Yıl 2020, Cilt 8 , Sayı 1, Sayfalar 155 - 174 2020-01-28

Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri
Physiological and Biochemical Components of Salt Tolerance in Plants

Ali DOĞRU [1] , Serkan CANAVAR [2]


Tuz stresi dünyada tarımsal verimliliği kısıtlayan en önemli abiyotik stres faktörlerinden biridir. Toprak tuzluluğu bitkilerde fotosentetik pigment miktarını ve fotosentetik aktiviteyi, sonuçta da büyüme hızını azaltabilmektedir. Ancak bazı bitki türleri tuza toleranslıdır ve yüksek tuz konsantrasyonlarında yaşam döngülerini tamamlayabilir. Tuza toleranslı bitkiler çözünür karbohidratlar, çözünür proteinler, bazı amino asitler, kuaterner amonyum bileşikleri ve polioller gibi bazı organik bileşikleri dokularında biriktirebilir. Bu organik bileşikler tuza toleranslı bitkilerde su kaybını minimum seviyeye indirmekten, hücresel ozmoregülasyonun sağlanmasından ve aktif oksijen türlerinin detoksifikasyonundan sorumludur. Tuz stresi aynı zamanda bitkilerde aktif oksijen türlerinin oluşum hızını artırarak oksidatif strese neden olabilir. Bu durumda tuza toleranslı bitkilerin etkili bir antioksidant sisteme sahip olması gerekir. Bu derlemede, tuz stresi altındaki bitkilerde meydana gelen bazı fizyolojik ve biyokimyasal değişimlerle tuz toleransı arasındaki ilişki tartışılmıştır.   

Salt stress is one of the abiotic stress factors that restricting agricultural productivity throughout the world. Soil salinity may lead to a decrease in the amount of photosynthetic pigments and photosynthetic activity, and eventually to slow down the growth rate in plants. However, some plant species are salt-tolerant and have the ability to complete their life cycle under high salt concentrations. Salt-tolerant plants may accumulate certain organic substances in their tissues, such as soluble carbohydrates, soluble proteins, some aminoacids, quaternary ammonium compounds and polyols. These organic substances are responsible for minimizing water loss, providing cellular osmoregulation and detoxification of active oxygen species (AOS) in salt-tolerant plants. Salt stress could also result in oxidative stress by accelerating AOS formation in plants. Therefore, salt-tolerant plants must have an effective antioxidant activity. In this review, the relationship between salt tolerance and some physiological and biochemical changes in plants under salt stress is discussed.

  • [1] S. Allakhverdiev, A. Sakamoto, Y. Nishimaya, M. Inaba and N. Murata, “Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.”, Plant Physiol., 123, 1047–1056, 2000.
  • [2] J. C. Russel, L. Kadry and A. B. Hanna, “Sodic soils in Iraq”, Agrokomiya ES Talajtan, 14, 91-97, 1965.
  • [3] K. N. Singh and C. Chatrath, Salinity tolerance, CIMMYT, Mexico, 2001.
  • [4] D. Rhoades and P. J. Rich, “Preliminary genetic studies of the phenotype of betaine deficiency in Zea mays L.”, Plant Physiol., 88, 102-108, 1988.
  • [5] E. Yılmaz, A. L. Tuna ve B. Bürün, “Bitkilerin Tuz Stresi Etkilerine Karşı Geliştirdikleri Tolerans Stratejileri”, CBÜFBD, 7, 47-66, 2011.
  • [6] A. K. Parida, A. B. Das and P. Mohanty, “Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes”, Plant Growth Reg., 42, 213-226, 2004.
  • [7] M. Hasanuzzaman, M. Fujita, M. N. Islam, K. U. Ahamed and K. Nahar, “Performance of four irrigated rice varieties under different levels of salinity stress”, IJIB, 6, 85-90, 2009.
  • [8] A. Doğru, “Farklı mısır genotiplerinde tuz stresinin antioksidant sistem üzerindeki etkileri”, 22. Ulusal Biyoloji Kongresi 2014, Osmangazi Üniversitesi, Eskişehir, 430, (2014).
  • [9] S. Zaimoğlu ve A. Doğru, “Farklı mısır genotiplerinde tuz stresinin bazı büyüme parametreleri ve fotosentetik aktivite üzerindeki etkileri”, 23. Ulusal Biyoloji Kongresi 2016, Gaziantep Üniversitesi, Gaziantep, 270, (2016).
  • [10] P. Ahmad and S. Sharma, “Physio-biochemical attributes in two cultivars of mulberry (M. alba) under NaHCO3 stress”, Int. J. Plant Produc., 4, 79-86, 2010.
  • [11] E. P. Murakeozy, Z. Nagy, C. Duhaze, A. Bouchereau and Z. Tuba, “Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary”, J. Plant Physiol., 160, 395-401, 2003.
  • [12] M. A. Wimmer, K. H. Muhling, A. Läuchli, P. H. Brown and H. E. Goldbach, “The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves”, Plant Cell Environ., 26, 1267-1274, 2003.
  • [13] M. M. F. Mansour, “Nitrogen containing compounds and adaptation of plants to salinity stress”, Biol. Plant., 43, 491–500, 2000.
  • [14] W. J. Yang, P. J. Rich, J. D. Axtell, K. V. Wood, C. C. Bonham, G. Ejeta, M. V. Mickelbart and D. Rhodes, “Genotypic variation for glycinebetaine in sorghum”, Crop Sci., 43,162-169, 2003.
  • [15] T. Abebe, A. C. Guenzi, B. Martin and J. C. Cushman, “Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity”, Plant Physiol., 131, 1748-1755, 2003.
  • [16] L. Kerkeb, J. P. Donaireand M. P. Rodriguez-Rosales, “Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl”, Physiol. Plant., 111, 483–490, 2001.
  • [17] I. Aziz and M. A. Khan, “Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan”, Aquat. Bot., 70, 259–268, 2001.
  • [17] J. M. Ribaut and P. E. Pilet, “Water stress and indole-3-acetic acid content of maize roots”, Planta 193, 502-507, 1994.
  • [18] T. Hisamatsu, M. Koshioka., S. Kubota, Y. Fujime, R. W. King and L. N. Mander, “The role of gibberellin in the control of growth and flowering in Matthiola incana”, Physiol. Plant., 109, 97-105, 2000.
  • [19] P. D. Hare, W. A. Cress and J. van Staden, “The involvement of cytokinins in plant responses to environmental stress”, Plant Growth Reg., 23, 79-103, 1997.
  • [20] N. Chakrabarti and S. Mukherji, “Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata”, Biol. Plant., 46, 589-594, 2003.
  • [21] G. R. Cramer and S. A. Quarrie, “Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity”, Funct. Plant Biol., 29, 111-115, 2002. [22] H. Pedranzani, G. Racagni, S. Alemano, O. Miersch, I. Ramirez, H. Pena-Cortes, E. Taleisnik, E. Machado-Domenech and G. Abdala, “Salt tolerant tomato plants show increased levels of jasmonic acid”, Plant Growth Reg., 41, 149-158, 2003.
  • [23] N. Garg and G. Manchanda, “ROS generation in plants: Boon or Bane”, Plant Biosystems, 143, 8-96, 2009.
  • [24] V. Chinnusamy, A. Jagendorf and J. K. Zhu, “Understanding and improving salt tolerance in plants”, Crop Sci., 45, 437-448, 2005.
  • [25] A. Kadıoğlu, Bitki Fizyolojisi, Trabzon: Efsen Ofset Matbaacılık, 2011.
  • [26] K. K. Tanji, Salinity in the soil environment, Dordrecht: Kluwer Academic Publishers, 2002. [27] H. Marschner, Mineral Nutrition of Higher Plants, London: Academic Press,1995.
  • [28] M. Tester and R. Davenport, “Na+ tolerance and Na+ transport in higher plants”, Ann. Bot., 91, 503–507, 2003.
  • [29] R. Munns, D. Schachtman and A. Condon, “The significance of a two-phase growth response to salinity in wheat and barley”, Func. Plant Biol., 22, 561-569, 1995.
  • [30] P. M. Hasegawa, R. A. Bressan, J. K. Zhu and H. J. Bohnert, “Plant cellular and molecular responses to high salinity”, Ann. Rev. Plant Physiol. Plant Mol. Biol., 51, 463-499, 2000.
  • [30] R. Munns and M. Tester, “Mechanisms of salinity tolerance”, Ann. Rev. Plant Physiol. Plant Mol. Biol., 59, 651-681, 2008.
  • [31] A. Läuchli and S. R. Grattan, Plant Growth and Development Under Salinity Stress, Netherlands: Springer, 2007.
  • [32] R. Munns, “Comparative physiology of salt and water stress”, Plant Cell Environ., 25, 239-250, 2002.
  • [33] R. Davenport, R. James, A. Zakrisson-Plogander, M. Tester and R. Munns, Control of sodium transport in durum wheat”, Plant Physiol., 137, 807-818, 2005.
  • [34] C. Foyer and G. Noctor, “Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria”, Physiol. Plantarum, 119, 355-364, 2003.
  • [35] J. C. Papp, M. C. Ball and N. Terry, “A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (sugar beet)”, Plant, Cell Environ., 6, 675-677, 1983.
  • [36] Y. Wang, N. Nil, “Changes in chlorophyll, ribulose biphosphate carboxylase–oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress”, J. Hortic. Sci. Biotechnol., 75, 623-627, 2000.
  • [37] K. Chartzoulakis and G. Klapaki, “Response of two green house pepper hybrids to NaCl salinity during different growth stages”, Sci. Hortic., 86, 247-260, 2000.
  • [38] L. F. M. Marcelis and J. van Hooijdonk, “Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)”, Plant and Soil, 215, 57-64, 1999.
  • [39] H. Kurban, H. Saneoka, K. Nehira, R. Adilla, G. S. Premachandra and K. Fujita, “Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.)”, Soil Sci. Plant Nutr., 45, 851-862, 1999.
  • [40] M. Mohammad, R. Shibli, M. Ajouni and L. Nimri, “Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition”, J. Plant Nutr., 21, 1667-1680, 1998.
  • [41] D. A. Meloni, M. A. Oliva, H. A. Ruiz and C. A. Martinez, “Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress”, J. Plant Nutr., 24, 599-612, 2001.
  • [42] S. Khatun and T. J. Flowers, “Effects of salinity on seed set in rice”, Plant Cell Environ., 18, 61-67, 1995.
  • [43] S. Mittal, N. Kumari and V. Sharma, “Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes”, Plant Physiol. Biochem., 54, 17-26, 2012.
  • [44] S. Mitsuya, Y. Takeoka and H. Miyake, “Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro”, J. Plant Physiol., 157, 661-667, 2000.
  • [45] S. Bruns and C. Hecht-Buchholz, “Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages”, Potato Res., 33, 33-41, 1990.
  • [46] R. A. Khavarinejad and Y. Mostofi, “Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars”, Photosynthetica, 35, 151-154, 1998.
  • [47] P. Agastian, S. J. Kingsley and M. Vivekanandan, “Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes”, Photosynthetica, 38, 287-290, 2000.
  • [48] B. F. Kennedy and L. F. De Fillippis, “Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria”, J. Plant Physiol., 155, 746-754, 1999.
  • [49] A. N. M. Alamgir and M. Y. Ali, “Effect of salinity on leaf pigments, sugar and protein concentration and chloroplast ATPaz activity of rice (Oryza sativa L.)”, Bangladesh J. Bot., 28, 145-149, 1999.
  • [50] S. Chutipaijit, S. Cha-um, and K. Sompornpailin, “High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. Indica”, Aust. J. Crop Sci., 5, 1191-1198, 2011.
  • [51] K. Maxwell and G. N. Johnson, “Chlorophyll fluorescence-A practical guide”, J. Exp. Bot., 51, 659-668, 2000.
  • [52] R. Munns and A. Termatt, “Whole plant responses to salinity”, Aust. J. Plant Physiol., 13, 143-160, 1986.
  • [53] J. Zhu and F. C. Meinzer, “Efficiency of C-4 photosynthesis in Atriplex lentiformis under salinity stress”, Aust. J. Plant Physiol., 26, 79-86, 1999.
  • [54] M. P. Reddy, S. Sanish and E. R. R. Iyengar, “Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions”, Photosynthetica 26, 173-179, 1992.
  • [55] J. A. Hernandez, A. Campillo, A. Jimenez, J. J. Alacon and F. Sevilla, “Response of antioxidant systems and leaf water relations to NaCl stress in pea plants”, New Phytol., 141, 241-251, 1999.
  • [56] R. Romeroaranda, T. Soria and J. Cuartero, “Tomato plant-water uptake and plant-water relationships under saline growth conditions”, Plant Sci., 160, 265-272, 2001.
  • [57] P. Ahmad, K. R. Hakeem, A. Kumar, M. Ashraf and N. A. Akram, “Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.)”, Afr. J. Biotechnol., 11, 2694-2703, 2012.
  • [58] M. Ashraf, “Some important physiological selection criteria for salt tolerance in plants”, Flora, 199, 361-375, 2004.
  • [59] T. Matsumura, M. Kanechi, N. Inagaki and S. Maekawa, “The effects of salt stress on ion uptake, accumulation of compatible solutes, and leaf osmotic potential in safflower, Chrysanthemum paludosum and sea aster”, J. Jpn. Soc. Hortic. Sci., 67, 426-431, 1998.
  • [60] K. Chaudhuri and M. A. Choudhuri, “Effect of short-term NaCl stress on water relations and gas exchange of two jute species”, Biol. Plant., 40, 373-380, 1997.
  • [61] S. Gulzar, M. A. Khan and I. A. Ungar, “Salt tolerance of a coastal salt marsh grass”, Commun. Soil Sci. Plant Anal., 34, 2595-2605, 2003.
  • [62] C. M. Lu, N. W. Qiu, Q. T. Lu, B. S., Wang and T. Y. Kuang, “Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors”, Plant Sci., 163, 1063-1068, 2002.
  • [63] W. J. Cram, Negative feedback regulation of transport in cells, Berlin: Springer-Verlag, 1976.
  • [64] M. Ashraf and M. Tufail, “Variation in salinity tolerance in sunflower (Helianthus annuus L.)”, J. Agron. Soil Sci., 174, 351-362, 1995.
  • [65] M. Ashraf and H. Fatima, “Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.)”, Acta Physiol. Plant., 61-71, 1995.
  • [66] C. G. Hounsa, E. V. Brandt, J. Thevelein, S. Hohmann and B. A. Prior, “Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress”, Microbiology, 144, 671-680, 1998.
  • [67] O. J. M. Goddijn and K. van Dun, “Trehalose metabolism in plants”, TIBS, 4, 315-319, 1999.
  • [68] M. A. Singer and S. Lindquist, “Multiple effects of trehalose on protein folding in vitro and in vivo”, Molec. Cell., 1, 639-648, 1998.
  • [69] T. Yamada, Y. Takatsu, T. Manabe, M. Kasumi and W. Marubashi, “Suppressive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus”, Plant Sci., 164, 213-221, 2003.
  • [70] F. Fougere, D. Le Rudulier and J. G. Streeter, “Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.)”, Plant Physiol., 96, 1228-1236, 1991.
  • [71] A. K. Garg, J. K. Kim, T. G. Owens, A. P. Ranwala, Y. Do Choi, L. V. Kochian and R. J. Wu, “Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses”, PNAS, 99, 15898-15903, 2002.
  • [72] I. C. Jang, S. C. Oh, J. S. Seo, W. B. Choi, S. I. Song, C. H. Kim, Y. S. Kim, H. S. Seo, Y. Do Choi, B. H. Nahm and J. K. Kim, “Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth”, Plant Physiol., 131, 516-524, 2003.
  • [73] G. Ali, P. S. Srivastava and M. Iqbal, “Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress”, Biol. Plant., 42, 89-95, 1999.
  • [74] N. K. Singh, C. A. Bracken, P. M. Hasegawa, A. K. Handa, S. Buckel, M. A. Hermodson, F. Pfankoch, F. E. Regnier and R. A. Bressan, “Characterization of osmotin. A thaumatin-like protein associated with osmotic adjustment in plant cells”, Plant Physiol., 85, 529-536, 1987.
  • [75] A. Pareek, S. L. Singla, and A. Grover, Salt responsive proteins/genes in crop plants, New Delhi: Oxford and IBH Publication, 1997.
  • [76] J. C. Thomas and H. J. Bohnert, “Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum”, Plant Physiol., 103, 1299-1304, 1993.
  • [77] W. J. Hurkman, H. P. Rao and C. K. Tanaka, “Germin-like polypeptides increase in barley roots during salt stress”, Plant Physiol., 97, 366-374, 1991.
  • [78] Z. Q. Cheng, J. Targolli, X. Q. Huang and R. Wu, “Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.)”, Mol. Breed., 10, 71-82, 2002.
  • [79] A. Yamada, T. Saitoh, T. Mimura and Y. Ozeki, “Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells”, Plant Cell Physiol., 43, 903-910, 2002.
  • [80] W. J. Hurkman, C. S. Fornari and C. K. Tanaka, “A comparison of the effect of salt on polypeptide and translatable mRNA in roots of a salt tolerant and salt sensitive cultivar of barley”, Plant Physiol., 90, 1444-1456, 1989.
  • [81] S. Uma, T. G. Prasad and M. U. Kumar, “Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet”, Ann. Bot., 76, 43-49, 1995.
  • [82] M. Ashraf and J. W. O’Leary, “Changes in soluble proteins in spring wheat stressed with sodium chloride”, Biol. Plant., 42, 113-117, 1999.
  • [83] F. Sarhan and M. Perras, “Accumulation of a high molecular weight protein during cold hardening of wheat (Triticum aestivum L.)”, Plant Cell Physiol., 28, 1173-1179, 1987.
  • [84] M. Ashraf and A. Waheed, “Responses of some local/exotic accessions of lentil (Lens culinaris Medic.) to salt stress”, J. Agron. Soil Sci., 170, 103-112, 1993.
  • [85] M. Ashraf, “Organic substances responsible for salt tolerance in Eruca sativa”, Biol. Plant., 36, 255-259, 1994.
  • [86] B. Rabe, “Stress physiology: the functional significance of the accumulation of nitrogen containing compounds”, J. Hort. Sci., 65, 231-243, 1990.
  • [87] R. S. Dubey, Photosynthesis in plants under stressful conditions, New York: Marcel Dekker, 1997.
  • [88] E. Abraham, G. Rigo, G. Szekely, R. Nagy, C. Koncz and L. Szabados, “Light- dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis”, Plant Mol. Biol., 51, 363-372, 2003.
  • [89] R. Storey, N. Ahmad and R. G. Wyn Jones, “Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants”, Oecologia 27, 319-322, 1977.
  • [90] T. Yamaya and H. Matsumoto, “Accumulation of asparagines in NaCl-stressed barley seedlings”, Ber. Ohara Ins. Land. Biol., 19, 181-188, 1989.
  • [91] M. A. A. Gadallah, “Effects of proline and glycinebetaine on Vicia faba responses to salt stress”, Biol. Plant., 42, 249-257, 1999.
  • [92] A. Maggio, S. Miyazaki, P. Veronese, T. Fujita, J. I. Ibeas, B. Damsz, M. L. Narasimhan, P. M. Hasegawa, R. J. Joly and R. A. Bressan, “Does proline accumulation play an active role in stress induced growth reduction?”, Plant J., 31, 699-712, 2002.
  • [92] S. J. M. Lutts, J. M. Kinet and J. Bouharmont, “Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity tolerance”, Plant Growth Regul., 19, 207-218, 1996.
  • [93] T. D. Colmer, E. Epstein and J. Dvorak, “Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host.) A. Love amphiploid”, Plant Physiol., 108,1715-1724, 1995.
  • [94] M. I. Lone, J. S. H. Kueh, R. G. Wyn Jones and S. W. J. Bright, “Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos”, J. Exp. Bot., 38, 479-490, 1987.
  • [95] A. B. Garcia, J. Almeida-Engler, S. Lyer, T. Gerats, M. Van Montagu and A. B. Caplan, “Effects of osmoprotectants upon NaCl stress in rice”, Plant Physiol., 115, 159-169, 1997.
  • [96] I. Ahmad, S. J. Wainwright and G. R. Stewart, “The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance”, New Phytol., 87, 615-629, 1981.
  • [97] S. Jain, H. S. Nainawatee, R. K. Jain and J. B. Chowdhury, “Proline status of genetically stable salt-tolerant Brassica juncea L. somaclones and their parent cv. Parkash”, Plant Cell Rep., 9, 684-687, 1991.
  • [98] P. B. Kirti, S. Hadi and V. L. Chopra, “Seed transmission of salt tolerance in regenerants of Brassica juncea selected in vitro”, Cruciferae News., 85, 14-15, 1991.
  • [99] S. Madan, H. S. Nainawatee, R. K. Jain and J. B. Chowdhury, “Proline and proline metabolizing enzymes in in vitro selected NaCl-tolerant Brassica juncea L. under salt stress”, Ann. Bot., 76, 51-57, 1995.
  • [100] A. B. Moftah and B. B. Michel, “The effect of sodium chloride on solute potential and proline accumulation in soybean leaves”, Plant Physiol., 83, 283-286, 1987.
  • [101] M. Ashraf, “The effect of NaCl on water relations, chlorophyll, and protein and proline contents of two cultivars of blackgram (Vigna mungo L.)”, Plant Soil 119, 205-210, 1989.
  • [102] C. M. Grieve and E. M. Maas, “Betaine accumulation in salt stressed sorghum”, Physiol. Plant., 61, 167-171, 1984.
  • [103] P. H. Yancey, M. B. Clark, S. C. Hands, R. D. Bowlus and G. N. Somero, “Living with water stress: evaluation of osmolyte systems”, Science 217, 1214-1222, 1982.
  • [104] A. Mohanty, H. Kathuria, A. Ferjani, A. Sakamoto, P. Mohanty, N. Murata and A. K. Tyagi, “Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress”, Theor. Appl. Genet., 106, 51-57, 2002.
  • [105] W. J. Yang, P. J. Rich, J. D. Axtell, K. V. Wood, C. C. Bonham, G. Ejeta, M. V. Mickelbart and D. Rhodes, “Genotypic variation for glycinebetaine in sorghum”, Crop Sci., 43,162-169, 2003.
  • [106] H. Genard, J. Le Saos, J. Hillard, A. Tremolieres and J. Boucaud, “Effect of salinity on lipid composition, glycinebetaine content and photosynthetic activity in chloroplasts of Suaeda maritima”, Plant Physiol. Biochem.” 29, 421-427, 1991.
  • [107] N. Murata, P. S. Mohanty, H. Hayashi and G. C. Papageorgiou, “Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex”, FEBS Lett., 296, 187-189, 1992.
  • [108] A. D. Hanson and R. Grumet, Betaine accumulation: metabolic pathways and genetics, New York: Springer, 1985.
  • [109] H. Saneoka, C. Nagasaka, D. T. Hahn, W. J. Yang, G. S. Premachandra, R. J. Joly and D. Rhodes, “Salt tolerance of glycinebateine-deficient and -containing maize lines”, Plant Physiol., 107, 631-638, 1995.
  • [110] R. F. McCue and A. D. Hanson, “Drought and salt tolerance: towards understanding and application”, TIBTECH 8, 358-362, 1990.
  • [111] K. A. Varshney, L. P. Gangwar and N. Goel, “Choline and betaine accumulation in Trifolium alexandrinum L. during salt stress”, Egyptian J. Bot., 31, 81-86, 1988.
  • [112] H. J. Bohnert, B. Shen, “Transformation and compatible solutes”, Scient. Hort., 78, 237-260, 1999.
  • [113] A. J. Clark, K. J. Blissett and R. P. Oliver, “Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta”, Planta, 216, 614-619, 2003.
  • [114] D. E. Nelson, M. Koukoumanos and H. J. Bohnert, “Myo-inositol-dependent sodium uptake in ice plant”, Plant Physiol., 119, 165-172, 1999.
  • [115] B. Halliwell, M. Grootveld and J. M. C. Gutteridge, “Methods for the measurement of hydroxyl radicals in biochemical systems: deoxyribose degradation and aromatic hydroxylation”, Methods Biochem. Anal., 33, 59-90, 1988.
  • [116] J. F. Moran, M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R. V. Klucas and P. Aparicio-Tejo, “Drought induces oxidative stress in pea plants”, Planta, 194, 346-352, 1994.
  • [117] N. Smirnoff and Q. J. Cumbes, “Hydroxyl radical scavenging activity of compatible solutes”, Phytochem., 28, 1057-1060, 1989.
  • [118] M. C. Tarczynski, R. G. Jensen and H. J. Bohnert, “Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol”, PNAS, 89, 2600-2604, 1992.
  • [119] B. Quemener and J. M. Brillouet, “Ciceritol, a pinitol digalactoside from seeds of chickpea, lentil and white lupin”, Phytochem., 22, 1745-1751, 1983.
  • [120] J. Gorham, L. L. Hughes and R. G. Wyn Jones, “Low-molecular-weight carbohydrates in some salt-stressed plants”, Physiol. Plant., 53 27-33, 1981.
  • [121] J. Gorham, E. McDonnel and R. G. Wyn Jones, “Pinitol and other solutes in salt-stressed Sesbania aculeata”, Z. Pflanzenphysiol., 114, 173-178, 1984.
  • [122] D. E. Nelson, G. Rammesmayer and H. J. Bohnert, “Regulation of cell specific inositol metabolism and transport in plant salinity tolerance”, Plant Cell, 10, 753-764, 1998.
  • [123] E. Sheveleva, W. Chmara, H. J. Bohnert and R. G. Jensen, “Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L.”, Plant Physiol., 115, 1211-1219, 1997.
  • [124] S. C. Singh, R. P. Sinha and D. P. Hader, “Role of lipids and fatty acids in stress tolerance in cyanobacteria”, Acta Protozool., 41, 297-308, 2002.
  • [125] A. M. Hassanein, “Alterations in protein and esterase patterns of peanut in response to salinity stress”, Biol. Plant., 42, 241-248, 1999.
  • [126] J. L. Wu, D. M. Seliskar and J. L. Gallagher, “Stress tolerance in the marsh plane Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition”, Physiol. Plant., 102, 307-317, 1998.
  • [127] R. G. Ferreira, F. J. A. F. Tavora and F. F. F. Hernandez, “Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions”, Pesqui. Agropecu. Bras., 36, 79-88, 2001.
  • [128] H. Pedranzani, G. Racagni, S. Alemano, O. Miersch, I. Ramirez, H. Pena-Cortes, E. Taleisnik, E. Machado-Domenec and G. Abdala, “Salt tolerant tomato plants show increased levels of jasmonic acid”, Plant Growth Regul., 41, 149-158, 2003.
  • [129] P. W. Morgan, Effects of abiotic stresses on plant hormone systems, New York: Wiley, 1990.
  • [130] Y. Wang, S. Mopper and K. H. Hasentein, “Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona”, J. Chem. Ecol., 27, 327-342, 2001.
  • [131] L. Prakash and G. Prathapasenan, “NaCl and gibberellic acid induced changes in the content of auxin, the activity of cellulose and pectin lyase during leaf growth in rice (Oryza sativa)”, Ann. Bot., 365, 251-257, 1990.
  • [132] M. McConn, R. A. Creelman, F. Bell, J. E. Mullet and J. Browse, “Jasmonate is essential for insect defense in Arabidopsis”, PNAS, 94, 5473-5477, 1997.
  • [133] J. Lehmann, R. Atzorn, C. Bruckner, S. Reinbothe, J. Leopold, C. Wasternack and B. Parthier, “Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments”, Planta, 197, 156-162, 1995.
  • [134] B. Kumar ve B. Singh, “Effect of plant hormones on growth and yield of wheat irrigated with saline water”, Ann. Agric. Res., 17, 209-212, 1996.
  • [135] H. Nayyar, D. P. Walia and B. L. Kaistha, “Performance of bread wheat (Triticum aestivum L.) seed primed with growth regulators and inorganic salts”, Indian J. Agric. Sci., 65, 116-122, 1995.
  • [136] M. A. Choudhuri, “Free radicals and leaf senescence – a review”, Plant Physiol. Biochem., 15, 18-29, 1988.
  • [137] D. S. Letham, Cytokinins, Amsterdam: Elsevier, 1978.
  • [138] J. C. Thomas, E. F. McElwain and H. J. Bohnert, “Convergent induction of osmotic stress-responses: abscisic acid, cytokinin, and the effects of NaCl”, Plant Physiol., 100, 416-423, 1992.
  • [139] S. Bozcuk, “Effect of kinetin and salinity on germination of tomato, barley and cotton seeds”, Ann. Bot., 48, 81-84, 1981.
  • [140] J. Boucaud and I. A. Ungar, “Hormonal control of germination under saline conditions of three halophyte taxa in genus Suaeda”, Physiol. Plant., 36, 197-200, 1976.
  • [141] S. S. M. Naqvi, R. Ansari and A. N. Kuawada, “Responses of salt stressed wheat seedlings to kinetin”, Plant Sci. Lett., 26, 279-283, 1982.
  • [142] Z. Abdullah and R. Ahmad, “Effect of pre- and post-kinetin treatments on salt tolerance of different potato cultivars growing on saline soils”, J. Agron. Crop Sci., 165, 94-102, 1990.
  • [143] M. B. Kirkham, W. R. Gardner and G. C. Gerloff, “Internal water status of kinetin-treated, salt-stressed plants”, Plant Physiol., 53, 241-243, 1974.
  • [144] D. Kuiper, J. Schuit and P. J. C. Kuiper, “Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals”, Plant Soil, 123, 243-250, 1990.
  • [145] T. He and G. R. Cramer, “Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid cycling Brassica species”, Plant Soil, 179, 25-33, 1996.
  • [146] E. Montero, C. Cabot, C. H. Poschenrieder and J. Barcelo, “Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris”, Plant Cell Environ., 21, 54-62, 1998.
  • [147] R. A. Creelman, H. S. Mason, R. J. Bensen, J. S. Boyer and J. E. Mullet, “Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings”, Plant Physiol., 92, 205-214, 1990.
  • [148] W. J., Davies, F. Tardieu and C. L. Trejo, “How do chemical signals work in plants that grow in drying soil”, Plant Physiol., 104, 309-314, 1994.
  • [149] W. D. Jeschke, A. D. Peuke, J. S. Pate and W. Hartung, “Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity”, J. Exp. Bot., 48, 1737-1747,1997.
  • [150] H. Jae-Ung and L. Youngsook, “Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities”, Plant Physiol., 125, 2120-2128, 2001.
  • [151] E. Montero, C. Cabot, J. Barcelo and C. Poschenrieder, “Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl”, Physiol. Plant., 101, 17-22, 1997.
  • [152] G. N. Amzallag, H. R. Lerner and A. Poljakoff-Mayber, “Exogenous ABA as a modulator of response of sorghum to high salinity”, J. Exp. Bot., 41, 1389-1394, 1990.
  • [153] C. Wasternack and B. Hause, Jasmonates and octadecanoids-signals in plant stress response and development, New York: Academic Press, 2002.
  • [154] A. Moons, E. Prisen, G. Bauw and M. V. Montagu, “Antagonistic effects of abscisic acid and jasmonates on salt-inducible transcripts in rice roots”, Plant Cell, 92, 243-259, 1997.
  • [155] T. D. Tsonev, G. N. Lazova, Z. G. Stoinova and L. P. Popova, “A possible role for jasmonic acid in adaptation of barley seedlings to salinity stres”, J. Plant Growth Regul., 17, 153-159, 1998.
  • [156] R. Kramell, R. Atzorn, G. Schneider, O. Miersch, C. Bruckner, J. Schmidt, G. Sembdner and B. Parthier, “Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue”, J. Plant Growth Regul., 14, 29-36, 1995.
  • [157] V. V. Kuznetsov, V. Y. Rakitin, N. G. Sadomov, D. V. Dam, L. A. Stetsenko and N. I. Shevyakova, “Do polyamines participate in long-distance translocation of stress signals in plants?”, Russ. J. Plant Physiol., 49, 120-130, 2002.
  • [158] R. Walden, A. Cordeiro and A. F. Tiburcio, “Polyamines: small molecules triggering pathways in plant growth and development”, Plant Physiol., 113, 1009-1013, 1997.
  • [159] W. G. Hopkins, Introduction to Plant Physiology, New York: Wiley, 1999.
  • [160] R. R. Kakkar and V. R. Rai, Polyamines under salt stress, New Delhi: Oxford and IBH Publishing Co., 1997.
  • [161] I. Ivanova, A. Foudouli, S. Koshuchowa and S. Kozhukhova, “Effects of salt stress on guard cells and their abolition by phytohormones and polyamines”, Fiziol. Rast., 17, 24-27, 1991.
  • [162] S. Das, A. Bose and B. Ghosh, “Effect of salt stress on polyamine metabolism in Brassica campestris”, Phytochem., 39, 283-285, 1995.
  • [163] S. Katiyer and R. S. Dubey, “Salinity-induced accumulation of polyamines in germinating rice seeds differing in salt tolerance”, Trop. Sci., 30, 229-240, 1990.
  • [164] A. Aziz, J. Martin-Tanguy and F. Larher, “Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride”, Physiol. Plant., 104, 195-202, 1998.
  • [165] C. H. Foyer and G. Noctor, “Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses”, Plant Cell, 17, 1866-1875, 2005.
  • [166] S. Bhattachrjee, “Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant”, Curr. Sci., 89, 1113-1121, 2005.
  • [167] N. A. Khan and S. Singh, Abiotic Stress and Plant Responses, New Delhi: IK International, 2008.
  • [168] P. Harinasut, D. Poonsopa, K. Roengmongkol and R. Charoensataporn, “Salinity effects on antioxidant enzymes in mulberry cultivar”, Sci. Asia, 29, 109-113, 2003.
  • [169] S. Kukreja, A. S. Nandval, N. Kumar, S. K. Sharma, V. Unvi and P. K. Sharma, “Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity”, Biol. Plant., 49, 305-308, 2005.
  • [170] M. Gapinska, M. Sklodowska and B. Gabara, “Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots”, Acta Physiol. Plant., 30, 11-18, 2008.
  • [171] Y. Pan, J. J. Wu and Z. L. Yu, “Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch)”, Plant Growth Regul., 49, 157-165, 2006.
  • [172] Q. Yu and Z. Rengel, “Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins”, Plant Sci., 142, 1–11, 1999.
  • [173] P. Ahmad, C. A. Jaleel and S. Sharma, “Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress”, Russ. J. Plant Physiol., 57, 509-517, 2010.
  • [174] Y. Wang, Y. Ying, J. Chen and X. C. Wang, “Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance”, Plant Sci., 167, 671-677, 2004.
  • [175] Y. Wang, M. Wisniewski, R. Meilan, S. L. Uratsu, M. G. Cui, A. Dandekar and L. Fuchigami, “Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress”, J. Appl. Horticul., 9, 3-8, 2007.
  • [176] A. K. Srivastava, P. Bhargava and L. C. Rai, “Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum”, J. Microb. Biotechnol., 22, 1291-1298, 2005.
  • [177] V. Mittova, M. Guy, M. Tal and M. Volokita, “Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids”, Free Radic. Res., 36, 195-202, 2002.
  • [178] Y. Gueta-Dahan, Z. Yaniv, B. A. Zilinskas and G. Ben-Hayyim, “Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus”, Planta, 203, 460-469, 1997.
  • [179] M. C. Romero-Puertas, F. J. Corpas, L. M. Sandalio, M. Leterrier, M. Rodriguez Serrano, L. A. J. del Rio and M. Palma, “Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme”, New Phytol.,170, 43-52, 2006.
  • [180] G. P. Creissen, P. Broadbent, B. Kular, H. Reynolds, A. R. Wellburn and P. M. Mullineaux, “Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress”, Proc. R. Soc. Edinb. 102B, 167-175, 1994.
  • [181] R. Chalapathi, A. S. V. Rao and A. R. Reddy, Glutathione reductase: a putative redox regulatory system in plant cells, The Netherlands: Springer, 2008.
  • [182] F. Eyidoğan and M. T. Öz, “Effect of salinity on antioxidant responses of chickpea seedlings”, Acta Physiol. Plant., 29, 485-493, 2007.
  • [183] L. A. Del Rio, F. J. Corpas, L. M. Sandalio, J. M. Palma, M. Gomez and J. B. Barroso, “Reactive oxygen species, antioxidant system and nitric oxide in peroxisomes”, J. Exp. Bot., 53, 1255-1272, 2002.
  • [184] A. E. Eltayeb, N. Kawano, G. H. Badawi, H. Kaminaka, T. Sanekata, T. Shibahara, S. Inanaga and K. Tanaka, “Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses”, Planta, 225, 1255-1264, 2007.
  • [185] T. Ushimaru, T. Nakagawa, Y. Fujioka, K. Daicho, M. Naito, Y. Yamaguchi, H. Nonaka, K. Amako, K. Yamawaki and N. Murata, “Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress”, J. Plant Physiol., 163, 1179-1184, 2006.
  • [186] S. Sheokand, V. Bhankar and V. Sawhney, “Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants”, Braz. J. Plant Physiol., 22, 81-90, 2010.
  • [187] M. E. Comba, M. P. Benavides and M. L. Tomaro, “Effect of salt stress on atioxidant defence system in soybean root nodules”, Aust. J. Plant Physiol., 25, 665-671, 1998.
  • [188] S. Lechno, E. Zamski and E. Tel-Or, “Salt stress induced responses in cucumber plants”, J. Plant Physiol., 150, 206-211, 1997.
  • [189] C. Sudhakar, A. Lakshmi and S. Giridarakumar, “Changes in the antioxidant enzyme efficiacy in two high yielding genotypes of mulberry (Morus alba) under NaCl salinity”, Plant Sci., 161, 613-619, 2001.
  • [190] S. K. Panda, “Response of green gram seeds under salinity stress”, Indian J. Plant Physiol., 6, 438-440, 2001.
  • [191] Y. Koji, M. Shiro, K. Michio, T. Mitsutaka and M. Hiroshi, “Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf”, Plant Prod. Sci., 12, 319-326, 2009.
  • [192] V. Mittova, M. Guy, M. Tal and M. Volokita, “Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii”, J. Exp. Bot. 55, 1105-1113, 2004.
  • [193] R. G. Alscher, J. L. Donahue and C. L. Cramer, “Reactive oxygen species and antioxidants: relationship in green cells”, Physiol. Plant., 100, 224-233, 1997.
  • [194] K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction”, Annu. Rev. Plant Biol., 55, 373-399, 2004.
  • [195] H. R. Athar, A. Khan and M. Ashraf, “Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat”, Env. Exp. Bot., 63, 224-231, 2008.
  • [196] N. Smirnoff, “Ascorbic acid: metabolism and functions of a multifacetted molecule”, Curr. Opin. Plant Biol., 3, 229-235, 2000.
  • [197] M. Aono, A. Kubo, H. Saji, K. Tanaka and N. Kondo, “Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity”, Plant Cell Physiol., 34, 129-135, 1993.
  • [198] S. Agarwal and R. Shaheen, “Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia ”, Braz. J. Plant Physiol., 19, 149-161, 2007.
  • [199] S. K. Panda and R. K. Upadhyay, “Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor”, Biol. Plant., 48, 249-253, 2004.
  • [200] A. J. Meyer, “The integration of glutathione homeostasis and redox signaling”, Plant Physiol., 165, 1390-1403, 2008.
  • [201] L. O. Briviba and H. Klotz, “Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems”, J. Biol. Chem., 378, 1259-1265, 1997.
  • [202] M. Tausz, H. Ircelj, H and D. Grill, “The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?”, J. Exp. Bot., 55, 1955-1962, 2004.
  • [203] G. Creissen, J. Firmin, M. Fryer, B. Kular, N. Leyland, H. Reynolds, G. Pastori, F. Wellburn, N. Baker, A. Wellburn and P. Mullineaux, “Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress”, The Plant Cell, 11, 1277-1291, 1999.
  • [204] T. M. Hussain, T. Chandrasekhar, M. Hazara, Z. Sultan, B. Z. Saleh and G. R. Gopal, “Recent advances in salt stress biology-a review”, Biotechnol. Mol. Biol. Rev., 3, 8-13, 2008.
  • [205] D. R. Gossett, S. W. Banks, E. P. Millhollon and M. C. Lucas, “Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione”, Plant Physiol., 112, 803-809, 1996.
  • [206] G. Noctor, L. Gomez, H. Vanacker and C. H. Foyer, “Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling”, J. Exp. Bot., 53, 1283-1304, 2002.
  • [207] H. Hollander-Czytko, J. Grabowski, I. Sandorf, K. Weckermann and E. W. Weiler, “Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions”, J. Plant Physiol., 162, 767-770, 2005.
  • [208] A. Kamal-Eldin and L. A. Appelqvist, “The chemistry and antioxidant properties of tocopherols and tocotrienols”, Lipids, 31, 671-701, 1996.
  • [209] G. Wu, Z. K. Wei and H. B. Shao, “The mutual responses of higher plants to environment: physiological and microbiological aspects”, Biointerfaces, 59, 113-119, 2007.
  • [210] A. Trebst, B. Depka and H. Holländer-Czytko, “A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii”, FEBS Lett., 516, 156-160, 2002.
  • [211] S. Farouk, “Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence”, J. Stress Physiol. Biochem, 7, 58-79, 2011.
  • [212] H. Maeda, Y. Sakuragi, D. A. Bryant and D. DellaPenna, “Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation”, Plant Physiol., 138, 1422-1435, 2005.
  • [213] A. Collins, “Carotenoids and genomic stability”, Mutat. Res., 475, 1-28, 2001.
  • [214] P. Saha, P. Chatterjee and A. K. Biswas, “NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek)”, Indian J. Exp. Biol., 48, 593-600, 2010.
  • [215] A. Parida, A. B. Das and P. Das, “NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures”, J. Plant Biol., 45, 28-36, 2002.
  • [216] R. A. Khavarinejad and N. Chaparzadeh, “The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants”, Photosynth., 35, 461-466, 1998.
  • [217] H. Çakırlar, N. Çiçek, I. Fedina, K. Georgieva A. Doğru and M. Velitchkova, “NaCl induced cross-acclimation to UV-B radiation in four barley (Hordeum vulgare L.) cultivars”, Acta Physiol. Plant., 30, 561-567, 2008.
  • [218] M. Hefni and D. Z. Kader, Salinity and Water Stress, Netherlands: Springer, 2006.
Birincil Dil tr
Konular Mühendislik
Yayımlanma Tarihi Ocak 2020
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-0060-4691
Yazar: Ali DOĞRU (Sorumlu Yazar)
Kurum: SAKARYA ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ
Ülke: Turkey


Orcid: 0000-0002-9513-3505
Yazar: Serkan CANAVAR
Kurum: SAKARYA ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 28 Ocak 2020

Bibtex @derleme { apjes541620, journal = {Akademik Platform Mühendislik ve Fen Bilimleri Dergisi}, issn = {}, eissn = {2147-4575}, address = {}, publisher = {Akademik Platform}, year = {2020}, volume = {8}, pages = {155 - 174}, doi = {10.21541/apjes.541620}, title = {Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri}, key = {cite}, author = {DOĞRU, Ali and CANAVAR, Serkan} }
APA DOĞRU, A , CANAVAR, S . (2020). Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi , 8 (1) , 155-174 . DOI: 10.21541/apjes.541620
MLA DOĞRU, A , CANAVAR, S . "Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 8 (2020 ): 155-174 <https://dergipark.org.tr/tr/pub/apjes/issue/50706/541620>
Chicago DOĞRU, A , CANAVAR, S . "Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 8 (2020 ): 155-174
RIS TY - JOUR T1 - Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri AU - Ali DOĞRU , Serkan CANAVAR Y1 - 2020 PY - 2020 N1 - doi: 10.21541/apjes.541620 DO - 10.21541/apjes.541620 T2 - Akademik Platform Mühendislik ve Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 155 EP - 174 VL - 8 IS - 1 SN - -2147-4575 M3 - doi: 10.21541/apjes.541620 UR - https://doi.org/10.21541/apjes.541620 Y2 - 2019 ER -
EndNote %0 Akademik Platform Mühendislik ve Fen Bilimleri Dergisi Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri %A Ali DOĞRU , Serkan CANAVAR %T Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri %D 2020 %J Akademik Platform Mühendislik ve Fen Bilimleri Dergisi %P -2147-4575 %V 8 %N 1 %R doi: 10.21541/apjes.541620 %U 10.21541/apjes.541620
ISNAD DOĞRU, Ali , CANAVAR, Serkan . "Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 8 / 1 (Ocak 2020): 155-174 . https://doi.org/10.21541/apjes.541620
AMA DOĞRU A , CANAVAR S . Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri. APJES. 2020; 8(1): 155-174.
Vancouver DOĞRU A , CANAVAR S . Bitkilerde Tuz Toleransının Fizyolojik ve Biyokimyasal Bileşenleri. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi. 2020; 8(1): 174-155.