Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the reliability and accuracy of femur measurements acquired from computed tomography images

Yıl 2023, Sayı: 46 - Türkiye Cumhuriyeti'nin 100. Yıl Dönümü ve Derginin 60. Yılı Özel Sayısı, 90 - 101, 29.10.2023
https://doi.org/10.33613/antropolojidergisi.1335356

Öz

The biological profile holds notable significance within forensic assessments, as it plays a crucial role in determining biological identity. Moreover, it possesses substantial potential for applications in fields such as medical legal cases and forensic anthropology. Recent advancements in technology, specifically in the field of computed tomography, have enabled the accurate acquisition of detailed anatomical data from CT scans present in extensive medical repositories. The validity of new methods developed through the application of these techniques should therefore be analyzed. The primary intent of this research was to investigate the measurement accuracy obtained from CT-generated 3D femur models. To investigate the accuracy and reliability of measurements obtained from CT-generated 3D femur models, 3 different studies were conducted. A dataset comprising fifteen femurs was employed for analysis and measurement purposes. The obtained images were subsequently compared to twelve measurements acquired from the dry femora, enabling an assessment of the reliability and accuracy of both measurement protocols. To investigate the effect of CT parameters and soft tissue, 4 femurs were used. The analysis of twelve femur measurements obtained from the CT images processed with OsiriX software was carried out using Excel software packages and SPSS 24.0. From the results of this study, it can be observed that there is no discernible pattern regarding the reliability of image acquisition in any particular way. This implies that both dry femur bone and 3D virtual femur models can be used interchangeably for the 12 metric measurements used in this study, and at the same time, different scanning parameters or soft tissue influence for these measurements do not make a statistically significant difference.

Kaynakça

  • Christiansen, E. L., Thompson, J. R., & Kopp, S. (1986). Intra-and inter-observer variability and accuracy in the determination of linear and angular measurements in computed tomography: An in vitro and in situ study of human mandibles. Acta Odontologica, 44(4), 221-229. https://doi.org/10.3109/00016358608997724
  • Conlogue, G., & Wade, A. D. (2011). Development of a dry bone MDCT scanning protocol for archaeological crania. Anthropology Presentations, 4. https://ir.lib.uwo.ca/anthropres/4
  • Damstra, J., Fourie, Z., Slater, J. J. R. H., & Ren, Y. (2010). Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. American Journal of Orthodontics and Dentofacial Orthopedics, 137(1), 16.e1-16.e6. https://doi.org/10.1016/j.ajodo.2009.06.016
  • Dedouit, F., Telmon, N., Costagliola, R., Otal, P., Joffre, F., & Rougé, D. (2007). Virtual anthropology and forensic identification: report of one case. Forensic Science International, 173(2), 182-187. https://doi.org/10.1016/j.forsciint.2007.01.002
  • Dedouit, F., Telmon, N., Hervé, R., Francis, E., Joffre, C., & and Daniel, R. (2010). Modern cross-sectional ımaging in anthropology. In M. J. Thali, M. D. Viner & B. G. Brogdon, Brogdon’s forensic radiology (Second Ed.), (pp. 107-126). CRC Press. https://doi.org/10.4324/9780367805708
  • Dirkmaat, D. (Ed.) (2014). A Companion to forensic anthropology. John Wiley & Sons. https://doi.org/10.1002/9781118255377
  • Gaia, B. F., Sales, M. A. O. de, Perrella, A., Fenyo-Pereira, M., & Cavalcanti, M. G. P. (2011). Comparison between cone-beam and multislice computed tomography for identification of simulated bone lesions. Brazilian Oral Research, 25(4), 362-368. https://doi.org/10.1590/S1806-83242011000400014
  • Giurazza, F., Del Vescovo, R., Schena, E., Cazzato, R. L., D’Agostino, F., Grasso, R. F., … Zobel, B. B. (2013). Stature estimation from scapular measurements by CT scan evaluation in an Italian population. Legal Medicine, 15(4), 202-208. https://doi.org/10.1016/j.legalmed.2013.01.002
  • Goo, J. M., Tongdee, T., Tongdee, R., Yeo, K., Hildebolt, C. F., & Bae, K. T. (2005). Volumetric measurement of synthetic lung nodules with multi–detector row CT: Effect of various ımage reconstruction parameters and segmentation thresholds on measurement accuracy 1. Radiology, 235(3), 850-856. https://doi.org/10.1148/radiol.2353040737
  • Grabherr, S., Cooper, C., Ulrich-Bochsler, S., Uldin, T., Ross, S., Oesterhelweg, L., … Mangin, P. (2009). Estimation of sex and age of “virtual skeletons”–a feasibility study. European Radiology, 19(2), 419-429. https://doi.org/10.1007/s00330-008-1155-y
  • Haglund, W. D., & Sorg, M. H. (Eds.) (2010). Advances in forensic taphonomy: Method, theory, and archaeological perspectives. CRC Press. https://doi.org/10.1201/9781420058352
  • Hildebolt, C. F., Vannier, M. W., & Knapp, R. H. (1990). Validation study of skull three-dimensional computerized tomography measurements. American Journal of Physical Anthropology, 82(3), 283-294. https://doi.org/10.1002/ajpa.1330820307
  • Høyer, C. B., Nielsen, T. S., Nagel, L. L., Uhrenholt, L., & Boel, L. W. T. (2012). Investigation of a fatal airplane crash: autopsy, computed tomography, and injury pattern analysis used to determine who was steering the plane at the time of the accident. A case report. Forensic Science, Medicine, and Pathology, 8(2), 179-188. https://doi.org/10.1007/s12024-011-9239-4
  • İşcan, M. (2005). Forensic anthropology of sex and body size. Forensic Science International, 147(2–3), 107-112. https://doi.org/10.1016/j.forsciint.2004.09.069
  • Joo, I., Kim, S. H., Lee, J. Y., Lee, J. M., Han, J. K., & Choi, B. I. (2011). Comparison of semiautomated and manual measurements for simulated hypo-and hyper-attenuating hepatic tumors on MDCT: Effect of slice thickness and reconstruction increment on their accuracy. Academic Radiology, 18(5), 626-633. https://doi.org/10.1016/j.acra.2010.12.013
  • Kranioti, E. F., Bastir, M., Sanchez-Meseguer, A., & Rosas, A. (2009). A geometric-morphometric study of the Cretan humerus for sex identification. Forensic Science International, 189(1), 111.e1-111.e8. https://doi.org/10.1016/j.forsciint.2009.04.013
  • Kullmer, O. (2008). Benefits and risks in virtual anthropology. Journal of Anthropological Sciences, 86, 205-207. https://www.isita-org.com/jass/contents/2008%20vol86/16_Kullmer.pdf
  • Lopes, P. M. L., Moreira, C. R., Perrella, A., Antunes, J. L., & Cavalcanti, M. G. P. (2008). 3-D volume rendering maxillofacial analysis of angular measurements by multislice CT. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 105(2), 224-230. https://doi.org/10.1016/j.tripleo.2007.08.036
  • Matteson, S. R., Bechtold, W., Phillips, C., & Staab, E. V. (1989). A method for three-dimensional image reformation for quantitative cephalometric analysis. Journal of Oral and Maxillofacial Surgery, 47(10), 1053-1061. https://doi.org/10.1016/0278-2391(89)90180-8
  • O’Donnell, C., Iino, M., Mansharan, K., Leditscke, J., & Woodford, N. (2011). Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: experience gained from the 2009 Victorian bushfires. Forensic Science International, 205(1), 15-28. https://doi.org/10.1016/j.forsciint.2010.05.026
  • Oka, K., Murase, T., Moritomo, H., Goto, A., Sugamoto, K., & Yoshikawa, H. (2009). Accuracy analysis of three-dimensional bone surface models of the forearm constructed from multidetector computed tomography data. The International Journal of Medical Robotics and Computer Assisted Surgery, 5(4), 452-457. https://doi.org/10.1002/rcs.277
  • Periago, D. R., Scarfe, W. C., Moshiri, M., Scheetz, J. P., Silveira, A. M., & Farman, A. G. (2008). Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. The Angle Orthodontist, 78(3), 387-395. https://doi.org/10.2319/122106-52.1
  • Plattner, T., Thali, M. J., Yen, K., Sonnenschein, M., Stoupis, C., Vock, P., … Dirnhofer, R. (2003). Virtopsy-postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) in a fatal scuba diving incident. Journal of Forensic Sciences, 48(6), 1347-1355. https://doi.org/10.1520/JFS2003162
  • Ramsthaler, F., Kettner, M., Gehl, A., & Verhoff, M. A. (2010). Digital forensic osteology: Morphological sexing of skeletal remains using volume-rendered cranial CT scans. Forensic Science International, 195(1–3), 148-152. https://doi.org/10.1016/j.forsciint.2009.12.010
  • Rawal, B., Ribeiro, R., Malhotra, R., & Bhatnagar, N. (2012). Anthropometric measurements to design best-fit femoral stem for the Indian population. Indian Journal of Orthopaedics, 46(1), 46-53. https://doi.org/10.4103/0019-5413.91634
  • Riepert, T., Rittner, C., Ulmcke, D., Ogbuihi, S., & Schweden, F. (1995). Identification of an unknown corpse by means of computed tomography (CT) of the lumbar spine. Journal of Forensic Sciences, 40(1), 126-127. https://doi.org/10.1520/JFS13775J
  • Robinson, C., Eisma, R., Morgan, B., Jeffery, A., Graham, E. A. M., Black, S., & Rutty, G. N. (2008). Anthropological measurement of lower limb and foot bones using Multi-Detector Computed Tomography. Journal of Forensic Sciences, 53(6), 1289-1295. https://doi.org/10.1111/j.1556-4029.2008.00875.x
  • Spradley, M. K., & Jantz, R. L. (2011). Sex estimation in forensic anthropology: skull versus postcranial elements. Journal of Forensic Sciences, 56(2), 289-296. https://doi.org/10.1111/j.1556-4029.2010.01635.x
  • Srivastava, R., Saini, V., Rai, R. K., Pandey, S., & Tripathi, S. K. (2012). A study of sexual dimorphism in the femur among North Indians. Journal of Forensic Sciences, 57(1), 19-23. https://doi.org/10.1111/j.1556-4029.2011.01885.x
  • Stull, K. E., Tise, M. L., Ali, Z., & Fowler, D. R. (2014). Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Science International, 238, 133-140. https://doi.org/http://dx.doi.org/10.1016/j.forsciint.2014.03.005
  • Thali, M. J., Yen, K., Schweitzer, W., Vock, P., Ozdoba, C., & Dirnhofer, R. (2003). Into the decomposed body—forensic digital autopsy using multislice-computed tomography. Forensic Science International, 134(2), 109-114. https://doi.org/10.1016/S0379-0738(03)00137-3
  • Uslu, M., Ozsar, B., Kendi, T., Kara, S., Tekdemir, I., & Atik, S. (2005). The use of computed tomography to determine femoral component size. Bulletin (Hospital for Joint Diseases (New York, N.Y.)), 63(1-2), 49-53.
  • Vandenbussche, E., Saffarini, M., Hansen, U., Taillieu, F., Mutschler, C., Augereau, B., & Gregory, T. M. (2010). Measurement of femoral head penetration in polyethylene using a 3-dimensional CT-scan technique. Acta Orthopaedica, 81(5), 563-569. https://doi.org/10.3109/17453674.2010.519163
  • Verhoff, M. A., Ramsthaler, F., Krähahn, J., Deml, U., Gille, R. J., Grabherr, S., … Kreutz, K. (2008). Digital forensic osteology—possibilities in cooperation with the Virtopsy® project. Forensic Science International, 174(2), 152-156. https://doi.org/10.1016/j.forsciint.2007.03.017
  • Waarsing, J. H., Day, J. S., & Weinans, H. (2004). An ımproved segmentation method for in vivo μCT imaging. Journal of Bone and Mineral Research, 19(10), 1640-1650. https://doi.org/10.1359/JBMR.040705
  • Waitzman, A. A., Posnick, J. C., Armstrong, D. C., & Pron, G. E. (1992). Craniofacial skeletal measurements based on computed tomography: Part I. Accuracy and reproducibility. The Cleft Palate-Craniofacial Journal, 29(2), 112-117. https://doi.org/10.1597/1545-1569_1992_029_0112_csmboc_2.3.co_2
  • Whyms, Brian J, Vorperian, H. K., Gentry, L. R., Schimek, E. M., Bersu, E. T., & Chung, M. K. (2013). The effect of computed tomographic scanner parameters and 3-dimensional volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 115(5), 682-691. https://doi.org/10.1016/j.oooo.2013.02.008

Bilgisayarlı tomografi görüntülerinden elde edilen femur ölçümlerinin doğruluk ve güvenilirliğinin değerlendirilmesi

Yıl 2023, Sayı: 46 - Türkiye Cumhuriyeti'nin 100. Yıl Dönümü ve Derginin 60. Yılı Özel Sayısı, 90 - 101, 29.10.2023
https://doi.org/10.33613/antropolojidergisi.1335356

Öz

Biyolojik profil, biyolojik kimliğin tespitinde kritik bir rol oynadığı için adli değerlendirmelerde önemli bir konuma sahiptir. Mevcut güncel iskelet materyallerinin sınırlı olması nedeniyle, bilimsel araştırmalar çağdaş popülasyonları incelemeye yönelmiştir. Özellikle bilgisayarlı tomografi alanındaki son gelişmeler sayesinde, tıbbi arşivlerde bulunan BT taramalarından detaylı anatomik veriler doğru bir şekilde elde edilebilmektedir. Bu araştırmaların zamanla artan kullanımıyla birlikte, bu tekniklerle geliştirilen yeni yöntemlerin uygulanabilirliğini analiz etmek önemlidir. Bu çalışmanın temel amacı, BT ile oluşturulan 3B femur modellerinden elde edilen metrik ölçümlerin doğruluğunu değerlendirmektir. Bu doğruluk değerlendirmesi için 3 farklı çalışma yapılmıştır. Bu çalışmaların ilki, BT görüntülerinden elde edilen ölçümleri referans olarak kullanılan kuru femur örneklerinden elde edilen ölçümlerle karşılaştırmayı amaçlamaktadır. Ayrıca çalışma, BT parametrelerinin ve yumuşak dokunun femurların üç boyutlu BT görüntülerinden elde edilen 12 ölçümün doğruluğu üzerindeki etkisini incelemeyi hedeflemiştir. Analiz ve ölçüm için on beş femurdan oluşan bir veri seti kullanılmıştır. Elde edilen görüntüler daha sonra kuru femurlardan elde edilen 12 ölçümle karşılaştırılarak her iki ölçüm protokolünün güvenilirliği ve doğruluğu değerlendirilmiştir. CT parametlerinin ve yumuşak dokunun etkisini araştırmak için ise 4 femur kullanılmıştır. OsiriX yazılımı kullanılarak işlenen femur görüntülerinden elde edilen on iki ölçüm, Excel yazılım paketi ve SPSS 24.0 kullanılarak analiz edilmiştir. Bu çalışmanın sonuçlarına göre, BT ile görüntü alımının güvenilirliği açısından belirgin bir standart olmadığı gözlemlenebilir. Sonuçlar hem kuru femur kemiği hem de 3B sanal femur modellerinin bu çalışmada kullanılan 12 metrik ölçüm için birbirlerinin yerine kullanılabileceğini ve aynı zamanda bu ölçümler için farklı tarama parametrelerinin veya yumuşak doku etkisinin istatistiksel olarak anlamlı bir fark yaratmadığını göstermektedir.

Kaynakça

  • Christiansen, E. L., Thompson, J. R., & Kopp, S. (1986). Intra-and inter-observer variability and accuracy in the determination of linear and angular measurements in computed tomography: An in vitro and in situ study of human mandibles. Acta Odontologica, 44(4), 221-229. https://doi.org/10.3109/00016358608997724
  • Conlogue, G., & Wade, A. D. (2011). Development of a dry bone MDCT scanning protocol for archaeological crania. Anthropology Presentations, 4. https://ir.lib.uwo.ca/anthropres/4
  • Damstra, J., Fourie, Z., Slater, J. J. R. H., & Ren, Y. (2010). Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. American Journal of Orthodontics and Dentofacial Orthopedics, 137(1), 16.e1-16.e6. https://doi.org/10.1016/j.ajodo.2009.06.016
  • Dedouit, F., Telmon, N., Costagliola, R., Otal, P., Joffre, F., & Rougé, D. (2007). Virtual anthropology and forensic identification: report of one case. Forensic Science International, 173(2), 182-187. https://doi.org/10.1016/j.forsciint.2007.01.002
  • Dedouit, F., Telmon, N., Hervé, R., Francis, E., Joffre, C., & and Daniel, R. (2010). Modern cross-sectional ımaging in anthropology. In M. J. Thali, M. D. Viner & B. G. Brogdon, Brogdon’s forensic radiology (Second Ed.), (pp. 107-126). CRC Press. https://doi.org/10.4324/9780367805708
  • Dirkmaat, D. (Ed.) (2014). A Companion to forensic anthropology. John Wiley & Sons. https://doi.org/10.1002/9781118255377
  • Gaia, B. F., Sales, M. A. O. de, Perrella, A., Fenyo-Pereira, M., & Cavalcanti, M. G. P. (2011). Comparison between cone-beam and multislice computed tomography for identification of simulated bone lesions. Brazilian Oral Research, 25(4), 362-368. https://doi.org/10.1590/S1806-83242011000400014
  • Giurazza, F., Del Vescovo, R., Schena, E., Cazzato, R. L., D’Agostino, F., Grasso, R. F., … Zobel, B. B. (2013). Stature estimation from scapular measurements by CT scan evaluation in an Italian population. Legal Medicine, 15(4), 202-208. https://doi.org/10.1016/j.legalmed.2013.01.002
  • Goo, J. M., Tongdee, T., Tongdee, R., Yeo, K., Hildebolt, C. F., & Bae, K. T. (2005). Volumetric measurement of synthetic lung nodules with multi–detector row CT: Effect of various ımage reconstruction parameters and segmentation thresholds on measurement accuracy 1. Radiology, 235(3), 850-856. https://doi.org/10.1148/radiol.2353040737
  • Grabherr, S., Cooper, C., Ulrich-Bochsler, S., Uldin, T., Ross, S., Oesterhelweg, L., … Mangin, P. (2009). Estimation of sex and age of “virtual skeletons”–a feasibility study. European Radiology, 19(2), 419-429. https://doi.org/10.1007/s00330-008-1155-y
  • Haglund, W. D., & Sorg, M. H. (Eds.) (2010). Advances in forensic taphonomy: Method, theory, and archaeological perspectives. CRC Press. https://doi.org/10.1201/9781420058352
  • Hildebolt, C. F., Vannier, M. W., & Knapp, R. H. (1990). Validation study of skull three-dimensional computerized tomography measurements. American Journal of Physical Anthropology, 82(3), 283-294. https://doi.org/10.1002/ajpa.1330820307
  • Høyer, C. B., Nielsen, T. S., Nagel, L. L., Uhrenholt, L., & Boel, L. W. T. (2012). Investigation of a fatal airplane crash: autopsy, computed tomography, and injury pattern analysis used to determine who was steering the plane at the time of the accident. A case report. Forensic Science, Medicine, and Pathology, 8(2), 179-188. https://doi.org/10.1007/s12024-011-9239-4
  • İşcan, M. (2005). Forensic anthropology of sex and body size. Forensic Science International, 147(2–3), 107-112. https://doi.org/10.1016/j.forsciint.2004.09.069
  • Joo, I., Kim, S. H., Lee, J. Y., Lee, J. M., Han, J. K., & Choi, B. I. (2011). Comparison of semiautomated and manual measurements for simulated hypo-and hyper-attenuating hepatic tumors on MDCT: Effect of slice thickness and reconstruction increment on their accuracy. Academic Radiology, 18(5), 626-633. https://doi.org/10.1016/j.acra.2010.12.013
  • Kranioti, E. F., Bastir, M., Sanchez-Meseguer, A., & Rosas, A. (2009). A geometric-morphometric study of the Cretan humerus for sex identification. Forensic Science International, 189(1), 111.e1-111.e8. https://doi.org/10.1016/j.forsciint.2009.04.013
  • Kullmer, O. (2008). Benefits and risks in virtual anthropology. Journal of Anthropological Sciences, 86, 205-207. https://www.isita-org.com/jass/contents/2008%20vol86/16_Kullmer.pdf
  • Lopes, P. M. L., Moreira, C. R., Perrella, A., Antunes, J. L., & Cavalcanti, M. G. P. (2008). 3-D volume rendering maxillofacial analysis of angular measurements by multislice CT. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 105(2), 224-230. https://doi.org/10.1016/j.tripleo.2007.08.036
  • Matteson, S. R., Bechtold, W., Phillips, C., & Staab, E. V. (1989). A method for three-dimensional image reformation for quantitative cephalometric analysis. Journal of Oral and Maxillofacial Surgery, 47(10), 1053-1061. https://doi.org/10.1016/0278-2391(89)90180-8
  • O’Donnell, C., Iino, M., Mansharan, K., Leditscke, J., & Woodford, N. (2011). Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: experience gained from the 2009 Victorian bushfires. Forensic Science International, 205(1), 15-28. https://doi.org/10.1016/j.forsciint.2010.05.026
  • Oka, K., Murase, T., Moritomo, H., Goto, A., Sugamoto, K., & Yoshikawa, H. (2009). Accuracy analysis of three-dimensional bone surface models of the forearm constructed from multidetector computed tomography data. The International Journal of Medical Robotics and Computer Assisted Surgery, 5(4), 452-457. https://doi.org/10.1002/rcs.277
  • Periago, D. R., Scarfe, W. C., Moshiri, M., Scheetz, J. P., Silveira, A. M., & Farman, A. G. (2008). Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. The Angle Orthodontist, 78(3), 387-395. https://doi.org/10.2319/122106-52.1
  • Plattner, T., Thali, M. J., Yen, K., Sonnenschein, M., Stoupis, C., Vock, P., … Dirnhofer, R. (2003). Virtopsy-postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) in a fatal scuba diving incident. Journal of Forensic Sciences, 48(6), 1347-1355. https://doi.org/10.1520/JFS2003162
  • Ramsthaler, F., Kettner, M., Gehl, A., & Verhoff, M. A. (2010). Digital forensic osteology: Morphological sexing of skeletal remains using volume-rendered cranial CT scans. Forensic Science International, 195(1–3), 148-152. https://doi.org/10.1016/j.forsciint.2009.12.010
  • Rawal, B., Ribeiro, R., Malhotra, R., & Bhatnagar, N. (2012). Anthropometric measurements to design best-fit femoral stem for the Indian population. Indian Journal of Orthopaedics, 46(1), 46-53. https://doi.org/10.4103/0019-5413.91634
  • Riepert, T., Rittner, C., Ulmcke, D., Ogbuihi, S., & Schweden, F. (1995). Identification of an unknown corpse by means of computed tomography (CT) of the lumbar spine. Journal of Forensic Sciences, 40(1), 126-127. https://doi.org/10.1520/JFS13775J
  • Robinson, C., Eisma, R., Morgan, B., Jeffery, A., Graham, E. A. M., Black, S., & Rutty, G. N. (2008). Anthropological measurement of lower limb and foot bones using Multi-Detector Computed Tomography. Journal of Forensic Sciences, 53(6), 1289-1295. https://doi.org/10.1111/j.1556-4029.2008.00875.x
  • Spradley, M. K., & Jantz, R. L. (2011). Sex estimation in forensic anthropology: skull versus postcranial elements. Journal of Forensic Sciences, 56(2), 289-296. https://doi.org/10.1111/j.1556-4029.2010.01635.x
  • Srivastava, R., Saini, V., Rai, R. K., Pandey, S., & Tripathi, S. K. (2012). A study of sexual dimorphism in the femur among North Indians. Journal of Forensic Sciences, 57(1), 19-23. https://doi.org/10.1111/j.1556-4029.2011.01885.x
  • Stull, K. E., Tise, M. L., Ali, Z., & Fowler, D. R. (2014). Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Science International, 238, 133-140. https://doi.org/http://dx.doi.org/10.1016/j.forsciint.2014.03.005
  • Thali, M. J., Yen, K., Schweitzer, W., Vock, P., Ozdoba, C., & Dirnhofer, R. (2003). Into the decomposed body—forensic digital autopsy using multislice-computed tomography. Forensic Science International, 134(2), 109-114. https://doi.org/10.1016/S0379-0738(03)00137-3
  • Uslu, M., Ozsar, B., Kendi, T., Kara, S., Tekdemir, I., & Atik, S. (2005). The use of computed tomography to determine femoral component size. Bulletin (Hospital for Joint Diseases (New York, N.Y.)), 63(1-2), 49-53.
  • Vandenbussche, E., Saffarini, M., Hansen, U., Taillieu, F., Mutschler, C., Augereau, B., & Gregory, T. M. (2010). Measurement of femoral head penetration in polyethylene using a 3-dimensional CT-scan technique. Acta Orthopaedica, 81(5), 563-569. https://doi.org/10.3109/17453674.2010.519163
  • Verhoff, M. A., Ramsthaler, F., Krähahn, J., Deml, U., Gille, R. J., Grabherr, S., … Kreutz, K. (2008). Digital forensic osteology—possibilities in cooperation with the Virtopsy® project. Forensic Science International, 174(2), 152-156. https://doi.org/10.1016/j.forsciint.2007.03.017
  • Waarsing, J. H., Day, J. S., & Weinans, H. (2004). An ımproved segmentation method for in vivo μCT imaging. Journal of Bone and Mineral Research, 19(10), 1640-1650. https://doi.org/10.1359/JBMR.040705
  • Waitzman, A. A., Posnick, J. C., Armstrong, D. C., & Pron, G. E. (1992). Craniofacial skeletal measurements based on computed tomography: Part I. Accuracy and reproducibility. The Cleft Palate-Craniofacial Journal, 29(2), 112-117. https://doi.org/10.1597/1545-1569_1992_029_0112_csmboc_2.3.co_2
  • Whyms, Brian J, Vorperian, H. K., Gentry, L. R., Schimek, E. M., Bersu, E. T., & Chung, M. K. (2013). The effect of computed tomographic scanner parameters and 3-dimensional volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 115(5), 682-691. https://doi.org/10.1016/j.oooo.2013.02.008
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Adli Antropoloji
Bölüm Araştırma Makaleleri
Yazarlar

Öznur Gülhan 0000-0001-7756-6641

Yayımlanma Tarihi 29 Ekim 2023
Gönderilme Tarihi 31 Temmuz 2023
Kabul Tarihi 22 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 46 - Türkiye Cumhuriyeti'nin 100. Yıl Dönümü ve Derginin 60. Yılı Özel Sayısı

Kaynak Göster

APA Gülhan, Ö. (2023). Evaluation of the reliability and accuracy of femur measurements acquired from computed tomography images. Antropoloji(46), 90-101. https://doi.org/10.33613/antropolojidergisi.1335356

17919

Antropoloji’de yayımlanan makaleler ve diğer yazıların tümünün yayın hakkı Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır. Yani yayımlanan makale ve diğer muhtelif yazılar, başka yayınlarda ancak uygun referans gösterilerek, lisansa bağlantı sağlanarak, değişiklik yapıldıysa belirtilerek ve ticarî amaç gütmeyerek kullanılabilirler. Kısaca yazar(lar) veya okuyucu(lar) herhangi bir maddî çıkar gözetmeksizin, Antropoloji’deki yayınları basılı ve/veya elektronik olarak çoğaltmakta ve/veya yaymakta özgürdürler. Bu durum yine de lisans sahibi olarak Antropoloji’nin sizi ve çalışmanızı onaylayacağı anlamına gelmek zorunda değildir.
Budapeşte Açık Erişim Girişimi