Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 4 Sayı: 2, 49 - 64, 26.12.2023
https://doi.org/10.52114/apjhad.1400644

Öz

Kaynakça

  • Çirak, İ. F. (2011). Yığma Yapılarda Oluşan Hasarlar, Nedenleri Ve Öneriler. Uluslararası Teknolojik Bilimler Dergisi, 3(2), 55-60.
  • Celep, Z., Kumbasar, N. (2004). Deprem Mühendisliğine Giriş ve Depreme Dayanıklı Yapı Tasarımı, İstanbul, 33-35.
  • Bayülke, N. (2011) Yığma Yapıların Deprem Davranışı ve Güvenliği, 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 11- 14 Ekim, ODTÜ, Ankara, 23-36.
  • Koç, K. (2016). Depreme Maruz Kalmış Yığma ve KırsalYapı Davranışlarının İncelenerek Yığma Yapı Yapımında Dikkat Edilmesi Gereken Kuralların Derlenmesi,Çanakkale Onsekiz Mart University, Journal of Graduate School of Natural and Applied Sciences, 2016:2, 1, 36-57.
  • Ademović, N., Hadzima-Nyarko, M., & Zagora, N. (2020). Seismic vulnerability assessment of masonry buildings in Banja Luka and Sarajevo (Bosnia and Herzegovina) using the macroseismic model. Bulletin of earthquake engineering, 18, 3897-3933.
  • Arun, G. (2005). Yığma kagir yapı davranışı. Yığma Yapıların Deprem Güvenliğinin Arttırılması Çalıştayı, 17, 2005. Korkmaz, A. (2014). Farklı yapısal malzeme özelliklerinin yığma yapı davranışına etkisi. Nevşehir Bilim ve Teknoloji Dergisi, 3(1), 69-78.
  • Arkan, E., Işık, E., Harirchian, E., Topçubaşı, M., & Avcil, F. (2023). Architectural Characteristics and Determination Seismic Risk Priorities of Traditional Masonry Structures: A Case Study for Bitlis (Eastern Türkiye). Buildings, 13(4), 1042.
  • Yetkin, M., Calayir, Y., & Alyamaç, K. E. (2024). Yığma duvarların mekanik parametrelerine harç ve örgü tipinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 621-634.
  • Formisano, A., & Ademovic, N. (2022). An overview on seismic analysis of masonry building aggregates. Frontiers in Built Environment, 8, 966281.
  • Requena-Garcia-Cruz, M. V., Romero-Sánchez, E., & Morales-Esteban, A. (2023). Dynamic performance of the Mosque-Cathedral of Córdoba under different earthquake scenarios: The Abd al-Rahman I sector. Journal of Building Engineering, 79, 107853.
  • Requena-Garcia-Cruz, M. V., Romero-Sánchez, E., López-Piña, M. P., & Morales-Esteban, A. (2023). Preliminary structural and seismic performance assessment of the Mosque-Cathedral of Cordoba: the Abd al-Rahman I sector. Engineering Structures, 291, 116465.
  • Hadzima-Nyarko, M., Pavić, G., & Lešić, M. (2016). Seismic vulnerability of old confined masonry buildings in Osijek, Croatia. Earthquakes and Structures, 11(4), 629-648.
  • Işık, E., Harirchian, E., Arkan, E., Avcil, F., & Günay, M. (2022). Structural analysis of five historical minarets in Bitlis (Turkey). Buildings, 12(2), 159.
  • Hadzima-Nyarko, M., Ademovic, N., Pavic, G., & Sipos, T. K. (2018). Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions. Earthquakes and Structures, 15(5), 473.
  • Işık, E., Ademović, N., Harirchian, E., Avcil, F., Büyüksaraç, A., Hadzima-Nyarko, M., ... & Antep, B. (2023). Determination of Natural Fundamental Period of Minarets by Using Artificial Neural Network and Assess the Impact of Different Materials on Their Seismic Vulnerability. Applied Sciences, 13(2), 809.
  • Valente, M., & Milani, G. (2019). Damage assessment and collapse investigation of three historical masonry palaces under seismic actions. Engineering Failure Analysis, 98, 10-37.
  • Valente, M., Milani, G., Grande, E., & Formisano, A. (2019). Historical masonry building aggregates: advanced numerical insight for an effective seismic assessment on two row housing compounds. Engineering Structures, 190, 360-379.
  • Usta, P. (2021). Assessment of seismic behavior of historic masonry minarets in Antalya, Turkey. Case Studies in Construction Materials, 15, e00665.
  • Onat, O. (2020, October). Impact of mechanical properties of historical masonry bridges on fundamental vibration frequency. In Structures (Vol. 27, pp. 1011-1028). Elsevier.
  • Lourenço, P. B., Milani, G., Tralli, A., & Zucchini, A. (2007). Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering, 34(11), 1443-1457.
  • Mertol, H. C., Tunc, G., & Akis, T. (2021). Evaluation of masonry buildings and mosques after Sivrice earthquake. Građevinar, 73(09.), 881-892.
  • Shendkar, M. R., Pradeep Kumar, R., Mandal, S., Maiti, P. R., & Kontoni, D. P. N. (2021). Seismic risk assessment of reinforced concrete buildings in Koyna-Warna region through EDRI method. Innovative Infrastructure Solutions, 6, 1-25.
  • Caglar, N., Vural, I., Kirtel, O., Saribiyik, A., & Sumer, Y. (2023). Structural damages observed in buildings after the January 24, 2020 Elazığ-Sivrice earthquake in Türkiye. Case Studies in Construction Materials, 18, e01886.
  • Bilgin, H., Shkodrani, N., Hysenlliu, M., Ozmen, H. B., Isik, E., & Harirchian, E. (2022). Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes. Engineering Failure Analysis, 131, 105824.
  • Bilgin, H., Leti, M., Shehu, R., Özmen, H. B., Deringol, A. H., & Ormeni, R. (2023). Reflections from the 2019 Durrës Earthquakes: An Earthquake Engineering Evaluation for Masonry Typologies. Buildings, 13(9), 2227.
  • Milani, G., & Valente, M. (2015). Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: Non-linear dynamic analyses vs conventional static approaches. Engineering Failure Analysis, 54, 13-56.
  • Mallardo, V., Malvezzi, R., Milani, E., & Milani, G. (2008). Seismic vulnerability of historical masonry buildings: A case study in Ferrara. Engineering Structures, 30(8), 2223-2241.
  • Atalić, J., Uroš, M., Šavor Novak, M., Demšić, M., & Nastev, M. (2021). The Mw5. 4 Zagreb (Croatia) earthquake of March 22, 2020: impacts and response. Bulletin of Earthquake Engineering, 19(9), 3461-3489.
  • Ademović, N., Toholj, M., Radonić, D., Casarin, F., Komesar, S., & Ugarković, K. (2022). Post-Earthquake Assessment and Strengthening of a Cultural-Heritage Residential Masonry Building after the 2020 Zagreb Earthquake. Buildings, 12(11), 2024.
  • Preciado, A., Peña, F., Fonseca, F. C., & Silva, C. (2022). Damage description and schematic crack propagation in Colonial Churches and old masonry buildings by the 2017 Puebla-Morelos earthquakes (Mw= 8.2 and 7.1). Engineering Failure Analysis, 141, 106706.
  • Preciado, A., Santos, J. C., Silva, C., Ramírez-Gaytán, A., & Falcon, J. M. (2020). Seismic damage and retrofitting identification in unreinforced masonry Churches and bell towers by the september 19, 2017 (Mw= 7.1) Puebla-Morelos earthquake. Engineering Failure Analysis, 118, 104924.
  • Adanur, S. (2010). Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey. Natural Hazards and Earth System Sciences, 10(12), 2547-2556.
  • Celep, Z., Erken, A., Taskin, B., & Ilki, A. (2011). Failures of masonry and concrete buildings during the March 8, 2010 Kovancılar and Palu (Elazığ) earthquakes in Turkey. Engineering Failure Analysis, 18(3), 868-889.
  • Piroglu, F., & Ozakgul, K. (2013). Site investigation of masonry buildings damaged during the 23 October and 9 November 2011 Van Earthquakes in Turkey. Natural Hazards and Earth System Sciences, 13(3), 689-708.
  • Çelebi, E., Aktas, M., Çağlar, N., Özocak, A., Kutanis, M., Mert, N., & Özcan, Z. (2013). October 23, 2011 Turkey/Van–Ercis earthquake: structural damages in the residential buildings. Natural Hazards, 65, 2287-2310.
  • Yön, B. (2021). Identification of failure mechanisms in existing unreinforced masonry buildings in rural areas after April 4, 2019 earthquake in Turkey. Journal of Building Engineering, 43, 102586.
  • Bayraktar, A., CoŞkun, N., & Yalçin, A. (2007). Damages of masonry buildings during the July 2, 2004 Doğubayazıt (Ağrı) earthquake in Turkey. Engineering Failure Analysis, 14(1), 147-157.
  • Işık, E., Ulu, A. E., Büyüksaraç, A., & Aydın, M. C. (2022, June). A study on damages in masonry structures and determination of damage levels in the 2020 Sivrice (Elazig) earthquake. In International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (pp. 35-54). Cham: Springer International Publishing.
  • Işık, E. (2023). Structural Failures of Adobe Buildings during the February 2023 Kahramanmaraş (Türkiye) Earthquakes. Applied Sciences, 13(15), 8937.
  • Işık, E., Avcil, F., Arkan, E., Büyüksaraç, A., İzol, R., & Topalan, M. (2023). Structural Damage Evaluation of Mosques and Minarets in Adıyaman due to the 06 February 2023 Kahramanmaraş Earthquakes. Engineering Failure Analysis, 107345.
  • Avcil, F. (2023). Investigation of Precast Reinforced Concrete Structures during the 6 February 2023 Türkiye Earthquakes. Sustainability, 15(20), 14846.
  • Karasin, I. B. (2023). Comparative Analysis of the 2023 Pazarcık and Elbistan Earthquakes in Diyarbakır. Buildings, 13(10), 2474.
  • Zengin, B., & Aydin, F. (2023). The Effect of Material Quality on Buildings Moderately and Heavily Damaged by the Kahramanmaraş Earthquakes. Applied Sciences, 13(19), 10668.
  • Işık, E., Avcil, F., Büyüksaraç, A., İzol, R., Arslan, M. H., Aksoylu, C., ... & Ulutaş, H. (2023). Structural damages in masonry buildings in Adıyaman during the Kahramanmaraş (Turkiye) earthquakes (Mw 7.7 and Mw 7.6) on 06 February 2023. Engineering Failure Analysis, 107405.
  • Işik, E., Büyüksaraç, A., Avcil, F., Arkan, E., & Ayd, M. C. (2023). Damage evaluation of masonry buildings during Kahramanmaraş (Türkiye) earthquakes on February 06, 2023. Earthquakes and Structures, 25(3), 209.
  • İnce, O. (2023). Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) Earthquakes on 6 February 2023. Engineering Failure Analysis, 107799.
  • Ozturk, M., Arslan, M. H., & Korkmaz, H. H. (2023). Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design. Engineering Failure Analysis, 153, 107521.
  • Erkek, H., Yetkin, M. (2023). Assessment of the performance of a historic minaret during the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6). Structures, 58, 105620.
  • Ivanov, M. L., & Chow, W. K. (2023, December). Structural damage observed in reinforced concrete buildings in Adiyaman during the 2023 Turkiye Kahramanmaras Earthquakes. Structures (Vol. 58, p. 105578). Elsevier.
  • Isik, E., Shendkar, M., Avcil, F., BÜYÜKSARAÇ, A., & Deshpande, S.S. (2023). A Study on the Determination of Damage Levels in Reinforced Concrete Structures during the Kahramanmaras Earthquake on February 06, 2023.
  • Mertol, H. C., Tunç, G., Akış, T., Kantekin, Y., & Aydın, İ. C. (2023). Investigation of RC Buildings after 6 February 2023, Kahramanmaraş, Türkiye Earthquakes. Buildings, 13(7), 1789.
  • Büyüksaraç, A., Bektaş, Ö., Alkan, H. (2023). Fault modeling around southern Anatolia using the aftershock sequence of the Kahramanmaraş earthquakes (Mw = 7.7 and Mw = 7.6) and an interpretation of potential field data. Acta Geophysica, 1-12.
  • Alkan H., Büyüksaraç A., Bektaş, Ö. (2023). Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis, Turkish Journal of Earth Sciences (in Press).
  • Alkan, H., Büyüksaraç, A., Bektaş, Ö., & Işık, E. (2021). Coulomb stress change before and after 24.01. 2020 Sivrice (Elazığ) earthquake (Mw= 6.8) on the East Anatolian Fault Zone. Arabian Journal of Geosciences, 14(23), 2648.
  • Utkucu, M., Budakoğlu, E., Yalçin, H., Durmuş, H., Gülen, L., & Işık, E. (2014). Seismotectonic characteristics of the 23 October 2011 Van (Eastern Anatolia) earthquake (Mw= 7.1). Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 35(2).
  • Aksoy, E., Inceoez, M., & KOÇYİĞİT, A. (2007). Lake Hazar basin: A negative flower structure on the east anatolian fault system (EAFS), SE Turkey. Turkish Journal of Earth Sciences, 16(3), 319-338.
  • Oyguç, R. A. (2017). 2011 Van depremlerinden sonra yığma yapılarda gözlemlenen hasarlar. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 296-315.
  • Sherafati, M. A., & Sohrabi, M. R. (2016). Performance of masonry walls during Kaki, Iran, earthquake of April 9, 2013. Journal of Performance of Constructed Facilities, 30(3), 04015040.
  • Tabrizikahou, A., Hadzima-Nyarko, M., Kuczma, M., & Lozančić, S. (2021). Application of shape memory alloys in retrofitting of masonry and heritage structures based on their vulnerability revealed in the Bam 2003 earthquake. Materials, 14(16), 4480.
  • Işık, M.F., Işık, E., Harirchian, E. (2021). Application of IOS/Android rapid evaluation of post-earthquake damages in masonry buildings. Gazi Mühendislik Bilimleri Dergisi, 7(1), 36-50.

Seismic Damages in Masonry Structural Walls and Solution Suggestions

Yıl 2023, Cilt: 4 Sayı: 2, 49 - 64, 26.12.2023
https://doi.org/10.52114/apjhad.1400644

Öz

Masonry structures are known as an ancient construction technology with a history dating back thousands of years. The main load-bearing members of masonry structures are walls obtained using different materials. These walls, which serve both load-bearing functions and are used to separate spaces, can be thick because they generally have low-strength properties. Masonry structures, which are commonly found in rural areas, are sensitive to earthquake effects and can receive damage at different levels. These masonry buildings, which were generally constructed without any engineering services, were exposed to significant damage under the influence of the Kahramanmaraş earthquake couple that occurred on February 6, 2023. This study examined the damage to the load-bearing walls of masonry buildings in the regions affected by this earthquake couple with the framework of cause-effect relationships and offered solutions. Poor masonry workmanship, insufficient use of horizontal/vertical bond beams, use of different wall materials together, heavy earthen roof effect, insufficient corner joints, amount of gaps, and use of low strength mortar have been determined as the main reasons for the damage occurring in masonry load-bearing walls. Performing earthquake-resistant building design principles is critical to minimizing such damage.

Teşekkür

We would like to express our gratitude to Civil Engineer Mr. Mehmet Şakir Güngür, Civil Engineer Mr. Mutlu Günay, and Civil Engineer Mr. Ömer Faruk Avcı who made significant contributions to the study.

Kaynakça

  • Çirak, İ. F. (2011). Yığma Yapılarda Oluşan Hasarlar, Nedenleri Ve Öneriler. Uluslararası Teknolojik Bilimler Dergisi, 3(2), 55-60.
  • Celep, Z., Kumbasar, N. (2004). Deprem Mühendisliğine Giriş ve Depreme Dayanıklı Yapı Tasarımı, İstanbul, 33-35.
  • Bayülke, N. (2011) Yığma Yapıların Deprem Davranışı ve Güvenliği, 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 11- 14 Ekim, ODTÜ, Ankara, 23-36.
  • Koç, K. (2016). Depreme Maruz Kalmış Yığma ve KırsalYapı Davranışlarının İncelenerek Yığma Yapı Yapımında Dikkat Edilmesi Gereken Kuralların Derlenmesi,Çanakkale Onsekiz Mart University, Journal of Graduate School of Natural and Applied Sciences, 2016:2, 1, 36-57.
  • Ademović, N., Hadzima-Nyarko, M., & Zagora, N. (2020). Seismic vulnerability assessment of masonry buildings in Banja Luka and Sarajevo (Bosnia and Herzegovina) using the macroseismic model. Bulletin of earthquake engineering, 18, 3897-3933.
  • Arun, G. (2005). Yığma kagir yapı davranışı. Yığma Yapıların Deprem Güvenliğinin Arttırılması Çalıştayı, 17, 2005. Korkmaz, A. (2014). Farklı yapısal malzeme özelliklerinin yığma yapı davranışına etkisi. Nevşehir Bilim ve Teknoloji Dergisi, 3(1), 69-78.
  • Arkan, E., Işık, E., Harirchian, E., Topçubaşı, M., & Avcil, F. (2023). Architectural Characteristics and Determination Seismic Risk Priorities of Traditional Masonry Structures: A Case Study for Bitlis (Eastern Türkiye). Buildings, 13(4), 1042.
  • Yetkin, M., Calayir, Y., & Alyamaç, K. E. (2024). Yığma duvarların mekanik parametrelerine harç ve örgü tipinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 621-634.
  • Formisano, A., & Ademovic, N. (2022). An overview on seismic analysis of masonry building aggregates. Frontiers in Built Environment, 8, 966281.
  • Requena-Garcia-Cruz, M. V., Romero-Sánchez, E., & Morales-Esteban, A. (2023). Dynamic performance of the Mosque-Cathedral of Córdoba under different earthquake scenarios: The Abd al-Rahman I sector. Journal of Building Engineering, 79, 107853.
  • Requena-Garcia-Cruz, M. V., Romero-Sánchez, E., López-Piña, M. P., & Morales-Esteban, A. (2023). Preliminary structural and seismic performance assessment of the Mosque-Cathedral of Cordoba: the Abd al-Rahman I sector. Engineering Structures, 291, 116465.
  • Hadzima-Nyarko, M., Pavić, G., & Lešić, M. (2016). Seismic vulnerability of old confined masonry buildings in Osijek, Croatia. Earthquakes and Structures, 11(4), 629-648.
  • Işık, E., Harirchian, E., Arkan, E., Avcil, F., & Günay, M. (2022). Structural analysis of five historical minarets in Bitlis (Turkey). Buildings, 12(2), 159.
  • Hadzima-Nyarko, M., Ademovic, N., Pavic, G., & Sipos, T. K. (2018). Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions. Earthquakes and Structures, 15(5), 473.
  • Işık, E., Ademović, N., Harirchian, E., Avcil, F., Büyüksaraç, A., Hadzima-Nyarko, M., ... & Antep, B. (2023). Determination of Natural Fundamental Period of Minarets by Using Artificial Neural Network and Assess the Impact of Different Materials on Their Seismic Vulnerability. Applied Sciences, 13(2), 809.
  • Valente, M., & Milani, G. (2019). Damage assessment and collapse investigation of three historical masonry palaces under seismic actions. Engineering Failure Analysis, 98, 10-37.
  • Valente, M., Milani, G., Grande, E., & Formisano, A. (2019). Historical masonry building aggregates: advanced numerical insight for an effective seismic assessment on two row housing compounds. Engineering Structures, 190, 360-379.
  • Usta, P. (2021). Assessment of seismic behavior of historic masonry minarets in Antalya, Turkey. Case Studies in Construction Materials, 15, e00665.
  • Onat, O. (2020, October). Impact of mechanical properties of historical masonry bridges on fundamental vibration frequency. In Structures (Vol. 27, pp. 1011-1028). Elsevier.
  • Lourenço, P. B., Milani, G., Tralli, A., & Zucchini, A. (2007). Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering, 34(11), 1443-1457.
  • Mertol, H. C., Tunc, G., & Akis, T. (2021). Evaluation of masonry buildings and mosques after Sivrice earthquake. Građevinar, 73(09.), 881-892.
  • Shendkar, M. R., Pradeep Kumar, R., Mandal, S., Maiti, P. R., & Kontoni, D. P. N. (2021). Seismic risk assessment of reinforced concrete buildings in Koyna-Warna region through EDRI method. Innovative Infrastructure Solutions, 6, 1-25.
  • Caglar, N., Vural, I., Kirtel, O., Saribiyik, A., & Sumer, Y. (2023). Structural damages observed in buildings after the January 24, 2020 Elazığ-Sivrice earthquake in Türkiye. Case Studies in Construction Materials, 18, e01886.
  • Bilgin, H., Shkodrani, N., Hysenlliu, M., Ozmen, H. B., Isik, E., & Harirchian, E. (2022). Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes. Engineering Failure Analysis, 131, 105824.
  • Bilgin, H., Leti, M., Shehu, R., Özmen, H. B., Deringol, A. H., & Ormeni, R. (2023). Reflections from the 2019 Durrës Earthquakes: An Earthquake Engineering Evaluation for Masonry Typologies. Buildings, 13(9), 2227.
  • Milani, G., & Valente, M. (2015). Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: Non-linear dynamic analyses vs conventional static approaches. Engineering Failure Analysis, 54, 13-56.
  • Mallardo, V., Malvezzi, R., Milani, E., & Milani, G. (2008). Seismic vulnerability of historical masonry buildings: A case study in Ferrara. Engineering Structures, 30(8), 2223-2241.
  • Atalić, J., Uroš, M., Šavor Novak, M., Demšić, M., & Nastev, M. (2021). The Mw5. 4 Zagreb (Croatia) earthquake of March 22, 2020: impacts and response. Bulletin of Earthquake Engineering, 19(9), 3461-3489.
  • Ademović, N., Toholj, M., Radonić, D., Casarin, F., Komesar, S., & Ugarković, K. (2022). Post-Earthquake Assessment and Strengthening of a Cultural-Heritage Residential Masonry Building after the 2020 Zagreb Earthquake. Buildings, 12(11), 2024.
  • Preciado, A., Peña, F., Fonseca, F. C., & Silva, C. (2022). Damage description and schematic crack propagation in Colonial Churches and old masonry buildings by the 2017 Puebla-Morelos earthquakes (Mw= 8.2 and 7.1). Engineering Failure Analysis, 141, 106706.
  • Preciado, A., Santos, J. C., Silva, C., Ramírez-Gaytán, A., & Falcon, J. M. (2020). Seismic damage and retrofitting identification in unreinforced masonry Churches and bell towers by the september 19, 2017 (Mw= 7.1) Puebla-Morelos earthquake. Engineering Failure Analysis, 118, 104924.
  • Adanur, S. (2010). Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey. Natural Hazards and Earth System Sciences, 10(12), 2547-2556.
  • Celep, Z., Erken, A., Taskin, B., & Ilki, A. (2011). Failures of masonry and concrete buildings during the March 8, 2010 Kovancılar and Palu (Elazığ) earthquakes in Turkey. Engineering Failure Analysis, 18(3), 868-889.
  • Piroglu, F., & Ozakgul, K. (2013). Site investigation of masonry buildings damaged during the 23 October and 9 November 2011 Van Earthquakes in Turkey. Natural Hazards and Earth System Sciences, 13(3), 689-708.
  • Çelebi, E., Aktas, M., Çağlar, N., Özocak, A., Kutanis, M., Mert, N., & Özcan, Z. (2013). October 23, 2011 Turkey/Van–Ercis earthquake: structural damages in the residential buildings. Natural Hazards, 65, 2287-2310.
  • Yön, B. (2021). Identification of failure mechanisms in existing unreinforced masonry buildings in rural areas after April 4, 2019 earthquake in Turkey. Journal of Building Engineering, 43, 102586.
  • Bayraktar, A., CoŞkun, N., & Yalçin, A. (2007). Damages of masonry buildings during the July 2, 2004 Doğubayazıt (Ağrı) earthquake in Turkey. Engineering Failure Analysis, 14(1), 147-157.
  • Işık, E., Ulu, A. E., Büyüksaraç, A., & Aydın, M. C. (2022, June). A study on damages in masonry structures and determination of damage levels in the 2020 Sivrice (Elazig) earthquake. In International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (pp. 35-54). Cham: Springer International Publishing.
  • Işık, E. (2023). Structural Failures of Adobe Buildings during the February 2023 Kahramanmaraş (Türkiye) Earthquakes. Applied Sciences, 13(15), 8937.
  • Işık, E., Avcil, F., Arkan, E., Büyüksaraç, A., İzol, R., & Topalan, M. (2023). Structural Damage Evaluation of Mosques and Minarets in Adıyaman due to the 06 February 2023 Kahramanmaraş Earthquakes. Engineering Failure Analysis, 107345.
  • Avcil, F. (2023). Investigation of Precast Reinforced Concrete Structures during the 6 February 2023 Türkiye Earthquakes. Sustainability, 15(20), 14846.
  • Karasin, I. B. (2023). Comparative Analysis of the 2023 Pazarcık and Elbistan Earthquakes in Diyarbakır. Buildings, 13(10), 2474.
  • Zengin, B., & Aydin, F. (2023). The Effect of Material Quality on Buildings Moderately and Heavily Damaged by the Kahramanmaraş Earthquakes. Applied Sciences, 13(19), 10668.
  • Işık, E., Avcil, F., Büyüksaraç, A., İzol, R., Arslan, M. H., Aksoylu, C., ... & Ulutaş, H. (2023). Structural damages in masonry buildings in Adıyaman during the Kahramanmaraş (Turkiye) earthquakes (Mw 7.7 and Mw 7.6) on 06 February 2023. Engineering Failure Analysis, 107405.
  • Işik, E., Büyüksaraç, A., Avcil, F., Arkan, E., & Ayd, M. C. (2023). Damage evaluation of masonry buildings during Kahramanmaraş (Türkiye) earthquakes on February 06, 2023. Earthquakes and Structures, 25(3), 209.
  • İnce, O. (2023). Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) Earthquakes on 6 February 2023. Engineering Failure Analysis, 107799.
  • Ozturk, M., Arslan, M. H., & Korkmaz, H. H. (2023). Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design. Engineering Failure Analysis, 153, 107521.
  • Erkek, H., Yetkin, M. (2023). Assessment of the performance of a historic minaret during the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6). Structures, 58, 105620.
  • Ivanov, M. L., & Chow, W. K. (2023, December). Structural damage observed in reinforced concrete buildings in Adiyaman during the 2023 Turkiye Kahramanmaras Earthquakes. Structures (Vol. 58, p. 105578). Elsevier.
  • Isik, E., Shendkar, M., Avcil, F., BÜYÜKSARAÇ, A., & Deshpande, S.S. (2023). A Study on the Determination of Damage Levels in Reinforced Concrete Structures during the Kahramanmaras Earthquake on February 06, 2023.
  • Mertol, H. C., Tunç, G., Akış, T., Kantekin, Y., & Aydın, İ. C. (2023). Investigation of RC Buildings after 6 February 2023, Kahramanmaraş, Türkiye Earthquakes. Buildings, 13(7), 1789.
  • Büyüksaraç, A., Bektaş, Ö., Alkan, H. (2023). Fault modeling around southern Anatolia using the aftershock sequence of the Kahramanmaraş earthquakes (Mw = 7.7 and Mw = 7.6) and an interpretation of potential field data. Acta Geophysica, 1-12.
  • Alkan H., Büyüksaraç A., Bektaş, Ö. (2023). Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis, Turkish Journal of Earth Sciences (in Press).
  • Alkan, H., Büyüksaraç, A., Bektaş, Ö., & Işık, E. (2021). Coulomb stress change before and after 24.01. 2020 Sivrice (Elazığ) earthquake (Mw= 6.8) on the East Anatolian Fault Zone. Arabian Journal of Geosciences, 14(23), 2648.
  • Utkucu, M., Budakoğlu, E., Yalçin, H., Durmuş, H., Gülen, L., & Işık, E. (2014). Seismotectonic characteristics of the 23 October 2011 Van (Eastern Anatolia) earthquake (Mw= 7.1). Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 35(2).
  • Aksoy, E., Inceoez, M., & KOÇYİĞİT, A. (2007). Lake Hazar basin: A negative flower structure on the east anatolian fault system (EAFS), SE Turkey. Turkish Journal of Earth Sciences, 16(3), 319-338.
  • Oyguç, R. A. (2017). 2011 Van depremlerinden sonra yığma yapılarda gözlemlenen hasarlar. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 296-315.
  • Sherafati, M. A., & Sohrabi, M. R. (2016). Performance of masonry walls during Kaki, Iran, earthquake of April 9, 2013. Journal of Performance of Constructed Facilities, 30(3), 04015040.
  • Tabrizikahou, A., Hadzima-Nyarko, M., Kuczma, M., & Lozančić, S. (2021). Application of shape memory alloys in retrofitting of masonry and heritage structures based on their vulnerability revealed in the Bam 2003 earthquake. Materials, 14(16), 4480.
  • Işık, M.F., Işık, E., Harirchian, E. (2021). Application of IOS/Android rapid evaluation of post-earthquake damages in masonry buildings. Gazi Mühendislik Bilimleri Dergisi, 7(1), 36-50.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deprem Mühendisliği, Yapı Mühendisliği
Bölüm Research Articles
Yazarlar

Enes Arkan 0000-0002-6588-7234

Ercan Işık 0000-0001-8057-065X

Fatih Avcıl 0000-0001-6550-550X

Rabia İzol 0000-0002-7568-3817

Aydın Büyüksaraç 0000-0002-4279-4158

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 26 Aralık 2023
Gönderilme Tarihi 5 Aralık 2023
Kabul Tarihi 21 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

IEEE E. Arkan, E. Işık, F. Avcıl, R. İzol, ve A. Büyüksaraç, “Seismic Damages in Masonry Structural Walls and Solution Suggestions”, APJHAD, c. 4, sy. 2, ss. 49–64, 2023, doi: 10.52114/apjhad.1400644.
Academic Platform Journal of Natural Hazards and Disaster Management (APJHAD)