Derleme
BibTex RIS Kaynak Göster

Genetic, Epigenetic and Environmental Factors Affecting Tooth Morphology

Yıl 2024, Sayı: 48, 36 - 43, 30.06.2024
https://doi.org/10.33613/antropolojidergisi.1468265

Öz

Tooth morpholog y is determined predominantly by genetic factors. For this reason, teeth are frequently used in anthropological studies as they provide information on important issues including the geographical region to which individuals and populations belong, kinship relations, similarities and differences between populations. In this article, genetic, epigenetic and environmental factors that cause dental variations are discussed. Additionally, embryological development of teeth, twin studies, and genome-wide association studies were mentioned. These studies point out that tooth variations are largely genetic in origin, but environmental and epigenetic factors exposed during embryological development also affect tooth morpholog y. More genetic studies are needed to determine the factors contributing to tooth morpholog y.

Kaynakça

  • Eriksson, N., Macpherson, J. M., Tung, J. Y., Hon, L. S., Naughton, B., Saxonov, S., Avey, L., Wojcicki, A., Pe’er, I., ve Mountain, J. (2010) Web-based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits. PLoS Genetics, 6, e1000993. https://doi.org/10.1371/journal.pgen.1000993
  • Hughes, T. E., ve Townsend, G. C. (2013). Twin and family studies of human dental crown morphology: genetic, epigenetic, and environmental determinants of the modern human dentition. G. R. Scott ve J. D. Irish (Ed.) içinde, Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation (s. 31–68). Cambridge University Press.
  • Hughes, T., Townsend, G., ve Bockmann, M. (2015). An overview of Dental Genetics. J. D. Irish ve G. R. Scott (Ed.) içinde, A companion to Dental Anthropology (s. 123-141). Wiley Blackwell.
  • Hlusko, L.J., Carlson, J.P., Chaplin, G., Elias, S.A., Hoffecker, J.F., Huffman, M., Jablonski, N.G., Monson, T.A., O’Rourke, D.H., Pilloud, M.A., ve Scott, G.R. (2018). Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proceedings of the National Academy of Sciences, 115(19), E4426-E4432. https://doi.org/10.1073/pnas.1711788115
  • Jernvall, J., ve Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92(1), s.19–29. https://doi.org/10.1016/S0925-4773(99)00322-6
  • Jernvall, J. ve Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139(19), s.3487-3497. https://doi.org/10.1242/dev.085084
  • Jussila, M. and Thesleff, I. (2012). Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Llineages. Cold Spring Harb Perspect Biol 2012;4:a008425. doi: 10.1101/cshperspect.a008425
  • Kamberov, Y.G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., ve Powell, A. (2013). Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell, 152(4), 691-702. https://doi.org/10.1016/j.cell.2013.01.016
  • Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., Toma, T., Haneji, K., Hanihara, T., Matsukusa, H., Kawamura, S., Maki, K. and Osawa, M., Ishida, H., ve Oota, H. (2009). A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors. The American Journal of Human Genetics, 85:528–535. https://doi.org/10.1016/j.ajhg.2009.09.006
  • Kimura, R., Watanabe, C., Kawaguchi, A., Kim, Y.I., Park, S.B., Maki, K., Ishida, H., ve Yamaguchi, T. (2015). Common polymorphisms in WNT10A affect tooth morphology as well as hair shape. Human Molecular Genetics, 24(9), 2673-2680. https://doi.org/10.1093/hmg/ddv014
  • Klein, O.D., Oberoi, S., Huysseune, A., Hovorakova, M., Peterka, M., ve Peterkova, R. (2013). Developmental disorders of the dentition: An update. American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 163C, 318–332. https://doi.org/10.1002/ajmg.c.31382
  • Lan, Y., Jia, S., ve Jiang, R. (2014). Molecular patterning of the mammalian dentition. Seminars in Cell & Developmental Biology (Vol. 25, s. 61-70). Academic Press. https://doi.org/10.1016/j.semcdb.2013.12.003
  • Lin, Y., Zheng, L., Fan, L., Kuang, W., Guo, R., Lin, J., Wu, J., ve Tan, J. (2018). The Epigenetic Regulation in Tooth Development and Regeneration. Current Stem Cell Research & Therapy, 13, 4-15. https://doi.org/10.2174/1574888X11666161129142525
  • Liu, F., Wollstein, A., Hysi, P. G., Ankra-Badu, G. A., Spector, T. D., Park, D., Zhu, G., Larsson, M., Duffy, D. L., Montgomery, G. W., Mackey, D.A., Walsh, S., Lao, O., Hofman, A., Rivadeneira, F., Vingerling, J. R., Uitterlinden, A. G., Martin, N. G., Hammond, C. J., ve Kayser, M. (2010). Digital quantification of human eye color highlights genetic association of three new loci. PLoS genetics, 6(5), e1000934. https://doi.org/10.1371/journal.pgen.1000934
  • Malik, Z., Alexiou, M., Hallgrimsson, B., Economides, A.N., Luder, H.U., ve Graf, D. (2018). Bone Morphogenetic Protein 2 Coordinates Early Tooth Mineralization. Journal of Dental Research, Vol. 97(7), 835-843. https://doi.org/10.1177/0022034518758044
  • Medland, S. E., Nyholt, D. R., Painter, J.N., McEvoy, B.P., McRae, A.F., Zhu, G., Gordon, S.D., Ferreira, M.A., Wright, M.J., Henders, A.K. et al. (2009) Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet., 85, 750–755. https://doi.org/10.1016/j.ajhg.2009.10.009
  • Mikkola, M. L. (2009). Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet Part A 149A:2031–2036. https://doi.org/10.1002/ajmg.a.32855
  • Miletich, I. and Sharpe, P.T., 2003. Normal and abnormal dental development. Human molecular genetics, 12(suppl_1), R69-R73. https://doi.org/10.1093/hmg/ddg085
  • Pantalacci, S., Guéguen, L., Petit, C., Lambert, A., Peterkova, R., ve Sémon, M. (2017). Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biology, 18:29. https://doi.org/10.1186/s13059-017-1157-7
  • Park, J. H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., Haneji, K., Takeda, M., Kim, Y. I., Tomoyasu, Y., Watanabe, M., Oota, H., Hanihara, T., Ishida, H., Maki, K., Park, S. B., ve Kimura, R. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics, 57, s.508-514. https://doi.org/10.1038/jhg.2012.60
  • Peterkova, R., Hovorakova, M., Peterka, M. and Lesot, H. (2014). Three‐dimensional analysis of the early development of the dentition. Australian Dental Journal, 59 (1 Suppl), 55-80. https://doi.org/10.1111/adj.12130
  • Pillas, D., Hoggart, C.J., Evans, D.M., O'Reilly, P.F., Sipilä, K., Lähdesmäki, R., Millwood, I.Y., Kaakinen, M., Netuveli, G., Blane, D., ve Charoen, P. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS genetics, 6(2). https://doi.org/10.1371/journal.pgen.1000856
  • Riga, A., Belcastro, M.G., ve Moggi-Cecchi, J. (2013). Environmental influence on dental morphology. arXiv preprint arXiv:1301.7334. https://doi.org/10.48550/arXiv.1301.7334
  • Scott, G. R., Schmitz, K., Heim, K. N., Paul, K. S., Schomberg, R., & Pilloud, M. A. (2018a). Sinodonty, Sundadonty, and the Beringian Standstill model: Issues of timing and migrations into the New World. Quaternary International, 466, 233– 246. https://doi.org/10.1016/j.quaint.2016.04.027
  • Scott, G. R., Turner II, C. G., Townsend, G. C., ve Martinón-Torres, M. (2018b). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo sapiens (2nd ed.). Cambridge University Press.
  • Tan, J., Peng, Q., Li, J., Guan, Y., Zhang, L., Jiao, Y., Yang, Y., Wang, S., ve Jin, L. (2014). Characteristics of dental morphology in the Xinjiang Uyghurs and correlation with the EDARV370A variant. Science China Life Sciences, 57(5), s.510-518. https://doi.org/10.1007/s11427-014-4654-x
  • Thesleff, I. (2006). The genetic basis of tooth development and dental defects. American Journal of Medical Genetics, 140(23), 2530–2535. https://doi.org/10.1002/ajmg.a.31360
  • Thesleff, I. (2014). Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Australian Dental Journal, 59:(1 Suppl): 48–54. https://doi.org/10.1111/adj.12102
  • Townsend, G. C., Richards, L., Hughes, T., Pinkerton, S., ve Schwerdt, W. (2005). Epigenetic influences may explain dental differences in monozygotic twin pairs. Australian Dental Journal, 50(2), s.95-100. https://doi.org/10.1111/j.1834-7819.2005.tb00347.x
  • Townsend, G., Hughes, T., Luciano, M., Bockmann, M., ve Brook, A. (2009). Genetic and environmental influences on human dental variation: a critical evaluation of studies involving twins. Archives of Oral Biology, 54, s.S45-S51. https://doi.org/10.1016/j.archoralbio.2008.06.009
  • Townsend, G. C., Pinkerton, S. K., Rogers, J. R., Bockmann, M. R., ve Hughes, T. E. (2015). Twin studies: research in genes, teeth and faces. University of Adelaide Press.
  • Townsend, G., Bockmann, M., Hughes, T., ve Brook, A. (2012). Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology, 100(1), s.1-9. https://doi.org/10.1007/s10266-011-0052-z
  • Tucker, A. ve Sharpe, P. (2004). The cutting-edge of mammalian development; how the embryo makes teeth. Nature Reviews Genetics, 5(7), 499-508. https://doi.org/10.1038/nrg1380
  • Turner II, C. G., Nichol, C. R., ve Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University dental Anthropology system. Advances in Dental Anthropology, 13-31.
  • Vohr, S.H., ve Green, R.E. (2013). A Mouse Following in the Footsteps of Human Prehistory. Cell, 152(4), s.667-668. https://doi.org/10.1016/j.cell.2013.01.039
  • Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., Audrey, Y. C., Estrada, K., Luan, J., Kutalik, Z., Amin, N., Buchkovich, M. L., Croteau-Chonka, D. C., Day, F. R., Duan, Y., Fall, T., Fehrmann, R., Ferreira, T., Jackson, A. U., ... ve Frayling, T. M. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics, 46(11), 1173-1186. https://doi.org/10.1038/ng.3097

Diş morfolojisini etkileyen genetik, epigenetik ve çevresel faktörler

Yıl 2024, Sayı: 48, 36 - 43, 30.06.2024
https://doi.org/10.33613/antropolojidergisi.1468265

Öz

Diş morfolojisi ağırlıklı olarak genetik faktörler tarafından belirlenir. Bu sebeple dişler, bireylerin ve popülasyonların ait olduğu coğrafi bölge, akrabalık ilişkileri, popülasyonlar arası benzerlik ve farklılıklar gibi önemli konularda bilgiler vermesi bakımından antropolojik çalışmalarda sıklıkla kullanılmaktadır. Bu makalede, diş varyasyonlarına sebep olan genetik, epigenetik ve çevresel faktörlere değinilmiştir. Ayrıca, dişlerin embriyolojik gelişimi, ikiz çalışmaları, genom çapında ilişkilendirme çalışmalarından bahsedilmiştir. Bu çalışmalar diş varyasyonlarının büyük ölçüde genetik kökenli olduğunu, ancak, embriyolojik gelişim döneminde maruz kalınan çevresel ve epigenetik faktörlerin de diş morfolojisine etki ettiğine dikkat çekmiştir. Diş morfolojisine katkı sağlayan faktörlerin belirlenmesine yönelik daha çok genetik çalışmaya ihtiyaç vardır.

Kaynakça

  • Eriksson, N., Macpherson, J. M., Tung, J. Y., Hon, L. S., Naughton, B., Saxonov, S., Avey, L., Wojcicki, A., Pe’er, I., ve Mountain, J. (2010) Web-based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits. PLoS Genetics, 6, e1000993. https://doi.org/10.1371/journal.pgen.1000993
  • Hughes, T. E., ve Townsend, G. C. (2013). Twin and family studies of human dental crown morphology: genetic, epigenetic, and environmental determinants of the modern human dentition. G. R. Scott ve J. D. Irish (Ed.) içinde, Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation (s. 31–68). Cambridge University Press.
  • Hughes, T., Townsend, G., ve Bockmann, M. (2015). An overview of Dental Genetics. J. D. Irish ve G. R. Scott (Ed.) içinde, A companion to Dental Anthropology (s. 123-141). Wiley Blackwell.
  • Hlusko, L.J., Carlson, J.P., Chaplin, G., Elias, S.A., Hoffecker, J.F., Huffman, M., Jablonski, N.G., Monson, T.A., O’Rourke, D.H., Pilloud, M.A., ve Scott, G.R. (2018). Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proceedings of the National Academy of Sciences, 115(19), E4426-E4432. https://doi.org/10.1073/pnas.1711788115
  • Jernvall, J., ve Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92(1), s.19–29. https://doi.org/10.1016/S0925-4773(99)00322-6
  • Jernvall, J. ve Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139(19), s.3487-3497. https://doi.org/10.1242/dev.085084
  • Jussila, M. and Thesleff, I. (2012). Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Llineages. Cold Spring Harb Perspect Biol 2012;4:a008425. doi: 10.1101/cshperspect.a008425
  • Kamberov, Y.G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., ve Powell, A. (2013). Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell, 152(4), 691-702. https://doi.org/10.1016/j.cell.2013.01.016
  • Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., Toma, T., Haneji, K., Hanihara, T., Matsukusa, H., Kawamura, S., Maki, K. and Osawa, M., Ishida, H., ve Oota, H. (2009). A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors. The American Journal of Human Genetics, 85:528–535. https://doi.org/10.1016/j.ajhg.2009.09.006
  • Kimura, R., Watanabe, C., Kawaguchi, A., Kim, Y.I., Park, S.B., Maki, K., Ishida, H., ve Yamaguchi, T. (2015). Common polymorphisms in WNT10A affect tooth morphology as well as hair shape. Human Molecular Genetics, 24(9), 2673-2680. https://doi.org/10.1093/hmg/ddv014
  • Klein, O.D., Oberoi, S., Huysseune, A., Hovorakova, M., Peterka, M., ve Peterkova, R. (2013). Developmental disorders of the dentition: An update. American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 163C, 318–332. https://doi.org/10.1002/ajmg.c.31382
  • Lan, Y., Jia, S., ve Jiang, R. (2014). Molecular patterning of the mammalian dentition. Seminars in Cell & Developmental Biology (Vol. 25, s. 61-70). Academic Press. https://doi.org/10.1016/j.semcdb.2013.12.003
  • Lin, Y., Zheng, L., Fan, L., Kuang, W., Guo, R., Lin, J., Wu, J., ve Tan, J. (2018). The Epigenetic Regulation in Tooth Development and Regeneration. Current Stem Cell Research & Therapy, 13, 4-15. https://doi.org/10.2174/1574888X11666161129142525
  • Liu, F., Wollstein, A., Hysi, P. G., Ankra-Badu, G. A., Spector, T. D., Park, D., Zhu, G., Larsson, M., Duffy, D. L., Montgomery, G. W., Mackey, D.A., Walsh, S., Lao, O., Hofman, A., Rivadeneira, F., Vingerling, J. R., Uitterlinden, A. G., Martin, N. G., Hammond, C. J., ve Kayser, M. (2010). Digital quantification of human eye color highlights genetic association of three new loci. PLoS genetics, 6(5), e1000934. https://doi.org/10.1371/journal.pgen.1000934
  • Malik, Z., Alexiou, M., Hallgrimsson, B., Economides, A.N., Luder, H.U., ve Graf, D. (2018). Bone Morphogenetic Protein 2 Coordinates Early Tooth Mineralization. Journal of Dental Research, Vol. 97(7), 835-843. https://doi.org/10.1177/0022034518758044
  • Medland, S. E., Nyholt, D. R., Painter, J.N., McEvoy, B.P., McRae, A.F., Zhu, G., Gordon, S.D., Ferreira, M.A., Wright, M.J., Henders, A.K. et al. (2009) Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet., 85, 750–755. https://doi.org/10.1016/j.ajhg.2009.10.009
  • Mikkola, M. L. (2009). Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet Part A 149A:2031–2036. https://doi.org/10.1002/ajmg.a.32855
  • Miletich, I. and Sharpe, P.T., 2003. Normal and abnormal dental development. Human molecular genetics, 12(suppl_1), R69-R73. https://doi.org/10.1093/hmg/ddg085
  • Pantalacci, S., Guéguen, L., Petit, C., Lambert, A., Peterkova, R., ve Sémon, M. (2017). Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biology, 18:29. https://doi.org/10.1186/s13059-017-1157-7
  • Park, J. H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., Haneji, K., Takeda, M., Kim, Y. I., Tomoyasu, Y., Watanabe, M., Oota, H., Hanihara, T., Ishida, H., Maki, K., Park, S. B., ve Kimura, R. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics, 57, s.508-514. https://doi.org/10.1038/jhg.2012.60
  • Peterkova, R., Hovorakova, M., Peterka, M. and Lesot, H. (2014). Three‐dimensional analysis of the early development of the dentition. Australian Dental Journal, 59 (1 Suppl), 55-80. https://doi.org/10.1111/adj.12130
  • Pillas, D., Hoggart, C.J., Evans, D.M., O'Reilly, P.F., Sipilä, K., Lähdesmäki, R., Millwood, I.Y., Kaakinen, M., Netuveli, G., Blane, D., ve Charoen, P. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS genetics, 6(2). https://doi.org/10.1371/journal.pgen.1000856
  • Riga, A., Belcastro, M.G., ve Moggi-Cecchi, J. (2013). Environmental influence on dental morphology. arXiv preprint arXiv:1301.7334. https://doi.org/10.48550/arXiv.1301.7334
  • Scott, G. R., Schmitz, K., Heim, K. N., Paul, K. S., Schomberg, R., & Pilloud, M. A. (2018a). Sinodonty, Sundadonty, and the Beringian Standstill model: Issues of timing and migrations into the New World. Quaternary International, 466, 233– 246. https://doi.org/10.1016/j.quaint.2016.04.027
  • Scott, G. R., Turner II, C. G., Townsend, G. C., ve Martinón-Torres, M. (2018b). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo sapiens (2nd ed.). Cambridge University Press.
  • Tan, J., Peng, Q., Li, J., Guan, Y., Zhang, L., Jiao, Y., Yang, Y., Wang, S., ve Jin, L. (2014). Characteristics of dental morphology in the Xinjiang Uyghurs and correlation with the EDARV370A variant. Science China Life Sciences, 57(5), s.510-518. https://doi.org/10.1007/s11427-014-4654-x
  • Thesleff, I. (2006). The genetic basis of tooth development and dental defects. American Journal of Medical Genetics, 140(23), 2530–2535. https://doi.org/10.1002/ajmg.a.31360
  • Thesleff, I. (2014). Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Australian Dental Journal, 59:(1 Suppl): 48–54. https://doi.org/10.1111/adj.12102
  • Townsend, G. C., Richards, L., Hughes, T., Pinkerton, S., ve Schwerdt, W. (2005). Epigenetic influences may explain dental differences in monozygotic twin pairs. Australian Dental Journal, 50(2), s.95-100. https://doi.org/10.1111/j.1834-7819.2005.tb00347.x
  • Townsend, G., Hughes, T., Luciano, M., Bockmann, M., ve Brook, A. (2009). Genetic and environmental influences on human dental variation: a critical evaluation of studies involving twins. Archives of Oral Biology, 54, s.S45-S51. https://doi.org/10.1016/j.archoralbio.2008.06.009
  • Townsend, G. C., Pinkerton, S. K., Rogers, J. R., Bockmann, M. R., ve Hughes, T. E. (2015). Twin studies: research in genes, teeth and faces. University of Adelaide Press.
  • Townsend, G., Bockmann, M., Hughes, T., ve Brook, A. (2012). Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology, 100(1), s.1-9. https://doi.org/10.1007/s10266-011-0052-z
  • Tucker, A. ve Sharpe, P. (2004). The cutting-edge of mammalian development; how the embryo makes teeth. Nature Reviews Genetics, 5(7), 499-508. https://doi.org/10.1038/nrg1380
  • Turner II, C. G., Nichol, C. R., ve Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University dental Anthropology system. Advances in Dental Anthropology, 13-31.
  • Vohr, S.H., ve Green, R.E. (2013). A Mouse Following in the Footsteps of Human Prehistory. Cell, 152(4), s.667-668. https://doi.org/10.1016/j.cell.2013.01.039
  • Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., Audrey, Y. C., Estrada, K., Luan, J., Kutalik, Z., Amin, N., Buchkovich, M. L., Croteau-Chonka, D. C., Day, F. R., Duan, Y., Fall, T., Fehrmann, R., Ferreira, T., Jackson, A. U., ... ve Frayling, T. M. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics, 46(11), 1173-1186. https://doi.org/10.1038/ng.3097
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antropolojik Genetik, Biyolojik Antropoloji
Bölüm Değerlendirme (Derleme) Makaleleri
Yazarlar

Fatma Nur Erbil 0000-0002-6302-8698

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 15 Nisan 2024
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 48

Kaynak Göster

APA Erbil, F. N. (2024). Diş morfolojisini etkileyen genetik, epigenetik ve çevresel faktörler. Antropoloji(48), 36-43. https://doi.org/10.33613/antropolojidergisi.1468265

17919

Antropoloji’de yayımlanan makaleler ve diğer yazıların tümünün yayın hakkı Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır. Yani yayımlanan makale ve diğer muhtelif yazılar, başka yayınlarda ancak uygun referans gösterilerek, lisansa bağlantı sağlanarak, değişiklik yapıldıysa belirtilerek ve ticarî amaç gütmeyerek kullanılabilirler. Kısaca yazar(lar) veya okuyucu(lar) herhangi bir maddî çıkar gözetmeksizin, Antropoloji’deki yayınları basılı ve/veya elektronik olarak çoğaltmakta ve/veya yaymakta özgürdürler. Bu durum yine de lisans sahibi olarak Antropoloji’nin sizi ve çalışmanızı onaylayacağı anlamına gelmek zorunda değildir.
Budapeşte Açık Erişim Girişimi