Derleme
BibTex RIS Kaynak Göster

Keçilerde Sütteki MikroRNA’ların Subklinik Mastitis Tanısında Biyobelirteç Potansiyelleri

Yıl 2025, Cilt: 4 Sayı: 1, 28 - 34, 30.06.2025

Öz

Süt, memelilerde doğumu takiben meme bezinden salgılanan ve temelde yavru gelişimi için gerekli olan biyolojik bir sıvıdır. Keçi sütü insan sağlığı ve beslenmesinde büyük öneme sahip olup kaliteli bir hayvansal üründür. Keçi sütü üretiminde karşılaşılan subklinik mastitis önemli bir sağlık sorunu olarak ön plana çıkmaktadır. Her ne kadar subklinik mastitis sığırlarda süt somatik hücre sayısının tespiti ve Kaliforniya Mastitis Test (CMT) uygulaması gibi yöntemlerle tespit edilebilse de keçilerde süt sentezi apokrin salgı şeklinde olduğu için sütteki somatik hücre sayısı fizyolojik olarak yüksek olabilmekte ve subklinik mastitis bu yöntemlerle tespit edilememektedir. Moleküler teknolojinin gelişimi ve uygulanabilirliği ile birçok hastalığın tanı ve tedavisinde mikroRNA (miRNA)’ların biyobelirteç ve terapötik hedef olma potansiyeli taşıdıkları anlaşılmıştır. Birçok türde farklı fizyolojik ve patolojik durumda doku, organ ve biyolojik sıvılarda aktiviteleri araştırılan miRNA’ların subklinik mastitis tanısı için de kullanılabileceği değerlendirilmektedir. Özellikle kan, süt ve idrar gibi biyolojik sıvılarda farklı koşullarda değişen miRNA’ların tespit edilmesi birçok hayvan türünde verim ve hastalıkların izlenmesi bakımından önemlidir. Keçilerde verim ve sağlıkla ilgili çeşitli miRNA’ların potansiyelleri değerlendirilmekle birlikte subklinik mastitis üzerine miRNA düzeyinde yapılan çalışmalar oldukça sınırlıdır. MikroRNA’ların keçi sütündeki paternlerinin belirlenmesi ve subklinik mastitis durumunda değişikliklerin saptanması önemli ekonomik kayıplarla karakterize subklinik mastitis tanısında umut vadeden güncel bir yaklaşım olarak öne çıkmaktadır.

Kaynakça

  • Abou El Qassim, L., Le Guillou, S., & Royo, L. J. (2022). Variation of miRNA content in cow raw milk depending on the dairy production system. International journal of molecular sciences, 23(19), 11681. https://doi.org/10.3390/ijms231911681
  • Barrón-Bravo, O. G., Gutiérrez-Chávez, A. J., Ángel-Sahagún, C. A., Montaldo, H. H., Shepard, L., & Valencia-Posadas, M. (2013). Losses in milk yield, fat and protein contents according to different levels of somatic cell count in dairy goats. Small Ruminant Research, 113(2-3), 421-431. https://doi.org/10.1016/j.smallrumres.2013.04.003
  • Bilal, M., Javaid, A., Amjad, F., Abou Youssif, T., & Afzal, S. (2022). An overview of prostate cancer (PCa) diagnosis: Potential role of miRNAs. Translational Oncology, 26, 101542. https://doi.org/10.1016/j.tranon.2022.101542
  • Cai, M., He, H., Jia, X., Chen, S., Wang, J., Shi, Y., ... & Lai, S. (2018). Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress and Chaperones, 23(4), 663-672. https://doi.org/10.1007/s12192-018-0876-3
  • Carthew, R. W., Sontheimer, E. J. 2009. “Origins and mechanisms of miRNAs and siRNAs”, Cell, 136(4), 642-55.
  • Cedden, F., Kor, A., Keskin, S. 2002. “Laktasyonun geç döneminde keçi sütünde somatik hücre sayımı; yaş, süt verimi ve bazı meme özellikleri ile olan ilişkileri”, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 12(2), 63-7
  • Cendron, F., Rosani, U., Franzoi, M., Boselli, C., Maggi, F., De Marchi, M., & Penasa, M. (2024). Analysis of miRNAs in milk of four livestock species. BMC genomics, 25(1), 859. https://doi.org/10.1186/s12864-024-10783-4
  • Chen, Z., Luo, J., Ma, L., Wang, H., Cao, W., Xu, H., ... & Gou, D. (2015). MiR130b-Regulation of PPARγ coactivator-1α suppresses fat metabolism in goat mammary epithelial cells. PloS one, 10(11), e0142809. https://doi.org/10.1371/journal.pone.0142809
  • Cui, Y., Sun, X., Jin, L., Yu, G., Li, Q., Gao, X., Ao, J. & Wang, C. (2017). MiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways. BMC Veterinary Research, 13(1), 350. https://doi.org/10.1186/s12917-017-1267-1
  • Do, D. N., Dudemaine, P. L., Mathur, M., Suravajhala, P., Zhao, X., Ibeagha-Awemu, E. M. 2021. “MiRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies”, International Journal of Molecular Sciences, 22(6), 3080.  https://doi.org/10.3390/ijms22063080
  • Dysin, A. P., Barkova, O. Y., & Pozovnikova, M. V. (2021). The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Non-coding RNA, 7(4), 78.  https://doi.org/10.3390/ncrna7040078
  • El-Sayed, A., & Kamel, M. (2021). Bovine mastitis prevention and control in the post-antibiotic era. Tropical animal health and production, 53, 1-16. https://doi.org/10.1007/s11250-021-02680-9
  • Feng, X., Chen, X., Zheng, X., Zhu, H., Qi, Q., Liu, S., ... & Che, J. (2021). Latest trend of milk derived exosomes: Cargos, functions, and applications. Frontiers in nutrition, 8, 747294.  https://doi.org/10.3389/fnut.2021.747294
  • Goncagul, G., Gunaydin, E., Cokal, Y. 2021. “Antimicrobial susceptibility of bacteria isolated from goats with subclinical mastitis in the Southern Marmara region of Turkey”, Medycyna Weterynaryjna, 77(05), 258-63.
  • Han, S., Li, X., Liu, J., Zou, Z., Luo, L., Wu, R., ... & Shen, B. (2020). Bta-miR-223 targeting CBLB contributes to resistance to Staphylococcus aureus mastitis through the PI3K/AKT/NF-κB pathway. Frontiers in Veterinary Science, 7, 529. https://doi.org/10.3389/fvets.2020.00529
  • Herwejınen M., Drıedonks T., Snoek B., Kroon Amt., Klegnjıan M., Abundantly Present miRNAs in Milk-Derived Extracelluler Vesicles Are Conserved Between Mammals. Frontiers in Nutrition 5:81 https://doi.org/10.3389/fnut.2018.00081
  • Hou, J., An, X., Song, Y., Cao, B., Yang, H., Zhang, Z., ... & Li, Y. (2017). Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC genetics, 18, 1-8. https://doi.org/10.1186/s12863-017-0498-2
  • Ilhan, Z., Tașal, İ., Sağcan, S., Solmaz, H. 2011. “Isolation of aerobic bacteria from goat milk with subclinical mastitis”, Yüzüncü yıl Üniversitesi Veteriner Fakültesi Dergisi, 22(2), 89-91
  • Ji, Z., Wang, G., Xie, Z., Wang, J., Zhang, C., Dong, F., & Chen, C. (2012). Identification of novel and differentially expressed microRNAs of dairy goat mammary gland tissues using Solexa sequencing and bioinformatics. PloS one, 7(11), e49463. https://doi.org/10.1371/journal.pone.0049463
  • Jin, W., Ibeagha-Awemu, E. M., Liang, G., Beaudoin, F., Zhao, X., & Guan, L. L. (2014). Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC genomics, 15, 1-16.
  • Kok, M. G. M., De Ronde, M. W. J., Moerland, P. D., Ruijter, J. M., Creemers, E. E., Pinto-Sietsma, S. J. 2018. “Small sample sizes in high-throughput miRNA screens: a common pitfall for the identification of miRNA biomarkers”, Biomolecular Detection and Quantification, 15, 1-5. https://doi.org/10.1016/j.bdq.2017.11.002
  • Kumar, R. M. R. (2025). Exosomal microRNAs: impact on cancer detection, treatment, and monitoring. Clinical and Translational Oncology, 27(1), 83-94.
  • Lai, Y. C., Fujikawa, T., Maemura, T., Ando, T., Kitahara, G., Endo, Y.,Yamato, O., Koiwa, M., Kubota, C., & Miura, N. (2017). Inflammationrelated microRNA expression level in the bovine milk is affected by mastitis. PLoS ONE, 12(5), e0177182. https://doi.org/10.1371/journal.pone.0177182
  • Lee, R. C., Feinbaum, R. L., Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854.
  • Li, M., Zou, X., Xia, T., Wang, T., Liu, P., Zhou, X., ... & Zhu, W. (2019). A five‐miRNA panel in plasma was identified for breast cancer diagnosis. Cancer medicine, 8(16), 7006-7017. https://doi.org/10.1002/cam4.2572
  • Li, R., Zhang, C. L., Liao, X. X., Chen, D., Wang, W. Q., Zhu, Y. H., ... & Yang, Z. P. (2015). Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus. International journal of molecular sciences, 16(3), 4997-5013.  https://doi.org/10.3390/ijms16034997
  • Li, Z., Wang, H., Chen, L., Wang, L., Liu, X., Ru, C., & Song, A. (2014). Identification and characterization of novel and differentially expressed micro Rna S in peripheral blood from healthy and mastitis holstein cattle by deep sequencing. Animal genetics, 45(1), 20-27. https://doi.org/10.1111/age.12096
  • Libera, K., Konieczny, K., Grabska, J., Smulski, S., Szczerbal, I., Szumacher-Strabel, M., Pomorska-Mól, M. 2021. Potential novel biomarkers for mastitis diagnosis in sheep. Animals, 11(10), 2783. https://doi.org/10.3390/ani11102783
  • Lin, X. Z., Luo, J., Zhang, L. P., Wang, W., Shi, H. B., & Zhu, J. J. (2013). MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene, 521(1), 15-23. https://doi.org/10.1016/j.gene.2013.03.050
  • Long, J. M., Maloney, B., Rogers, J. T., Lahiri, D. K. 2019. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Molecular psychiatry, 24(3), 345-63. https://doi.org/10.1038/s41380-018-0266-3
  • Mazinani, M., Rude, B. 2020. Population, world production and quality of sheep and goat products. American Journal of Animal and Veterinary Sciences, 15(4), 291-99. Doi: https://doi.org/10.3844/ajavsp.2020.291.299
  • Miller, B. A., Lu, C. D. 2019. Current status of global dairy goat production: An overview. Asian-Australasian Journal of Animal Sciences, 32(8), 1219. https://doi.org/10.5713/ajas.19.0253
  • Mirzaei, R., Mohammadzadeh, R., Mirzaei, H., Sholeh, M., Karampoor, S., Abdi, M., ... & Yousefimashouf, R. (2020). Role of microRNAs in Staphylococcus aureus infection: potential biomarkers and mechanism. IUBMB life, 72(9), 1856-1869. https://doi.org/10.1002/iub.2325
  • Mishra, A. K., Sharma, N., Singh, D. D., Gururaj, K., Kumar, V., Sharma, D. K. 2018. Prevalence and bacterial etiology of subclinical mastitis in goats reared in organized farms. Veterinary World, 11(1), 20 https://doi.org/10.14202/vetworld.2018.20-2
  • Nejad, C., Stunden, H. J., & Gantier, M. P. (2018). A guide to miRNAs in inflammation and innate immune responses. The FEBS journal, 285(20), 3695-3716. https://doi.org/10.1111/febs.14482
  • O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402
  • Ojo, O. E., Kreuzer-Redmer, S. 2023. MicroRNAs in Ruminants and Their Potential Role in Nutrition and Physiology. Veterinary Sciences, 10(1), 57.  https://doi.org/10.3390/vetsci10010057
  • Özkan, H., Keçeli, H. H., Kaya, U., Dalkiran, S., Yüksel, M., Tek, E., & Yakan, A. (2024). Considering potential roles of selected MicroRNAs in evaluating subclinical mastitis and Milk quality in California mastitis test (+) and infected bovine milk. Animal Science Journal, 95(1), e13959. https://doi.org/10.1111/asj.13959
  • Özkan, H., Yakan, A. 2017. Genomic selection in animal breeding: past, present. Lalahan Hayvancılık Araștırma Enstitüsü Dergisi, 57(2), 112-17.
  • Paape, M. J., Poutrel, B., Contreras, A., Marco, J. C., & Capuco, A. V. (2001). Milk somatic cells and lactation in small ruminants. J Dairy Sci, 84, E237-E244/ https://doi.org/10.3168/jds.S0022-0302(01)70223-8
  • Pirzada, M., Malhi, K. K., Kamboh, A. A., Rind, R., Abro, S. H., Lakho, S. A., Bhutto, K. R., Huda, N. 2016. Prevalence of subclinical mastitis in dairy goats caused by bacterial species. Journal of Animal Health and Production, 4(2), 55-9 https://doi.org/10.14737/journal.jahp/2016/4.2.55.59
  • Paim, T. D. P., Faria, D. A., Hay, E. H., McManus, C., Lanari, M. R., Esquivel, L. C., ... & Blackburn, H. D. (2019). New world goat populations are a genetically diverse reservoir for future use. Scientific reports, 9(1), 1476.
  • Pragna, P., Chauhan, S. S., Sejian, V., Leury, B. J., Dunshea, F. R. 2018. Climate change and goat production: Enteric methane emission and its mitigation. Animals, 8(12), 235. https://doi.org/10.3390/ani8120235
  • Quan, S. Y., Nan, X. M., Wang, K., Zhao, Y. G., Jiang, L. S., Yao, J. H., & Xiong, B. H. (2020). Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression. Food & function, 11(3), 2154-2162. https://doi.org/10.1039/C9FO03097B
  • Raynal-Ljutovac, K., Lagriffoul, G., Paccard, P. Guillet, I., Chilliard, Y. 2008 Composition of goat and sheep milk products: An update https://doi.org/10.1016/j.smallrumres.2008.07.00
  • Santos Neto, T. M., Mota, R. A., Silva, L. B. G., Viana, D. A., Lima-Filho, J. L., Sarubbo, L. A., ... & Porto, A. L. F. (2009). Susceptibility of Staphylococcus spp. isolated from milk of goats with mastitis to antibiotics and green propolis extracts. Letters in Drug Design & Discovery, 6(1), 63-68. https://doi.org/10.2174/157018009787158599
  • Souza, F. N., Blagitz, M. G., Penna, C. F. A. M., Della Libera, A. M. M. P., Heinemann, M. B., & Cerqueira, M. M. O. P. (2012). Somatic cell count in small ruminants: Friend or foe?. Small Ruminant Research, 107(2-3), 65-75. https://doi.org/10.1016/j.smallrumres.2012.04.005Get rights and content
  • Srikok, S., Patchanee, P., Boonyayatra, S., & Chuammitri, P. (2020). Potential role of MicroRNA as a diagnostic tool in the detection of bovine mastitis. Preventive veterinary medicine, 182, 105101. https://doi.org/10.1016/j.prevetmed.2020.105101
  • Sun, J., Aswath, K., Schroeder, S. G., Lippolis, J. D., Reinhardt, T. A., Sonstegard, T. S. 2015. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics, 16(1), 1-10 https://doi.org/10.1016/j.bdq.2017.11.002
  • Wang, H., Luo, J., Chen, Z., Cao, W. T., Xu, H. F., Gou, D. M., & Zhu, J. J. (2015). MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene. Journal of dairy science, 98(12), 9001-9014. https://doi.org/10.3168/jds.2015-9418
  • Xuan, R., Chao, T., Wang, A., Zhang, F., Sun, P., Liu, S., ... & Cheng, M. (2020). Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One, 15(6), e0234427. https://doi.org/10.1371/journal.pone.0234427
  • Yakan, A., Özkan, H., Çamdeviren, B., Kaya, U., Karaaslan, İ., Dalkiran, S. 2021. Expression patterns of major genes in fatty acid synthesis, inflammation, oxidative stress pathways from colostrum to milk in Damascus goats. Scientific Reports, 11(1), 1-10 https://doi.org/10.1038/s41598-021-88976-0
  • Yao, X., Sun, S., Zi, Y., Liu, Y., Yang, J., Ren, L., Chen, G., Cao, Z., Hou, W., Song, Y., Shang, J. 2022. Comprehensive microRNA-seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats. Scientific Data, 9(1), 1-10. https://doi.org/10.1038/s41597-022-01285-7
  • Zhang, W., Jiao, Z., Huang, H., Wu, Y., Wu, H., Liu, Z., ... & Chen, Q. (2022). Effects of Pasteurella multocida on histopathology, miRNA and mRNA expression dynamics in lung of goats. Animals, 12(12), 1529

Biomarker Potential of MicroRNAs in Milk for the Diagnosis of Subclinical Mastitis in Goats

Yıl 2025, Cilt: 4 Sayı: 1, 28 - 34, 30.06.2025

Öz

Milk is a biological fluid secreted from the mammary gland following parturition in mammals and is primarily essential for the development of the offspring. Goat milk is a high-quality animal product with significant importance for human health and nutrition. Subclinical mastitis, is encountered in goat milk production, emerges as an important health issue. Although subclinical mastitis can be detected in cows through methods such as somatic cell count in milk and the California Mastitis Test (CMT), the apocrine secretion mechanism of milk synthesis in goats physiologically results in higher somatic cell counts, making these detection methods ineffective for identifying subclinical mastitis. With the advancement and applicability of molecular technology, microRNAs (miRNAs) have been recognized for their potential as biomarkers and therapeutic targets in the diagnosis and treatment of many diseases. miRNAs have been investigated in various tissues, organs, and biological fluids under different physiological and pathological conditions across numerous species, and they are now being considered for use in the diagnosis of subclinical mastitis. Especially the detection of miRNAs that vary under different conditions in biological fluids such as blood, milk, and urine is important for monitoring productivity and diseases in various animal species. While the potential of various miRNAs related to productivity and health has been evaluated in goats, studies focusing specifically on miRNAs in the context of subclinical mastitis are quite limited. Identifying the miRNA patterns in goat milk and detecting their alterations during subclinical mastitis represents a promising and up to date approach for diagnosing this condition, which is characterized by significant economic losses.

Kaynakça

  • Abou El Qassim, L., Le Guillou, S., & Royo, L. J. (2022). Variation of miRNA content in cow raw milk depending on the dairy production system. International journal of molecular sciences, 23(19), 11681. https://doi.org/10.3390/ijms231911681
  • Barrón-Bravo, O. G., Gutiérrez-Chávez, A. J., Ángel-Sahagún, C. A., Montaldo, H. H., Shepard, L., & Valencia-Posadas, M. (2013). Losses in milk yield, fat and protein contents according to different levels of somatic cell count in dairy goats. Small Ruminant Research, 113(2-3), 421-431. https://doi.org/10.1016/j.smallrumres.2013.04.003
  • Bilal, M., Javaid, A., Amjad, F., Abou Youssif, T., & Afzal, S. (2022). An overview of prostate cancer (PCa) diagnosis: Potential role of miRNAs. Translational Oncology, 26, 101542. https://doi.org/10.1016/j.tranon.2022.101542
  • Cai, M., He, H., Jia, X., Chen, S., Wang, J., Shi, Y., ... & Lai, S. (2018). Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress and Chaperones, 23(4), 663-672. https://doi.org/10.1007/s12192-018-0876-3
  • Carthew, R. W., Sontheimer, E. J. 2009. “Origins and mechanisms of miRNAs and siRNAs”, Cell, 136(4), 642-55.
  • Cedden, F., Kor, A., Keskin, S. 2002. “Laktasyonun geç döneminde keçi sütünde somatik hücre sayımı; yaş, süt verimi ve bazı meme özellikleri ile olan ilişkileri”, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 12(2), 63-7
  • Cendron, F., Rosani, U., Franzoi, M., Boselli, C., Maggi, F., De Marchi, M., & Penasa, M. (2024). Analysis of miRNAs in milk of four livestock species. BMC genomics, 25(1), 859. https://doi.org/10.1186/s12864-024-10783-4
  • Chen, Z., Luo, J., Ma, L., Wang, H., Cao, W., Xu, H., ... & Gou, D. (2015). MiR130b-Regulation of PPARγ coactivator-1α suppresses fat metabolism in goat mammary epithelial cells. PloS one, 10(11), e0142809. https://doi.org/10.1371/journal.pone.0142809
  • Cui, Y., Sun, X., Jin, L., Yu, G., Li, Q., Gao, X., Ao, J. & Wang, C. (2017). MiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways. BMC Veterinary Research, 13(1), 350. https://doi.org/10.1186/s12917-017-1267-1
  • Do, D. N., Dudemaine, P. L., Mathur, M., Suravajhala, P., Zhao, X., Ibeagha-Awemu, E. M. 2021. “MiRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies”, International Journal of Molecular Sciences, 22(6), 3080.  https://doi.org/10.3390/ijms22063080
  • Dysin, A. P., Barkova, O. Y., & Pozovnikova, M. V. (2021). The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Non-coding RNA, 7(4), 78.  https://doi.org/10.3390/ncrna7040078
  • El-Sayed, A., & Kamel, M. (2021). Bovine mastitis prevention and control in the post-antibiotic era. Tropical animal health and production, 53, 1-16. https://doi.org/10.1007/s11250-021-02680-9
  • Feng, X., Chen, X., Zheng, X., Zhu, H., Qi, Q., Liu, S., ... & Che, J. (2021). Latest trend of milk derived exosomes: Cargos, functions, and applications. Frontiers in nutrition, 8, 747294.  https://doi.org/10.3389/fnut.2021.747294
  • Goncagul, G., Gunaydin, E., Cokal, Y. 2021. “Antimicrobial susceptibility of bacteria isolated from goats with subclinical mastitis in the Southern Marmara region of Turkey”, Medycyna Weterynaryjna, 77(05), 258-63.
  • Han, S., Li, X., Liu, J., Zou, Z., Luo, L., Wu, R., ... & Shen, B. (2020). Bta-miR-223 targeting CBLB contributes to resistance to Staphylococcus aureus mastitis through the PI3K/AKT/NF-κB pathway. Frontiers in Veterinary Science, 7, 529. https://doi.org/10.3389/fvets.2020.00529
  • Herwejınen M., Drıedonks T., Snoek B., Kroon Amt., Klegnjıan M., Abundantly Present miRNAs in Milk-Derived Extracelluler Vesicles Are Conserved Between Mammals. Frontiers in Nutrition 5:81 https://doi.org/10.3389/fnut.2018.00081
  • Hou, J., An, X., Song, Y., Cao, B., Yang, H., Zhang, Z., ... & Li, Y. (2017). Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC genetics, 18, 1-8. https://doi.org/10.1186/s12863-017-0498-2
  • Ilhan, Z., Tașal, İ., Sağcan, S., Solmaz, H. 2011. “Isolation of aerobic bacteria from goat milk with subclinical mastitis”, Yüzüncü yıl Üniversitesi Veteriner Fakültesi Dergisi, 22(2), 89-91
  • Ji, Z., Wang, G., Xie, Z., Wang, J., Zhang, C., Dong, F., & Chen, C. (2012). Identification of novel and differentially expressed microRNAs of dairy goat mammary gland tissues using Solexa sequencing and bioinformatics. PloS one, 7(11), e49463. https://doi.org/10.1371/journal.pone.0049463
  • Jin, W., Ibeagha-Awemu, E. M., Liang, G., Beaudoin, F., Zhao, X., & Guan, L. L. (2014). Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC genomics, 15, 1-16.
  • Kok, M. G. M., De Ronde, M. W. J., Moerland, P. D., Ruijter, J. M., Creemers, E. E., Pinto-Sietsma, S. J. 2018. “Small sample sizes in high-throughput miRNA screens: a common pitfall for the identification of miRNA biomarkers”, Biomolecular Detection and Quantification, 15, 1-5. https://doi.org/10.1016/j.bdq.2017.11.002
  • Kumar, R. M. R. (2025). Exosomal microRNAs: impact on cancer detection, treatment, and monitoring. Clinical and Translational Oncology, 27(1), 83-94.
  • Lai, Y. C., Fujikawa, T., Maemura, T., Ando, T., Kitahara, G., Endo, Y.,Yamato, O., Koiwa, M., Kubota, C., & Miura, N. (2017). Inflammationrelated microRNA expression level in the bovine milk is affected by mastitis. PLoS ONE, 12(5), e0177182. https://doi.org/10.1371/journal.pone.0177182
  • Lee, R. C., Feinbaum, R. L., Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854.
  • Li, M., Zou, X., Xia, T., Wang, T., Liu, P., Zhou, X., ... & Zhu, W. (2019). A five‐miRNA panel in plasma was identified for breast cancer diagnosis. Cancer medicine, 8(16), 7006-7017. https://doi.org/10.1002/cam4.2572
  • Li, R., Zhang, C. L., Liao, X. X., Chen, D., Wang, W. Q., Zhu, Y. H., ... & Yang, Z. P. (2015). Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus. International journal of molecular sciences, 16(3), 4997-5013.  https://doi.org/10.3390/ijms16034997
  • Li, Z., Wang, H., Chen, L., Wang, L., Liu, X., Ru, C., & Song, A. (2014). Identification and characterization of novel and differentially expressed micro Rna S in peripheral blood from healthy and mastitis holstein cattle by deep sequencing. Animal genetics, 45(1), 20-27. https://doi.org/10.1111/age.12096
  • Libera, K., Konieczny, K., Grabska, J., Smulski, S., Szczerbal, I., Szumacher-Strabel, M., Pomorska-Mól, M. 2021. Potential novel biomarkers for mastitis diagnosis in sheep. Animals, 11(10), 2783. https://doi.org/10.3390/ani11102783
  • Lin, X. Z., Luo, J., Zhang, L. P., Wang, W., Shi, H. B., & Zhu, J. J. (2013). MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene, 521(1), 15-23. https://doi.org/10.1016/j.gene.2013.03.050
  • Long, J. M., Maloney, B., Rogers, J. T., Lahiri, D. K. 2019. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Molecular psychiatry, 24(3), 345-63. https://doi.org/10.1038/s41380-018-0266-3
  • Mazinani, M., Rude, B. 2020. Population, world production and quality of sheep and goat products. American Journal of Animal and Veterinary Sciences, 15(4), 291-99. Doi: https://doi.org/10.3844/ajavsp.2020.291.299
  • Miller, B. A., Lu, C. D. 2019. Current status of global dairy goat production: An overview. Asian-Australasian Journal of Animal Sciences, 32(8), 1219. https://doi.org/10.5713/ajas.19.0253
  • Mirzaei, R., Mohammadzadeh, R., Mirzaei, H., Sholeh, M., Karampoor, S., Abdi, M., ... & Yousefimashouf, R. (2020). Role of microRNAs in Staphylococcus aureus infection: potential biomarkers and mechanism. IUBMB life, 72(9), 1856-1869. https://doi.org/10.1002/iub.2325
  • Mishra, A. K., Sharma, N., Singh, D. D., Gururaj, K., Kumar, V., Sharma, D. K. 2018. Prevalence and bacterial etiology of subclinical mastitis in goats reared in organized farms. Veterinary World, 11(1), 20 https://doi.org/10.14202/vetworld.2018.20-2
  • Nejad, C., Stunden, H. J., & Gantier, M. P. (2018). A guide to miRNAs in inflammation and innate immune responses. The FEBS journal, 285(20), 3695-3716. https://doi.org/10.1111/febs.14482
  • O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402
  • Ojo, O. E., Kreuzer-Redmer, S. 2023. MicroRNAs in Ruminants and Their Potential Role in Nutrition and Physiology. Veterinary Sciences, 10(1), 57.  https://doi.org/10.3390/vetsci10010057
  • Özkan, H., Keçeli, H. H., Kaya, U., Dalkiran, S., Yüksel, M., Tek, E., & Yakan, A. (2024). Considering potential roles of selected MicroRNAs in evaluating subclinical mastitis and Milk quality in California mastitis test (+) and infected bovine milk. Animal Science Journal, 95(1), e13959. https://doi.org/10.1111/asj.13959
  • Özkan, H., Yakan, A. 2017. Genomic selection in animal breeding: past, present. Lalahan Hayvancılık Araștırma Enstitüsü Dergisi, 57(2), 112-17.
  • Paape, M. J., Poutrel, B., Contreras, A., Marco, J. C., & Capuco, A. V. (2001). Milk somatic cells and lactation in small ruminants. J Dairy Sci, 84, E237-E244/ https://doi.org/10.3168/jds.S0022-0302(01)70223-8
  • Pirzada, M., Malhi, K. K., Kamboh, A. A., Rind, R., Abro, S. H., Lakho, S. A., Bhutto, K. R., Huda, N. 2016. Prevalence of subclinical mastitis in dairy goats caused by bacterial species. Journal of Animal Health and Production, 4(2), 55-9 https://doi.org/10.14737/journal.jahp/2016/4.2.55.59
  • Paim, T. D. P., Faria, D. A., Hay, E. H., McManus, C., Lanari, M. R., Esquivel, L. C., ... & Blackburn, H. D. (2019). New world goat populations are a genetically diverse reservoir for future use. Scientific reports, 9(1), 1476.
  • Pragna, P., Chauhan, S. S., Sejian, V., Leury, B. J., Dunshea, F. R. 2018. Climate change and goat production: Enteric methane emission and its mitigation. Animals, 8(12), 235. https://doi.org/10.3390/ani8120235
  • Quan, S. Y., Nan, X. M., Wang, K., Zhao, Y. G., Jiang, L. S., Yao, J. H., & Xiong, B. H. (2020). Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression. Food & function, 11(3), 2154-2162. https://doi.org/10.1039/C9FO03097B
  • Raynal-Ljutovac, K., Lagriffoul, G., Paccard, P. Guillet, I., Chilliard, Y. 2008 Composition of goat and sheep milk products: An update https://doi.org/10.1016/j.smallrumres.2008.07.00
  • Santos Neto, T. M., Mota, R. A., Silva, L. B. G., Viana, D. A., Lima-Filho, J. L., Sarubbo, L. A., ... & Porto, A. L. F. (2009). Susceptibility of Staphylococcus spp. isolated from milk of goats with mastitis to antibiotics and green propolis extracts. Letters in Drug Design & Discovery, 6(1), 63-68. https://doi.org/10.2174/157018009787158599
  • Souza, F. N., Blagitz, M. G., Penna, C. F. A. M., Della Libera, A. M. M. P., Heinemann, M. B., & Cerqueira, M. M. O. P. (2012). Somatic cell count in small ruminants: Friend or foe?. Small Ruminant Research, 107(2-3), 65-75. https://doi.org/10.1016/j.smallrumres.2012.04.005Get rights and content
  • Srikok, S., Patchanee, P., Boonyayatra, S., & Chuammitri, P. (2020). Potential role of MicroRNA as a diagnostic tool in the detection of bovine mastitis. Preventive veterinary medicine, 182, 105101. https://doi.org/10.1016/j.prevetmed.2020.105101
  • Sun, J., Aswath, K., Schroeder, S. G., Lippolis, J. D., Reinhardt, T. A., Sonstegard, T. S. 2015. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics, 16(1), 1-10 https://doi.org/10.1016/j.bdq.2017.11.002
  • Wang, H., Luo, J., Chen, Z., Cao, W. T., Xu, H. F., Gou, D. M., & Zhu, J. J. (2015). MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene. Journal of dairy science, 98(12), 9001-9014. https://doi.org/10.3168/jds.2015-9418
  • Xuan, R., Chao, T., Wang, A., Zhang, F., Sun, P., Liu, S., ... & Cheng, M. (2020). Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One, 15(6), e0234427. https://doi.org/10.1371/journal.pone.0234427
  • Yakan, A., Özkan, H., Çamdeviren, B., Kaya, U., Karaaslan, İ., Dalkiran, S. 2021. Expression patterns of major genes in fatty acid synthesis, inflammation, oxidative stress pathways from colostrum to milk in Damascus goats. Scientific Reports, 11(1), 1-10 https://doi.org/10.1038/s41598-021-88976-0
  • Yao, X., Sun, S., Zi, Y., Liu, Y., Yang, J., Ren, L., Chen, G., Cao, Z., Hou, W., Song, Y., Shang, J. 2022. Comprehensive microRNA-seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats. Scientific Data, 9(1), 1-10. https://doi.org/10.1038/s41597-022-01285-7
  • Zhang, W., Jiao, Z., Huang, H., Wu, Y., Wu, H., Liu, Z., ... & Chen, Q. (2022). Effects of Pasteurella multocida on histopathology, miRNA and mRNA expression dynamics in lung of goats. Animals, 12(12), 1529
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Zootekni, Genetik ve Biyoistatistik
Bölüm Derleme
Yazarlar

Ahmet Rüştü Kantarkaya 0009-0004-9515-0585

Hüseyin Özkan 0000-0001-5753-8985

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 15 Mayıs 2025
Kabul Tarihi 26 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 1

Kaynak Göster

APA Kantarkaya, A. R., & Özkan, H. (2025). Keçilerde Sütteki MikroRNA’ların Subklinik Mastitis Tanısında Biyobelirteç Potansiyelleri. Antakya Veteriner Bilimleri Dergisi, 4(1), 28-34.