Yıl 2019, Cilt 7 , Sayı 2, Sayfalar 312 - 315 2019-05-25

Elastoplastik-Mikro Yapı Modellerinde Ortaya Çıkan Doğrusal Olmayan Evolüsyon Denklemi İçin Varlık Sonuçları
Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models

Hatice Taşkesen [1]


Bu çalışmada, sınırlı bir alanda elastoplastik-mikroyapı modellerinde ortaya çıkan doğrusal olmayan bir evrim denklemi için global varlık sonuçları potential well metodu kullanılarak oluşturulmuştur. Potential well yöntemi için bir fonksiyonel tanımlanmış ve

We establish global existence results for a nonlinear evolution equation which arises in elastoplastic-microstructure models on a bounded domain, employing potential well method. A functional is defined for the potential well method, and global existence is proved by use of sign invariance of this functional in the case of high initial energy.

  • [1] L. J. An, A. Peirce, A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math. 55, 136-155, (1995).
  • [2] G. Chen, Z. Yang, Existence and nonexistence of global solutions for a class of nonlinear wave equations, Math. Meth. Appl. Sci. 23, 615-631, (2000).
  • [3] H. Zhang, G. Chen, Potential well method for a class of nonlinear wave equations of fourth order, Acta Math. Sci. Series A 23(6), 758-768, (2003). (In Chinese).
  • [4] J.A. Esquivel-Avila, Dynamics around the ground state of a nonlinear evolution equation, Nonlinear Anal. 63 (5-7), 331-343, (2005).
  • [5] L. Yacheng, X. Runzhang, A class of fourth-order wave equations with dissipative and nonlinear strain terms, J. Differential Equations 244, 200-228, (2008).
  • [6] Z. Yang, Global existence, asymptotic behavior and blow up of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations 187, 520-540, (2003).
  • [7] Kutev, N., Kolkovska, N., Dimova, M., Christov, C.I., Theoretical and numerical aspects for global existence and blow up for the solutions to Boussinesq paradigm equation, AIP Conf. Proc. 1404, 68—76, (2011).
  • [8] N. Kutev, N. Kolkovska, M. Dimova, Global existence of Cauchy problem for Boussinesq paradigm equation, Comput. Math. Appl., 65, 500-511, (2013).
  • [9] Taskesen, H., Polat, N., Ertaş, A. On Global Solutions for the Cauchy Problem of a Boussinesq-Type Equation. Abst. Appl. Anal. 10 pages, Doi:10.1155/2012/535031, (2012).
  • [10] H. Taskesen, N. Polat Existence of global solutions for a multidimensional Boussinesq-type equation with supercritical initial energy, First International Conference on Analysis and Applied Mathematics:ICAAM, AIP Conf. Proc. 1470, pp:159-162, (2012).
  • [11] N. Polat, H. Taskesen On the existence of global solutions for a nonlinear Klein-Gordon equation, Filomat, 28(5), 1073-1079, (2014).
  • [12] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals of Mathematics, 118, 349—374, (1983).
  • [13] N. Polat, D. Kaya, H.·I. Tutalar, in: Dynamical Systems and Applications, GBS Publishers and Distributers, India 572, (2005).
  • [14] Levine, H.A. Instability and nonexistence of global solutions to nonlinear wave equations of the form , Transactions of the American Mathematical Society, 192, 1-21, (1974).
Birincil Dil en
Konular Mühendislik
Yayımlanma Tarihi Mayıs 2019
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-1058-0507
Yazar: Hatice Taşkesen (Sorumlu Yazar)
Kurum: VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ, FEN FAKÜLTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 25 Mayıs 2019

Bibtex @araştırma makalesi { apjes477603, journal = {Akademik Platform Mühendislik ve Fen Bilimleri Dergisi}, issn = {}, eissn = {2147-4575}, address = {}, publisher = {Akademik Platform}, year = {2019}, volume = {7}, pages = {312 - 315}, doi = {10.21541/apjes.477603}, title = {Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models}, key = {cite}, author = {Taşkesen, Hatice} }
APA Taşkesen, H . (2019). Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi , 7 (2) , 312-315 . DOI: 10.21541/apjes.477603
MLA Taşkesen, H . "Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 7 (2019 ): 312-315 <https://dergipark.org.tr/tr/pub/apjes/issue/40960/477603>
Chicago Taşkesen, H . "Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 7 (2019 ): 312-315
RIS TY - JOUR T1 - Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models AU - Hatice Taşkesen Y1 - 2019 PY - 2019 N1 - doi: 10.21541/apjes.477603 DO - 10.21541/apjes.477603 T2 - Akademik Platform Mühendislik ve Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 312 EP - 315 VL - 7 IS - 2 SN - -2147-4575 M3 - doi: 10.21541/apjes.477603 UR - https://doi.org/10.21541/apjes.477603 Y2 - 2019 ER -
EndNote %0 Akademik Platform Mühendislik ve Fen Bilimleri Dergisi Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models %A Hatice Taşkesen %T Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models %D 2019 %J Akademik Platform Mühendislik ve Fen Bilimleri Dergisi %P -2147-4575 %V 7 %N 2 %R doi: 10.21541/apjes.477603 %U 10.21541/apjes.477603
ISNAD Taşkesen, Hatice . "Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 7 / 2 (Mayıs 2019): 312-315 . https://doi.org/10.21541/apjes.477603
AMA Taşkesen H . Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models. APJES. 2019; 7(2): 312-315.
Vancouver Taşkesen H . Existence Results for a Nonlinear Evolution Equation Arising in ElastoplasticMicrostructure Models. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi. 2019; 7(2): 315-312.