Research Article
BibTex RIS Cite

Theoretical and Experimental Investigation of Carbon Monoxide, Humidity and Temperature Relations in Zonguldak Province of Turkey

Year 2020, Volume: 8 Issue: 3, 464 - 470, 30.09.2020

Abstract

The sensor monitoring of ambient carbon monoxide (CO) which was mainly emitted by the coal mines and power plants was performed in the center of Zonguldak province of Turkey. It was observed that the recorded amount of CO (ppm) highly depended on the amount of humidity (H2O) percent and temperature. The sensor monitored higher CO values at higher temperatures accompanied with lower humidity percent whereas lower CO values at lower temperatures accompanied with higher humidity percent. Consequently, OC…Wn (W: H2O) (n = 1-3) long-range (hydrogen-bonding) interactions were modelled computationally using MP2/6-311++G(d,p) level of theory at selected temperatures. The calculated interaction Gibbs free energies and performed reactivity and stability analyses supported the possibility of carbon monoxide and humidity interactions at lower temperatures with higher humidity percent in parallel with the experimental results. It was concluded that the system presented in this study might be integrated into CO sensor units to improve the sensor response in terms of accuracy and precision.

References

  • [1] P. Wei, Z. Ning, S. Ye, L. Sun, F. Yang, K.C. Wong, D. Westerdahl and P.K.K. Louie, “Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring,” Sensors, vol. 18, no 2, pp. 59, Feb. 2018.
  • [2] W. Yi, K. Lo, T. Mak, K. Leung, Y. Leung and M.A. Meng, “Survey of wireless sensor network based air pollution monitoring systems,” Sensors, vol. 15, no 12, pp. 31392-31427, Dec. 2015.
  • [3] W. Jiao, G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, L. Weinstock, S. Zimmer-Dauphinee and K. Buckley, “Community air sensor network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States,” Atmos. Meas. Tech., vol. 9, no 11, pp. 5281-5292, Nov. 2016.
  • [4] L. Spinelle, M. Gerboles, M.G. Villani, M. Aleixandre and F. Bonavitacola, “Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2,” Sens. Actuators, B, vol. 238, pp. 706-715, Jan. 2017.
  • [5] M. Aleixandre and M. Gerboles, “Review of small commercial sensors for indicative monitoring of ambient gas,” Chem. Eng. Trans., vol. 30, pp. 169-174, Sep. 2012.
  • [6] G. Whitenett, G. Stewart, K. Atherton, B. Culshaw and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A: Pure Appl. Opt., vol. 5, no 5, pp. S140-S145, Sep. 2003.
  • [7] G.F. Fine, L.M. Cavanagh, A. Afonja and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, vol. 10, no 6, pp. 5469-5502, Jun. 2010.
  • [8] M.I. Mead, O.A.M. Popoola, G.B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J.J. Baldovi, M.W. McLeod, T.F. Hodgson, J. Dicks, A. Lewis, J. Cohen, R. Baron, J.R. Saffell and R.L. Jones, “The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks,” Atmos. Environ., vol. 70, pp. 186-203, May 2013.
  • [9] C. Lin, J. Gillespie, M.D. Schuder, W. Duberstein, I.J. Beverland and M.R. Heal, “Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide,” Atmos. Environ., vol. 100, pp. 111-116, Jan. 2015.
  • [10] L. Spinelle, M. Gerboles, M.G. Villani, M. Aleixandre and F. Bonavitacola, “Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide,” Sens. Actuators, B, vol. 215, pp. 249-257, Aug. 2015.
  • [11] J. A. Streeton, “A Health Data on Review of Existing Six Pollutants” NEPC Service Corporation, Adelaide, SA, Australia, ISBN 0 642 323 29 1, (2000).
  • [12] R. Bascom, P.A. Bromberg, D.L. Costa, R. Devlin, D.W. Dockery, M.W. Frampton, W. Lambert, J.M. Samet, F.E. Speizer and M. Utell, “Health effects of outdoor air pollution. Part 2. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society,” Am. J. Respir. Crit. Care Med., vol. 153, no 2, pp. 477-498, Feb.1996.
  • [13] World Health Organization (WHO), “Update and Revision of the Air Quality Guidelines for Europe-Classical Air Pollutants” WHO Regional Office, Copenhagen, Denmark, Draft Only, (1995).
  • [14] J.J.P. Stewart, “Optimization of parameters for semiempirical methods. I Method,” J. Comput. Chem., vol. 10, no 2, pp. 209-220, Mar. 1989.
  • [15] D. C. Young, Computational Chemistry, New York: Wiley, 2001.
  • [16] A. Ebrahimi, P. Karimi, F.B. Akher, R. Behazin and N. Mostafavi, “Investigation of the π-π stacking interactions without direct electrostatic effects of substituents: the aromatic||aromatic and aromatic||anti-aromatic complexes,” Mol. Phys., vol. 112, no 7, pp. 1047-1056, 2014 (Published online: Sep. 2013).
  • [17] S.K. Mudedla, K. Balamurugan and V. Subramanian, “Computational study on the interaction of modified nucleobases with graphene and doped graphenes,” J. Phys. Chem. C, vol. 118, no 29, pp. 16165-16174, Jul. 2014.
  • [18] S.F. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Mol. Phys., vol. 19, no 4, pp. 553-566, 1970 (Published online: Aug. 2006).
  • [19] J.D. Mottishaw and H. Sun, “Effects of aromatic trifluoromethylation, fluorination, and methylation on intermolecular π-π interactions,” J. Phys. Chem. A, vol. 117, no 33, pp. 7970-7979, Aug. 2013.
  • [20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E.01. (2009). Gaussian Inc., Wallingford CT, USA.
  • [21] H. Dubost and L. Abouaf-Marguin, “Infrared spectra of carbon monoxide trapped in solid argon. Double-doping experiments with H2O, NH3 and N2,” Chem. Phys. Lett., vol. 17, no 2, pp. 269-273, Nov. 1972.
  • [22] J. Lundell and Z. Latajka, “Density functional study of hydrogen-bonded systems: the water-carbon monoxide complex,” J. Phys. Chem. A, vol. 101, no 27, pp. 5004-5009, Jul. 1997.
  • [23] J. Sadlej and V. Buch, “Ab initio study of the intermolecular potential of the water-carbon monoxide complex,” J. Chem. Phys., vol. 100, no. 6, pp. 4272-4283, Mar. 1994.
  • [24] R. G. Pearson, Chemical Hardness: Applications from Molecules to Solids, Weinheim: Wiley, 1997.
  • [25] P.P. Singh, H.K. Srivastava and F.A. Pasha, “DFT-based QSAR study of testosterone and its derivatives,” Bioorg. Med. Chem., vol. 12, no 1, pp. 171-177, Jan. 2004.
  • [26] H.K. Srivastava, F.A. Pasha, S.K. Mishra and P.P. Singh, “Novel applications of atomic softness and QSAR study of testosterone derivatives,” Med. Chem. Res., vol. 18, no 6, pp. 455-466, Jul. 2009.
  • [27] R.G. Parr, L.v. Szentpály and S. Liu, “Electrophilicity index,” J. Am. Chem. Soc., vol. 121, no 9, pp. 1922-1924, Mar. 1999.
  • [28] E.V. Rokhina and R.P.S. Suri, “Application of density functional theory (DFT) to study the properties and degradation of natural estrogen hormones with chemical oxidizers,” Sci. Total Environ., vol. 417-418, pp. 280-290, Feb. 2012.
  • [29] T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, vol. 1, no 1-6, pp. 104-113, 1934.
  • [30] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, London: Wiley, 1976.
  • [31] J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, New York: Harper & Row Pub., 1978.
  • [32] A. Raya, C. Barrientos-Salcedo, C. Rubio-Póo and C. Soriano-Correa, “Electronic structure evaluation through quantum chemical descriptors of 17β-aminoestrogens with an anticoagulant effect,” Eur. J. Med. Chem., vol. 46, no 6, pp. 2463-2468, Jun. 2011.

Türkiye Zonguldak İlinde Karbon Monoksit-Nem-Sıcaklık İlişkisinin Sensörle İzlenmesi ve Hesaplamalı Olarak Modellenmesi

Year 2020, Volume: 8 Issue: 3, 464 - 470, 30.09.2020

Abstract

Esas olarak kömür madenleri ve enerji santralleri tarafından yayılan karbon monoksitinin (CO) sensörlü izlemesi Türkiye'nin Zonguldak il merkezinde gerçekleştirilmiştir. Kaydedilen CO (ppm) miktarının büyük ölçüde nem (H2O) yüzdesine ve sıcaklığa bağlı olduğu gözlemlenmiştir. Yüksek sıcaklıklarda ve düşük nem yüzdelerinde yüksek CO miktarları ölçülürken, düşük sıcaklıklarda ve daha yüksek nem yüzdelerinde daha düşük CO seviyeleri ölçülmüştür. Buna bağlı olarak, OC… Wn (W: H2O) (n = 1-3) şeklindeki uzak etkileşimler, seçilen sıcaklıklarda ve MP2/6-311++G(d,p) teori seviyesi kullanılarak hesaplamalı olarak modellenmiştir. Hesaplanan etkileşim Gibbs serbest enerjileri ve gerçekleştirilen reaktivite ve stabilite analizleri, deney sonuçlarına paralel olarak, düşük sıcaklıklarda ve yüksek nem oranlarında karbon monoksit-nem etkileşimleri olasılığını desteklemiştir. Bu çalışmada sunulan sistemin, sensör değerlerini doğruluk ve kesinlik açısından iyileştirmek için, CO sensör ünitelerine entegre edilebileceği sonucuna varılmıştır.

References

  • [1] P. Wei, Z. Ning, S. Ye, L. Sun, F. Yang, K.C. Wong, D. Westerdahl and P.K.K. Louie, “Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring,” Sensors, vol. 18, no 2, pp. 59, Feb. 2018.
  • [2] W. Yi, K. Lo, T. Mak, K. Leung, Y. Leung and M.A. Meng, “Survey of wireless sensor network based air pollution monitoring systems,” Sensors, vol. 15, no 12, pp. 31392-31427, Dec. 2015.
  • [3] W. Jiao, G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, L. Weinstock, S. Zimmer-Dauphinee and K. Buckley, “Community air sensor network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States,” Atmos. Meas. Tech., vol. 9, no 11, pp. 5281-5292, Nov. 2016.
  • [4] L. Spinelle, M. Gerboles, M.G. Villani, M. Aleixandre and F. Bonavitacola, “Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2,” Sens. Actuators, B, vol. 238, pp. 706-715, Jan. 2017.
  • [5] M. Aleixandre and M. Gerboles, “Review of small commercial sensors for indicative monitoring of ambient gas,” Chem. Eng. Trans., vol. 30, pp. 169-174, Sep. 2012.
  • [6] G. Whitenett, G. Stewart, K. Atherton, B. Culshaw and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A: Pure Appl. Opt., vol. 5, no 5, pp. S140-S145, Sep. 2003.
  • [7] G.F. Fine, L.M. Cavanagh, A. Afonja and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, vol. 10, no 6, pp. 5469-5502, Jun. 2010.
  • [8] M.I. Mead, O.A.M. Popoola, G.B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J.J. Baldovi, M.W. McLeod, T.F. Hodgson, J. Dicks, A. Lewis, J. Cohen, R. Baron, J.R. Saffell and R.L. Jones, “The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks,” Atmos. Environ., vol. 70, pp. 186-203, May 2013.
  • [9] C. Lin, J. Gillespie, M.D. Schuder, W. Duberstein, I.J. Beverland and M.R. Heal, “Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide,” Atmos. Environ., vol. 100, pp. 111-116, Jan. 2015.
  • [10] L. Spinelle, M. Gerboles, M.G. Villani, M. Aleixandre and F. Bonavitacola, “Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide,” Sens. Actuators, B, vol. 215, pp. 249-257, Aug. 2015.
  • [11] J. A. Streeton, “A Health Data on Review of Existing Six Pollutants” NEPC Service Corporation, Adelaide, SA, Australia, ISBN 0 642 323 29 1, (2000).
  • [12] R. Bascom, P.A. Bromberg, D.L. Costa, R. Devlin, D.W. Dockery, M.W. Frampton, W. Lambert, J.M. Samet, F.E. Speizer and M. Utell, “Health effects of outdoor air pollution. Part 2. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society,” Am. J. Respir. Crit. Care Med., vol. 153, no 2, pp. 477-498, Feb.1996.
  • [13] World Health Organization (WHO), “Update and Revision of the Air Quality Guidelines for Europe-Classical Air Pollutants” WHO Regional Office, Copenhagen, Denmark, Draft Only, (1995).
  • [14] J.J.P. Stewart, “Optimization of parameters for semiempirical methods. I Method,” J. Comput. Chem., vol. 10, no 2, pp. 209-220, Mar. 1989.
  • [15] D. C. Young, Computational Chemistry, New York: Wiley, 2001.
  • [16] A. Ebrahimi, P. Karimi, F.B. Akher, R. Behazin and N. Mostafavi, “Investigation of the π-π stacking interactions without direct electrostatic effects of substituents: the aromatic||aromatic and aromatic||anti-aromatic complexes,” Mol. Phys., vol. 112, no 7, pp. 1047-1056, 2014 (Published online: Sep. 2013).
  • [17] S.K. Mudedla, K. Balamurugan and V. Subramanian, “Computational study on the interaction of modified nucleobases with graphene and doped graphenes,” J. Phys. Chem. C, vol. 118, no 29, pp. 16165-16174, Jul. 2014.
  • [18] S.F. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Mol. Phys., vol. 19, no 4, pp. 553-566, 1970 (Published online: Aug. 2006).
  • [19] J.D. Mottishaw and H. Sun, “Effects of aromatic trifluoromethylation, fluorination, and methylation on intermolecular π-π interactions,” J. Phys. Chem. A, vol. 117, no 33, pp. 7970-7979, Aug. 2013.
  • [20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E.01. (2009). Gaussian Inc., Wallingford CT, USA.
  • [21] H. Dubost and L. Abouaf-Marguin, “Infrared spectra of carbon monoxide trapped in solid argon. Double-doping experiments with H2O, NH3 and N2,” Chem. Phys. Lett., vol. 17, no 2, pp. 269-273, Nov. 1972.
  • [22] J. Lundell and Z. Latajka, “Density functional study of hydrogen-bonded systems: the water-carbon monoxide complex,” J. Phys. Chem. A, vol. 101, no 27, pp. 5004-5009, Jul. 1997.
  • [23] J. Sadlej and V. Buch, “Ab initio study of the intermolecular potential of the water-carbon monoxide complex,” J. Chem. Phys., vol. 100, no. 6, pp. 4272-4283, Mar. 1994.
  • [24] R. G. Pearson, Chemical Hardness: Applications from Molecules to Solids, Weinheim: Wiley, 1997.
  • [25] P.P. Singh, H.K. Srivastava and F.A. Pasha, “DFT-based QSAR study of testosterone and its derivatives,” Bioorg. Med. Chem., vol. 12, no 1, pp. 171-177, Jan. 2004.
  • [26] H.K. Srivastava, F.A. Pasha, S.K. Mishra and P.P. Singh, “Novel applications of atomic softness and QSAR study of testosterone derivatives,” Med. Chem. Res., vol. 18, no 6, pp. 455-466, Jul. 2009.
  • [27] R.G. Parr, L.v. Szentpály and S. Liu, “Electrophilicity index,” J. Am. Chem. Soc., vol. 121, no 9, pp. 1922-1924, Mar. 1999.
  • [28] E.V. Rokhina and R.P.S. Suri, “Application of density functional theory (DFT) to study the properties and degradation of natural estrogen hormones with chemical oxidizers,” Sci. Total Environ., vol. 417-418, pp. 280-290, Feb. 2012.
  • [29] T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, vol. 1, no 1-6, pp. 104-113, 1934.
  • [30] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, London: Wiley, 1976.
  • [31] J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, New York: Harper & Row Pub., 1978.
  • [32] A. Raya, C. Barrientos-Salcedo, C. Rubio-Póo and C. Soriano-Correa, “Electronic structure evaluation through quantum chemical descriptors of 17β-aminoestrogens with an anticoagulant effect,” Eur. J. Med. Chem., vol. 46, no 6, pp. 2463-2468, Jun. 2011.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Caglar Celık Bayar 0000-0002-2293-2963

Publication Date September 30, 2020
Submission Date February 4, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

IEEE C. Celık Bayar, “Theoretical and Experimental Investigation of Carbon Monoxide, Humidity and Temperature Relations in Zonguldak Province of Turkey”, APJES, vol. 8, no. 3, pp. 464–470, 2020.