Research Article
BibTex RIS Cite

Total Irregularity of Indu-Bala Product of Graphs

Year 2019, Volume: 7 Issue: 1, 52 - 55, 15.01.2019
https://doi.org/10.21541/apjes.376397

Abstract

The total irregularity of a
simple undirected graph  is defined as , where  denotes the degree of
a vertex . The Indu-Bala product of  and  is denoted by  and is obtained from
two disjoint copies of the join  of  and  by joining the
corresponding vertices in the two copies of . In this paper, the total irregularity of  is obtained in terms
of the total irregularities of  and .

References

  • B. Zhou, On irregularity of graphs, Ars Combin. 88 (2008) 55-64.
  • D. Dimitrov, R. Škrekovski, Comparing the irregularity and the total irregularity of graphs, Ars Math. Contemp. 9 (2015) 45–50.
  • G. Indulal, R. Balakrishnan, Distance spectrum of Indu-Bala product of graphs, AKCE International Journal of Graphs and Combinatorics 13 (2016) 230-234.
  • H. Abdo, D. Dimitrov, The irregularity of graphs under graph operations, Discuss. Math. Graph Theo. 34(2) (2014) 263–278.
  • H. Abdo, D. Dimitrov, The total irregularity of graphs under graph operations, Miskolc Math. Notes 15 (2014) 3–17.
  • H. Abdo, D. Dimitrov. The Total Irregularity of Some Composite Graphs, International Journal of Computer Applications 122(21) (2015) 1-9.
  • H. Abdo, N. Cohen, D. Dimitrov, Graphs with maximal irregularity, Filomat 28(7) (2014) 1315-1322.
  • H. Abdo, S. Brandt, and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16(1) (2014) 201-206.
  • M.A. Henning, D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math. 307 (2007) 1467-1472.
  • M.O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219–225.
  • M. Tavakoli, F. Rahbarnia, A.R. Ashrafi, Some new results on irregularity of graphs, J. Appl. Math. Inform. 32 (2014) 675-685.
  • W. Luo, B. Zhou, On the irregularity of trees and unicyclic graphs with given matching number, Util. Math. 83 (2010) 141-147.
  • L.H. You, J.S. Yang and Z.F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.
  • L.H. You, J.S. Yang, Y.X. Zhu and Z.F. You, The maximal total irregularity of bicyclic graphs, Journal of Applied Mathematics 2014, Article ID 785084, http://dx.doi.org/10.1155/2014/785084.

Indu-Bala çarpım çizgelerinin toplam düzensizliği

Year 2019, Volume: 7 Issue: 1, 52 - 55, 15.01.2019
https://doi.org/10.21541/apjes.376397

Abstract

Basit yönsüz bir  G çizgesinin toplam düzensizliği  olarak tanımlanır, burada dG(v)  tepesinin derecesini gösterir. G1 ve G2 çizgelerinin Indu-Bala çarpımı  ile gösterilir ve G1 ve G2 çizgelerinin iki ayrık toplam çizgesi  'de G2 çizgesinin karşılık gelen tepelerinin birleştirilmesiyle elde edilir. Bu makalede,  çizgesinin toplam düzensizliği G1 ve G2 çizgelerinin toplam düzensizlikleri cinsinden elde edilmiştir.

References

  • B. Zhou, On irregularity of graphs, Ars Combin. 88 (2008) 55-64.
  • D. Dimitrov, R. Škrekovski, Comparing the irregularity and the total irregularity of graphs, Ars Math. Contemp. 9 (2015) 45–50.
  • G. Indulal, R. Balakrishnan, Distance spectrum of Indu-Bala product of graphs, AKCE International Journal of Graphs and Combinatorics 13 (2016) 230-234.
  • H. Abdo, D. Dimitrov, The irregularity of graphs under graph operations, Discuss. Math. Graph Theo. 34(2) (2014) 263–278.
  • H. Abdo, D. Dimitrov, The total irregularity of graphs under graph operations, Miskolc Math. Notes 15 (2014) 3–17.
  • H. Abdo, D. Dimitrov. The Total Irregularity of Some Composite Graphs, International Journal of Computer Applications 122(21) (2015) 1-9.
  • H. Abdo, N. Cohen, D. Dimitrov, Graphs with maximal irregularity, Filomat 28(7) (2014) 1315-1322.
  • H. Abdo, S. Brandt, and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16(1) (2014) 201-206.
  • M.A. Henning, D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math. 307 (2007) 1467-1472.
  • M.O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219–225.
  • M. Tavakoli, F. Rahbarnia, A.R. Ashrafi, Some new results on irregularity of graphs, J. Appl. Math. Inform. 32 (2014) 675-685.
  • W. Luo, B. Zhou, On the irregularity of trees and unicyclic graphs with given matching number, Util. Math. 83 (2010) 141-147.
  • L.H. You, J.S. Yang and Z.F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.
  • L.H. You, J.S. Yang, Y.X. Zhu and Z.F. You, The maximal total irregularity of bicyclic graphs, Journal of Applied Mathematics 2014, Article ID 785084, http://dx.doi.org/10.1155/2014/785084.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zeynep Berberler

Publication Date January 15, 2019
Submission Date July 4, 2017
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

IEEE Z. Berberler, “Total Irregularity of Indu-Bala Product of Graphs”, APJES, vol. 7, no. 1, pp. 52–55, 2019, doi: 10.21541/apjes.376397.