İnceleme Makalesi
BibTex RIS Kaynak Göster

Assessment of tunnel stability based on short- and long-term parameters

Yıl 2021, Cilt: 4 Sayı: 1, 14 - 30, 30.06.2021

Öz

Kaynakça

  • Akgün, H., Muratlı, SW., Koçkar, M.K., 2014. Geotechnical investigations and preliminary support design for the Geçilmez tunnel: A case study along the Black Sea coastal highway, Giresun, northern Turkey. Tunnelling and Underground Space Technology, 40, 277 – 299.
  • Aygar, E., 2000. (A Critical Approach to the New Austrian Tunneling Method in Bolu Tunnels)’ Hacettepe University, The Department of Mining Engineering, Ankara, p 276.
  • Aygar, E., 2007. Investigation of the Bolu Tunnel Stability by Means of Static and Dynamic Analyses’ Hacettepe University, The Department of Mining Engineering, Ankara, pp 273.
  • Aygar, E.B., Gokceoglu, C., 2019. Ankara-İstanbul High Speed Railway Projects, The Problems Encountered at T13 Tunnel Fault Zone and Solution Suggestions, Proceedings of the 26th International Mining Congress and Exhibition of Turkey, 197–205
  • Aygar, E.B., Gökçeoğlu, C., 2020a. Bir tünelde portal ve tünel stabilitesi ilişkisi (Ankara – Sivas Yüksek Hızlı Demiryolu Projesi, T3 Tüneli). Madencilik, 2020, 59 (3), 157-168, https://doi.org/10.30797/madencilik.792389
  • Aygar, E.B., Gokceoglu, C., 2020b. Problems Encountered during a Railway Tunnel Excavation in Squeezing and Swelling Materials and Possible Engineering Measures: A Case Study from Turkey. Sustainability, 12 (3), 1166, https://doi.org/10.3390/su12031166
  • Aygar, E.B., Gokceoglu, C., 2020c. Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon). Yer Altı Kaynakları Dergisi, 18, 97-118.
  • Aygar, E.B., Gokceoglu, C., 2020d. Kohezyonsuz zeminde tünelcilik (T12 Tüneli, Bursa - Yenişehir Yüksek Hızlı Tren Demiryolu Projesi): Sorunlar ve Çözümler. Yer Mühendisliği, 14 (8), 26 – 34.
  • Barton, N.R., Lien, R. and Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189-239.
  • Barton, N., Løset, F., Lien, R. and Lunde, J. 1980. Application of the Q-system in design decisions. In Subsurface space, (ed. M. Bergman) 2, 553-561. New York: Pergamon.
  • Bieniawski, Z.T. 1973. Engineering classification of jointed rock masses. Trans S. Afr. Inst. Civ. Engrs 15, 335-344.
  • Bieniawski, Z.T. 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema.
  • Bieniawski, Z.T. 1989. Engineering rock mass classifications. New York: Wiley.
  • Brady, B.H.G. and Brown, E.T. 1985. Rock mechanics for underground mining. London: Allen and Unwin.
  • Carranza-Torres, C. and Fairhurst, C. 2000. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences 36(6), 777–809.
  • Carranza-Torres, C. 2004. Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion. Proceedings of the ISRM SINOROCK2004 Symposium China, May 2004. Edited by J.A. Hudson and F. Xia-Ting. International Journal of Rock Mechanics and Mining Sciences 41(3), 480–481.
  • Carranza- Torres, C., and Diederichs, M. 2009. Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets. Tunnelling and Underground Space Technology 24, 506– 532.
  • Das, R., Singh, P.K., Kainthola, A., Panthee, S., 2017, Numerical analysis of surface subsidence in asymmetric parallel highway tunnels, Journal of Rock Mechanics and Geotechnical Engineering 9 (2017) 170e179
  • Grimstad, E. and Barton, N. 1993. Updating the Q-System for NMT. Proc. int. symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes. 46-66. Oslo: Norwegian Concrete Assn.
  • Hoek, E., and Brown, E.T. 1980. Underground excavations in rock. London: Instn Min. Metall.
  • Hoek, E., 2007, Practical Rock Engineering, p 341, https://www.rocscience.com/assets/resources/learning/ hoek/Practical-Rock-Engineering-Full-Text.pdf
  • Hoek, E., 2012, Rock Support Interaction analysis for tunnels in weak rcok masses, https://www.rocscience.com/documents/pdfs/rocnews/winter2012/Rock-Support-Interaction-Analysis-for-Tunnels-Hoek.pdf
  • Hoek, E. and Marinos, P. (2000). Predicting tunnel squeezing. Tunnels and Tunnelling International. Part 1 – November 2000, Part 2 – December 2000.
  • Hoek, E., Carranza-Torres, C., Diederichs, M.S., Corkum, B., 2008. Integration of geotechnical and structural design in tunnelling. In: Proceedings University of Minnesota 56th Annual Geotechnical Engineering Conference, 29 February 2008. Minneapolis, pp. 1–53. Available for downloading at Hoek’s Corner at <www.rocscience.com>.
  • Hoek, E and Guevara, R. 2009. Overcoming squeezing in the Yacambú-Quibor tunnel, Venezuela. Rock Mechanics and Rock Engineering, Vol. 42, No. 2, 389 - 418.
  • Itasca, 2002. Flac3d User Manual, Getting Started.
  • Koçkar, M.K., Akgün, H., 2003. Methodology for tunnel and portal support design in mixed limestone, schist and phyllite conditions: a case study in Turkey. International Journal of Rock Mechanics & Mining Sciences, 40, 173 – 196.
  • Komu, M.P., Guney, U., Kilickaya, T.E., Gokceoglu, C., 2020. Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey). Geotechnical and Geological Engineering, 38, 1237-1254.
  • Moussaei, N., Sharifzadeh, M., Sahriar, K., Khosravi, M.H., 2019. A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modelling. Tunnelling and Underground Space Technology, 91, 103017.
  • Müller L. Removing misconceptions on the new Austrian tunnelling method. Tunnels & Tunnelling International 1978;10(8):29–32.
  • Oke, J., Vlachopoulos, N., Diederichs, M.S., 2012. Improved input parameters and numerical analysis techniques for temporary support of underground excavations in weak rock. In: RockEng. Edmonton.
  • Oke J, Vlachopoulos N, Diederichs MS., 2013a. The reduction of surface settlement by employing umbrella arch systems. In: GeoMontreal 2013. Montreal: Canadian Geotechnical Society.
  • Oke J, Vlachopoulos N, Diederichs MS., 2013b. Modification of the supported longitudinal displacement profile for tunnel face convergence in weak rock. In: 47th US rock mechanics/geomechanics symposium. San Francisco: American Rock Mechanics Association.
  • Oke J, Vlachopoulos N, Marinos V., 2014a. The pre-support nomenclature and support selection methodology for temporary support systems within weak rock masses. Journal of Geotechnical and Geological Engineering, 32(1), 97-130.
  • Oke J, Vlachopoulos N, Diederichs MS., 2014b. Semi-analytical model of an umbrella arch employed in hydrostatic tunnelling conditions. In: 48th US rock mechanics/ geomechanics symposium. Minneapolis: American Rock Mechanics Association.
  • Panthi, K.K., Basnet, C.B., 2019. Evaluation of earthquake impact on magnitude of the minimum principal stress along a shotcrete lined pressure tunnel in Nepal. Journal of Rock Mechanics and Geotechnical Engineering. 11, 920-934.
  • Rabcewicz, L.v., 1964a, The New Austrian Tunnelling Method, Part One, Water Power, pp 453-457
  • Rabcewicz, L.v.,1964b, The New Austrian Tunnelling Method, Part Two, Water Power, pp 511-515
  • Rabcewicz, L.v., 1965. The New Austrian Tunnelling Method, Part Three, Water Power, pp 19-24 Rabcewicz L, Golser J. Principles of dimensioning the supporting system for the “New Austrian Tunnelling Method”. Water Power, Marc 1973; 88-93.
  • Sial Yerbilimleri Ltd. Şti. 2010, 21 nolu tünel jeolojik-jeoteknik raporu ve tünel proje hesap raporu (Km:204+258.27-Km:205+530.00), EKD-VZR-BT21-JER-001-U0
  • Sial Yerbilimleri Ltd. Şti. 2012, Tünel 21, Km:205+712.60 ile km:205+247.90 arası fay bölgesinde uygulanacak destek sistemi raporu
  • Schubert, W. 1996. Dealing with squeezing conditions in Alpine tunnels.” Rock Mech. Rock Engng. 29(3), 145-153. Stroud M.A. 1975 The standard penetration test in insensitive clays and soft rocks, Proceedings, European Symposium on Penetration Testing, Vol.2.2, Stockholm, Sweden, pp:367-375 .
  • Taromi M., Eftekhari A., Hamidi J. K., Eghbali A., 2018, Tunnel designing and construction process in difficult ground conditions using Controlled Deformations (ADECO) approach; a Case Study, International Journal of Mining and Geo-Engineering, IJMGE 52-2, 149–160
  • Terzaghi, K. 1946. Rock defects and loads on tunnel supports. In Rock tunneling with steel supports, (eds R. V. Proctor and T. L. White) 1, 17-99. Youngstown, OH: Commercial Shearing and Stamping Company.
  • Terzaghi K., Peck R.B., Mesri G. 1996 Soil Mechanics in Engineering Practice, John Wiley & Sons, Inc.
  • Unlu, T., Gercek, H.,2003, Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel Tunnelling and Underground Space Technology 18, 547– 553.
  • Vlachopoulos, N., Diederichs, M.S., 2009. Improved Longitudinal Displacement Profiles for Convergence Confinement Analysis of Deep Tunnels. Rock Mech.& Rock Eng.. 42:2, 131-146.
  • Zou, J., Chen, G., Qian, Z., 2019. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106, 1-17.

Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi

Yıl 2021, Cilt: 4 Sayı: 1, 14 - 30, 30.06.2021

Öz

Günümüzde zayıf zeminler ile fay zonu içerisinde açılan tünellerin sayısına bağlı olarak, bu tür ortamlarda tünelcilik açısından yaşanan sorunlar ve çözüm önerileri gittikçe artmaktadır. Aktif tektonik zonları içeren ülkemizde, fay zonlarında açılan tünellerden elde edilen tecrübeler tünelcilik açısından büyük öneme sahiptir. Yüksek hızlı tren projeleri kapsamında açılan tünellerde güzergahın kurp yarıçaplarının büyük olması sebebiyle, güzegah seçiminde ciddi sınırlamalar bulunmaktadır. Bu sebeple zayıf zeminler ile fay zonlarından kaçınılması çoğu zaman mümkün olamamaktadır. Fay zonu ve/veya zayıf zon geçişlerinde çoğu zaman özel destek sistemi tasarımı gerekmekte olup, tünel kazıları sırasında karşılaşılan sorunların çoğunluğu bu kesimlerde yaşanmaktadır. Sıklıkla karşılaşılan sorunlara ek olarak, zayıf zeminlerde kısa ve uzun dönem parametrelerine göre de destek sistemlerinin değerlendirilmesi de gerekmektedir. Özellikle tünel aynasında yapılan ayna zemin çivileri ile sürenlerin kısa dönem parameterlerine göre değerlendirilmesi gerekirken iç kaplamanın ise uzun dönem parametrelerine göre değerlendirilmesi gerekmektedir. Tüm bu hususlar dikkate alınarak bu çalışmada, Ankara-İstanbul Yüksek Hızlı Tren projesi kapsamında açılan T21 tünelinde karşılaşılan fay zonu geçişinde uygulanan destek sistemleri incelenmesi, FLAC 3d programı ile kısa ve uzun dönem parametrelerine göre analitik çözümlemeler ile 3 boyutlu nümerik analizler yapılması ve sonuçların tünelcilik pratiği açısından tartışılması amaçlanmıştır.

Kaynakça

  • Akgün, H., Muratlı, SW., Koçkar, M.K., 2014. Geotechnical investigations and preliminary support design for the Geçilmez tunnel: A case study along the Black Sea coastal highway, Giresun, northern Turkey. Tunnelling and Underground Space Technology, 40, 277 – 299.
  • Aygar, E., 2000. (A Critical Approach to the New Austrian Tunneling Method in Bolu Tunnels)’ Hacettepe University, The Department of Mining Engineering, Ankara, p 276.
  • Aygar, E., 2007. Investigation of the Bolu Tunnel Stability by Means of Static and Dynamic Analyses’ Hacettepe University, The Department of Mining Engineering, Ankara, pp 273.
  • Aygar, E.B., Gokceoglu, C., 2019. Ankara-İstanbul High Speed Railway Projects, The Problems Encountered at T13 Tunnel Fault Zone and Solution Suggestions, Proceedings of the 26th International Mining Congress and Exhibition of Turkey, 197–205
  • Aygar, E.B., Gökçeoğlu, C., 2020a. Bir tünelde portal ve tünel stabilitesi ilişkisi (Ankara – Sivas Yüksek Hızlı Demiryolu Projesi, T3 Tüneli). Madencilik, 2020, 59 (3), 157-168, https://doi.org/10.30797/madencilik.792389
  • Aygar, E.B., Gokceoglu, C., 2020b. Problems Encountered during a Railway Tunnel Excavation in Squeezing and Swelling Materials and Possible Engineering Measures: A Case Study from Turkey. Sustainability, 12 (3), 1166, https://doi.org/10.3390/su12031166
  • Aygar, E.B., Gokceoglu, C., 2020c. Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon). Yer Altı Kaynakları Dergisi, 18, 97-118.
  • Aygar, E.B., Gokceoglu, C., 2020d. Kohezyonsuz zeminde tünelcilik (T12 Tüneli, Bursa - Yenişehir Yüksek Hızlı Tren Demiryolu Projesi): Sorunlar ve Çözümler. Yer Mühendisliği, 14 (8), 26 – 34.
  • Barton, N.R., Lien, R. and Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189-239.
  • Barton, N., Løset, F., Lien, R. and Lunde, J. 1980. Application of the Q-system in design decisions. In Subsurface space, (ed. M. Bergman) 2, 553-561. New York: Pergamon.
  • Bieniawski, Z.T. 1973. Engineering classification of jointed rock masses. Trans S. Afr. Inst. Civ. Engrs 15, 335-344.
  • Bieniawski, Z.T. 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema.
  • Bieniawski, Z.T. 1989. Engineering rock mass classifications. New York: Wiley.
  • Brady, B.H.G. and Brown, E.T. 1985. Rock mechanics for underground mining. London: Allen and Unwin.
  • Carranza-Torres, C. and Fairhurst, C. 2000. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences 36(6), 777–809.
  • Carranza-Torres, C. 2004. Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion. Proceedings of the ISRM SINOROCK2004 Symposium China, May 2004. Edited by J.A. Hudson and F. Xia-Ting. International Journal of Rock Mechanics and Mining Sciences 41(3), 480–481.
  • Carranza- Torres, C., and Diederichs, M. 2009. Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets. Tunnelling and Underground Space Technology 24, 506– 532.
  • Das, R., Singh, P.K., Kainthola, A., Panthee, S., 2017, Numerical analysis of surface subsidence in asymmetric parallel highway tunnels, Journal of Rock Mechanics and Geotechnical Engineering 9 (2017) 170e179
  • Grimstad, E. and Barton, N. 1993. Updating the Q-System for NMT. Proc. int. symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes. 46-66. Oslo: Norwegian Concrete Assn.
  • Hoek, E., and Brown, E.T. 1980. Underground excavations in rock. London: Instn Min. Metall.
  • Hoek, E., 2007, Practical Rock Engineering, p 341, https://www.rocscience.com/assets/resources/learning/ hoek/Practical-Rock-Engineering-Full-Text.pdf
  • Hoek, E., 2012, Rock Support Interaction analysis for tunnels in weak rcok masses, https://www.rocscience.com/documents/pdfs/rocnews/winter2012/Rock-Support-Interaction-Analysis-for-Tunnels-Hoek.pdf
  • Hoek, E. and Marinos, P. (2000). Predicting tunnel squeezing. Tunnels and Tunnelling International. Part 1 – November 2000, Part 2 – December 2000.
  • Hoek, E., Carranza-Torres, C., Diederichs, M.S., Corkum, B., 2008. Integration of geotechnical and structural design in tunnelling. In: Proceedings University of Minnesota 56th Annual Geotechnical Engineering Conference, 29 February 2008. Minneapolis, pp. 1–53. Available for downloading at Hoek’s Corner at <www.rocscience.com>.
  • Hoek, E and Guevara, R. 2009. Overcoming squeezing in the Yacambú-Quibor tunnel, Venezuela. Rock Mechanics and Rock Engineering, Vol. 42, No. 2, 389 - 418.
  • Itasca, 2002. Flac3d User Manual, Getting Started.
  • Koçkar, M.K., Akgün, H., 2003. Methodology for tunnel and portal support design in mixed limestone, schist and phyllite conditions: a case study in Turkey. International Journal of Rock Mechanics & Mining Sciences, 40, 173 – 196.
  • Komu, M.P., Guney, U., Kilickaya, T.E., Gokceoglu, C., 2020. Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey). Geotechnical and Geological Engineering, 38, 1237-1254.
  • Moussaei, N., Sharifzadeh, M., Sahriar, K., Khosravi, M.H., 2019. A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modelling. Tunnelling and Underground Space Technology, 91, 103017.
  • Müller L. Removing misconceptions on the new Austrian tunnelling method. Tunnels & Tunnelling International 1978;10(8):29–32.
  • Oke, J., Vlachopoulos, N., Diederichs, M.S., 2012. Improved input parameters and numerical analysis techniques for temporary support of underground excavations in weak rock. In: RockEng. Edmonton.
  • Oke J, Vlachopoulos N, Diederichs MS., 2013a. The reduction of surface settlement by employing umbrella arch systems. In: GeoMontreal 2013. Montreal: Canadian Geotechnical Society.
  • Oke J, Vlachopoulos N, Diederichs MS., 2013b. Modification of the supported longitudinal displacement profile for tunnel face convergence in weak rock. In: 47th US rock mechanics/geomechanics symposium. San Francisco: American Rock Mechanics Association.
  • Oke J, Vlachopoulos N, Marinos V., 2014a. The pre-support nomenclature and support selection methodology for temporary support systems within weak rock masses. Journal of Geotechnical and Geological Engineering, 32(1), 97-130.
  • Oke J, Vlachopoulos N, Diederichs MS., 2014b. Semi-analytical model of an umbrella arch employed in hydrostatic tunnelling conditions. In: 48th US rock mechanics/ geomechanics symposium. Minneapolis: American Rock Mechanics Association.
  • Panthi, K.K., Basnet, C.B., 2019. Evaluation of earthquake impact on magnitude of the minimum principal stress along a shotcrete lined pressure tunnel in Nepal. Journal of Rock Mechanics and Geotechnical Engineering. 11, 920-934.
  • Rabcewicz, L.v., 1964a, The New Austrian Tunnelling Method, Part One, Water Power, pp 453-457
  • Rabcewicz, L.v.,1964b, The New Austrian Tunnelling Method, Part Two, Water Power, pp 511-515
  • Rabcewicz, L.v., 1965. The New Austrian Tunnelling Method, Part Three, Water Power, pp 19-24 Rabcewicz L, Golser J. Principles of dimensioning the supporting system for the “New Austrian Tunnelling Method”. Water Power, Marc 1973; 88-93.
  • Sial Yerbilimleri Ltd. Şti. 2010, 21 nolu tünel jeolojik-jeoteknik raporu ve tünel proje hesap raporu (Km:204+258.27-Km:205+530.00), EKD-VZR-BT21-JER-001-U0
  • Sial Yerbilimleri Ltd. Şti. 2012, Tünel 21, Km:205+712.60 ile km:205+247.90 arası fay bölgesinde uygulanacak destek sistemi raporu
  • Schubert, W. 1996. Dealing with squeezing conditions in Alpine tunnels.” Rock Mech. Rock Engng. 29(3), 145-153. Stroud M.A. 1975 The standard penetration test in insensitive clays and soft rocks, Proceedings, European Symposium on Penetration Testing, Vol.2.2, Stockholm, Sweden, pp:367-375 .
  • Taromi M., Eftekhari A., Hamidi J. K., Eghbali A., 2018, Tunnel designing and construction process in difficult ground conditions using Controlled Deformations (ADECO) approach; a Case Study, International Journal of Mining and Geo-Engineering, IJMGE 52-2, 149–160
  • Terzaghi, K. 1946. Rock defects and loads on tunnel supports. In Rock tunneling with steel supports, (eds R. V. Proctor and T. L. White) 1, 17-99. Youngstown, OH: Commercial Shearing and Stamping Company.
  • Terzaghi K., Peck R.B., Mesri G. 1996 Soil Mechanics in Engineering Practice, John Wiley & Sons, Inc.
  • Unlu, T., Gercek, H.,2003, Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel Tunnelling and Underground Space Technology 18, 547– 553.
  • Vlachopoulos, N., Diederichs, M.S., 2009. Improved Longitudinal Displacement Profiles for Convergence Confinement Analysis of Deep Tunnels. Rock Mech.& Rock Eng.. 42:2, 131-146.
  • Zou, J., Chen, G., Qian, Z., 2019. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106, 1-17.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ebu Bekir Aygar

Candan Gökçeoğlu 0000-0003-4762-9933

Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 1

Kaynak Göster

APA Aygar, E. B., & Gökçeoğlu, C. (2021). Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 4(1), 14-30.
AMA Aygar EB, Gökçeoğlu C. Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. Haziran 2021;4(1):14-30.
Chicago Aygar, Ebu Bekir, ve Candan Gökçeoğlu. “Tünel Stabilitesinin kısa Ve Uzun dönem Parametreleri Ile değelendirilmesi”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4, sy. 1 (Haziran 2021): 14-30.
EndNote Aygar EB, Gökçeoğlu C (01 Haziran 2021) Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 1 14–30.
IEEE E. B. Aygar ve C. Gökçeoğlu, “Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 1, ss. 14–30, 2021.
ISNAD Aygar, Ebu Bekir - Gökçeoğlu, Candan. “Tünel Stabilitesinin kısa Ve Uzun dönem Parametreleri Ile değelendirilmesi”. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4/1 (Haziran 2021), 14-30.
JAMA Aygar EB, Gökçeoğlu C. Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2021;4:14–30.
MLA Aygar, Ebu Bekir ve Candan Gökçeoğlu. “Tünel Stabilitesinin kısa Ve Uzun dönem Parametreleri Ile değelendirilmesi”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 1, 2021, ss. 14-30.
Vancouver Aygar EB, Gökçeoğlu C. Tünel stabilitesinin kısa ve uzun dönem parametreleri ile değelendirilmesi. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2021;4(1):14-30.