2384868
  • Batterman, S., Grant-Alfieri, A., & Seo, S. H. (2023). Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Critical Reviews in Toxicology, 53(4), 244–295. https://doi.org/10.1080/10408444.2023.2229925
  • Blachier, F., Andriamihaja, M., Larraufie, P., Ahn, E., Lan, A., & Kim, E. (2021). Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. American Journal of Physiology - Gastrointestinal and Liver Physiology, 320(2), 125–135. https://doi.org/10.1152/AJPGI.00261.2020
  • George, A. S., & Hovan George, A. S. (2023). Optimizing poultry production through advanced monitoring and control systems. Partners Universal International Innovation Journal, 1(5), 77–97. https://doi.org/10.5281/zenodo.10050352
  • Gerritzen, M. A., Reimert, H. G. M., Lourens, A., Bracke, M. B. M., & Verhoeven, M. T. W. (2013). Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon. Animal Welfare, 22(1), 5–12. https://doi.org/10.7120/09627286.22.1.005
  • Gerritzen, M., Lambooij, B., Reimert, H., Stegeman, A., & Spruijt, B. (2007). A note on behaviour of poultry exposed to increasing carbon dioxide concentrations. Applied Animal Behaviour Science, 108(1–2), 179–185. https://doi.org/10.1016/j.applanim.2006.11.014
  • Guo, L., Zhao, B., Jia, Y., He, F., & Chen, W. (2022). Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing—A review. Atmosphere, 13, 452. https://doi.org/10.3390/atmos13030452
  • Guo, Y., Zhang, J., Li, X., Wu, J., Han, J., Yang, G., & Zhang, L. (2023). Oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers. British Poultry Science, 64(1), 36–46. https://doi.org/10.1080/00071668.2022.2122025
  • Hao, Z., Qiu, M., Liu, Y., Liu, Y., Chang, M., Liu, X., Wang, Y., Sun, W., Teng, X., & Tang, Y. (2025). Co-exposure to ammonia and lipopolysaccharide-induced impaired energy metabolism via the miR-1599/HK2 axis and triggered autophagy, ER stress, and apoptosis in chicken cardiomyocytes. Poultry Science, 104(4), 104965. https://doi.org/10.1016/j.psj.2025.104965
  • Hoerr, F. J. (2010). Clinical aspects of immunosuppression in poultry. Avian diseases, 54(1), 2–15. https://doi.org/10.1637/8909-043009 -Review.1
  • Kim, K. Y., & Kim, J. K. (2024). Indoor concentration distributions of ammonia and sulfur-based odorous substances according to types of laying hen houses in South Korea. Atmosphere, 15, 980. https://doi.org/10.3390/atmos15080980
  • Kristensen, H. H., & Wathes, C. M. (2000). Ammonia and poultry welfare: A review. World’s Poultry Science Journal, 56(3), 241–245. https://doi.org/10.1079/wps20000018
  • Li, D., Li, F., Liu, W., Han, H., Wang, J., Hao, D., & Sun, Y. (2025). Physiological responses of laying hens to chronic cold stress and ammonia exposure: Implications for environmental management and poultry welfare. Animals, 15, 1769. https://doi.org/10.3390/ani15121769
  • Liu, H., Pan, S., Wang, C., Yang, W., Wei, X., He, Y., Xu, T., Shi, K., & Si, H. (2025). Review of respiratory syndromes in poultry: pathogens, prevention, and control measures. Veterinary research, 56(1), 101. https://doi.org/10.1186/s13567-025-01506-y
  • Lu, D., Mi, J., Wu, Y., Liang, J., Liao, X., & Wang, Y. (2020). Effects of different laying hen species on odour emissions. Animals, 10(11), 1–13. https://doi.org/10.3390/ani10112172
  • Luo, J., Rong, J., Zhou, S., Wang, H., Li, M., Yan, X., Wu, Y., & Wang, Y. (2025). A low-cost mitigation system for ammonia removal from broiler house exhaust air. Poultry Science, 104(10), 105529. https://doi.org/10.1016/j.psj.2025.105529
  • Miles, D. M., Rowe, D. E., & Owens, P. R. (2008). Winter broiler litter gases and nitrogen compounds: Temporal and spatial trends. Atmospheric Environment, 42(14), 3351–3363. https://doi.org/10.1016/j.atmosenv.2006.11.056
  • Ni, J. Q., Liu, S., Diehl, C. A., Lim, T. T., Bogan, B. W., Chen, L., Chai, L., Wang, K., & Heber, A. J. (2017). Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses. Atmospheric Environment, 154, 260–273. https://doi.org/10.1016/j.atmosenv.2017.01.050
  • Okubanjo, A. A., Okakwu, I. K., Alao, O. P., Lawal, N. S., Babalola, A. A., & Olayiwola, A. (2025). Sustainable poultry farming: A concept of IoT-based poultry management system for small-scale farmers. Al-Bahir, 6(2), 111–132. https://doi.org/10.55810/2313-0083.1093
  • Palii, A. P., Pylypenko, S. H., Lukyanov, I. M., Zub, O. V, Dombrovska, A. V, Zagumenna, K. V, Kovalchuk, Y. O., Ihnatieva, T. M., Ishchenko, K. V, Paliy, A. P., & Orobchenko, O. L. (2019). Research of techniques of microclimate improvement in poultry houses. Ukrainian Journal of Ecology, 9(3), 41-51.
  • Rattanapan, C., & Ounsaneha, W. (2012). Removal of hydrogen sulfide gas using biofiltration – A review. Walailak Journal of Science and Technology, 9(1), 9–18.
  • Rumbeiha, W. K., & Kim, D. S. (2025). Neurological sequelae of acute hydrogen sulfide poisoning: A literature review, controversies, and knowledge gaps. Neurology International, 17,71. https://doi.org/10.3390/neurolint17050071
  • Rumbeiha, W., Whitley, E., Anantharam, P., Kim, D. S., & Kanthasamy, A. (2016). Acute hydrogen sulfide–induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Annals of the New York Academy of Sciences, 1378(1), 5–16. https://doi.org/10.1111/nyas.13148
  • Saksrithai, K., & King, A. J. (2018). Controlling hydrogen sulfide emissions during poultry productions. Journal of Animal Research and Nutrition, 3(1), 1–14. https://doi.org/10.21767/2572-5459.100040
  • Santana Maldonado, C., Weir, A., & Rumbeiha, W. K. (2023). A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicology Mechanisms and Methods, 33(3), 183–196. https://doi.org/10.1080/15376516.2022.2121192
  • Scanes, C. G., & Pierzchała-Koziec, K. (2024). Poultry and Livestock Production: Environmental Impacts. In Modern Technology and Traditional Husbandry of Broiler Farming (pp. 1–22). https://doi.org/10.5772/intechopen.1005641
  • Shah, S. W. A., Ishfaq, M., Nasrullah, M., Qayum, A., Akhtar, M. U., Jo, H., Hussain, M., & Teng, X. (2020). Ammonia inhalation-induced inflammation and structural impairment in the bursa of fabricius and thymus of broilers through NF-κκB signaling pathway. Environmental Science and Pollution Research, 27(11), 11596–11607. https://doi.org/10.1007/s11356-020-07743-2
  • Sheikh, I., Nissa, S., Zaffer, B., Bulbul, K., Akand, A., Ahmed, H., Hasin, D., Hussain, I., & Hussain, S. (2018). Ammonia production in the poultry houses and its harmful effects. International Journal of Veterinary Sciences and Animal Husbandry, 3(4), 30–33. https://doi.org/10.1079/WPS19840008
  • Tegün, E., Özüiçli, M., Gökmen, M., & Aydın, R. (2023). Kanatlılarda koksidiyozise karşı probiyotiklerin kullanım olanakları. Antakya Veteriner Bilimleri Dergisi, 2(2), 61-67.
  • Vilela, M. de O., Gates, R. S., Souza, C. F., Teles Junior, C. G. S., & Sousa, F. C. (2020). Nitrogen transformation stages into ammonia in broiler production: Sources, deposition, transformation, and emission into the environment. DYNA, 87(214), 221–228. https://doi.org/10.15446/DYNA.V87N214.83318
  • Wang, R. (2021). Hydrogen sulfide, microbiota, and sulfur amino acid restriction diet. Frigid Zone Medicine, 1(1), 9–16. https://doi.org/10.2478/fzm-2021-0003
  • Witkowska, D., & Sowinska, J. (2017). Identification of microbial and gaseous contaminants in poultry farms and developing methods for contamination prevention at the source. In Poultry Science (pp. 51–72). InTech. https://doi.org/10.5772/64891
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Farmakoloji
Bölüm Derleme
Yazarlar

Ertan Doğan 0000-0003-0751-0559

Gönderilme Tarihi 12 Eylül 2025
Kabul Tarihi 15 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Doğan, E. (2025). Toxic Gases in Poultry Housing: Multisystemic Health Effects and Strategies for Emission Control. Antakya Veteriner Bilimleri Dergisi, 4(2), 33-41.