Derleme
BibTex RIS Kaynak Göster

SPR biosensor applications for the detection of pathogenic microorganisms in the field of food safety and health

Yıl 2021, Cilt: 4 Sayı: 2, 50 - 63, 30.12.2021

Öz

Detection and quantification of pathogens has become a key point, especially in the food safety and health
applications. Since traditional methods such as ELISA and PCR used for the detection and analysis of these
microorganisms usually involve advanced culture techniques and various biochemical analyzes which are timeconsuming,
it is very important to produce materials that can detect pathogens quickly and sensitively as an
alternative to traditional methods. Surface Plasmon Resonance (SPR), one of the advanced sensor technologies, is
an optical method used to measure changes in the refractive index on a sensor surface to characterize
macromolecular interactions, and it is being used more and more in the label-free detection of microorganisms.
SPR technology has several advantages with its sensitive and effective results that allow the simultaneous detection
of different targets in a very short time. In this review, the use of SPR-based sensors and current studies for the
detection of pathogenic microorganisms in food safety and health applications are summarized.

Kaynakça

  • [1] Karlsson, R. (2004). SPR for molecular interaction analysis: a review of emerging application areas. Journal of Molecular Recognition, 17(3), 151-161.
  • [2] Miyazaki, C. M., Shimizu, F. M., Mejía-Salazar, J. R., Oliveira Jr, O. N., Ferreira, M. (2017). Surface plasmon resonance biosensor for enzymatic detection of small analytes. Nanotechnology, 28(14), 145501.
  • [3] Dudak, F. C., Boyacı, İ. H. (2007). Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Research International, 40(7), 803-807.
  • [4] Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539.
  • [5] Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108(2), 462-493.
  • [6] Liu, Y., Liu, Q., Chen, S., Cheng, F., Wang, H., Peng, W. (2015). Surface plasmon resonance biosensor based on smart phone platforms. Scientific Reports, 5(1), 1-9.
  • [7] McDonnell, J. M. (2001). Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Current Opinion in Chemical Biology, 5(5), 572-577.
  • [8] Piliarik, M., Vaisocherová, H., Homola, J. (2007). Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B: Chemical, 121(1), 187-193.
  • [9] Ward, L. D., Winzor, D. J. (2000). Relative merits of optical biosensors based on flow-cell and cuvette designs. Analytical Biochemistry, 285(2), 179-193.
  • [10] Dudak, F. C., Boyacı, İ. H. (2009). Rapid and label‐free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnology Journal: Healthcare Nutrition Technology, 4(7), 1003-1011.
  • [11] Waswa, J., Irudayaraj, J., DebRoy, C. (2007). Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Science and Technology, 40(2), 187-192.
  • [12] Oh, B. K., Kim, Y. K., Bae, Y. M., Lee, W. H., Choi, J. W. (2002). Detection of Escherichia coli O157: H7 using immunosensor based on surface plasmon resonance. Journal of Microbiology and Biotechnology, 12(5), 780-786.
  • [13] Subramanian, A., Irudayaraj, J., Ryan, T. (2006). A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157: H7. Biosensors and Bioelectronics, 21(7), 998-1006.
  • [14] Jyoung, J. Y., Hong, S., Lee, W., Choi, J. W. (2006). Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosensors and Bioelectronics, 21(12), 2315-2319.
  • [15] Waswa, J. W., Debroy, C., Irudayaraj, J. (2006). Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. Journal of Food Process Engineering, 29(4), 373-385.
  • [16] Lan, Y. B., Wang, S. Z., Yin, Y. G., Hoffmann, W. C., Zheng, X. Z. (2008). Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass. Journal of Bionic Engineering, 5(3), 239-246.
  • [17] Oh, B. K., Kim, Y. K., Park, K. W., Lee, W. H., Choi, J. W. (2004). Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics, 19(11), 1497-1504.
  • [18] Oh, B. K., Lee, W., Kim, Y. K., Lee, W. H., Choi, J. W. (2004). Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology, 111(1), 1-8.
  • [19] Oh, B. K., Lee, W., Chun, B. S., Bae, Y. M., Lee, W. H., Choi, J. W. (2005). Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 257, 369-374.
  • [20] Subramanian, A., Irudayaraj, J., Ryan, T. (2006). Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sensors and Actuators B: Chemical, 114(1), 192-198.
  • [21] Leonard, P., Hearty, S., Quinn, J., O’Kennedy, R. (2004). A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosensors and Bioelectronics, 19(10), 1331-1335.
  • [22]Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z., Yang, D. (2018). Engineering nanomaterials-based biosensors for food safety detection. Biosensors and Bioelectronics, 106, 122-128.
  • [23] Narsaiah, K., Jha, S. N., Bhardwaj, R., Sharma, R., & Kumar, R. (2012). Optical biosensors for food quality and safety assurance—a review. Journal of Food Science and Technology, 49(4), 383-406.
  • [24] Balbinot, S., Srivastav, A. M., Vidic, J., Abdulhalim, I., Manzano, M. (2021). Plasmonic biosensors for food control. Trends in Food Science & Technology.
  • [25] Wu, M. Y. C., Hsu, M. Y., Chen, S. J., Hwang, D. K., Yen, T. H., Cheng, C. M. (2017). Point-of-care detection devices for food safety monitoring: proactive disease prevention. Trends in Biotechnology, 35(4), 288-300.
  • [26] Thakur, M. S., Ragavan, K. V. (2013). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641.
  • [27] Kim, S. H., Lee, J., Lee, B. H., Song, C. S., Gu, M. B. (2019). Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosensors and Bioelectronics, 134, 123-129.
  • [28] Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529.
  • [29] Arya, S. K., Singh, A., Naidoo, R., Wu, P., McDermott, M. T., Evoy, S. (2011). Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst, 136(3), 486-492.
  • [30] European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA Journal, 16(12), e05500.
  • [31] Lachenmeier, D. W., Löbell-Behrends, S., Böse, W., Marx, G. (2013). Does European Union food policy privilege the internet market? Suggestions for a specialized regulatory framework. Food Control, 30(2), 705-713.
  • [32] Sharma, H., Mutharasan, R. (2013). Review of biosensors for foodborne pathogens and toxins. Sensors and Actuators B: Chemical, 183, 535-549.
  • [33] Burnham, P. M., Hendrixson, D. R. (2018). Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nature Reviews Microbiology, 16(9), 551-565.
  • [34] Shen, Y., Xu, L., Li, Y. (2021). Biosensors for rapid detection of Salmonella in food: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 149-197.
  • [35] Anonim 2021a, https://www.cdc.gov/foodsafety/foodborne-germs.html (21.12.2021)
  • [36] Anonim 2021b, https://www.cdc.gov/salmonella/ (21.12.2021)
  • [37] Soni, D. K., Ahmad, R., Dubey, S. K. (2018). Biosensor for the detection of Listeria monocytogenes: emerging trends. Critical Reviews in Microbiology, 44(5), 590-608.
  • [38]Anonim 2021c, http://www.bccdc.ca/health-info/diseases-conditions/bacillus-cereus#:~:text=Definition,ingestion%20of%20the%20contaminated%20food (21.12.2021)
  • [39] Harris, A. (2016). Clostridium botulinum. Encyclopedia of Food and Health, 141–145.
  • [40] Lund, B. M., Peck, M. W. (2013). Clostridium botulinum. Guide to Foodborne Pathogens, 91–111.
  • [41] Kadariya, J., Smith, T. C., Thapaliya, D. (2014). Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International, 2014.
  • [42] Hennekinne, J. A., De Buyser, M. L., Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4), 815-836.
  • [43] Fetsch, A., Johler, S. (2018). Staphylococcus aureus as a foodborne pathogen. Current Clinical Microbiology Reports, 5(2), 88-96.
  • [44] Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28(2), 232-254.
  • [45] Wei, D., Oyarzabal, O. A., Huang, T. S., Balasubramanian, S., Sista, S., Simonian, A. L. (2007). Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. Journal of Microbiological Methods, 69(1), 78-85.
  • [46] Zhang, X., Kitaoka, H., Tsuji, S., Tamai, M., Kobayashi, H., Honjoh, K. I., Miyamoto, T. (2014). Development of a simultaneous detection method for foodborne pathogens using surface plasmon resonance biosensors. Food Science and Technology Research, 20(2), 317-325.
  • [47] Farka, Z., Juřík, T., Pastucha, M., Skládal, P. (2016). Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk. Analytical Chemistry, 88(23), 11830-11836.
  • [48] Vaisocherová-Lísalová, H., Víšová, I., Ermini, M. L., Špringer, T., Song, X. C., Mrázek, J., Lamačováa, J., Lynn Jr., N.S., Šedivák, P., Homola, J. (2016). Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics, 80, 84-90.
  • [49] Khateb, H., Klös, G., Meyer, R. L., Sutherland, D. S. (2020). Development of a label-free LSPR-apta sensor for Staphylococcus aureus detection. ACS Applied Bio Materials, 3(5), 3066-3077.
  • [50] Erickson, D., Mandal, S., Yang, A. H., Cordovez, B. (2008). Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluidics and Nanofluidics, 4(1-2), 33-52.
  • [51] Altintas, Z., Uludag, Y., Gurbuz, Y., Tothill, I. E. (2011). Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen. Talanta, 86, 377-383.
  • [52] Puiu, M., Bala, C. (2016). SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors, 16(6), 870.
  • [53] Shi, L., Sun, Q., He, J. A., Xu, H., Liu, C., Zhao, C., Xu, Y.,Wu, C., Xiang, J.,Gu, D., Long, J., Lan, H. (2015). Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomedical Materials and Engineering, 26(1), 2207-2216.
  • [54] Wang, D. B., Bi, L. J., Zhang, Z. P., Chen, Y. Y., Yang, R. F., Wei, H. P., Zhou, Y.F., Zhang, X. E. (2009). Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst, 134(4), 738-742.
  • [55] Baccar, H., Mejri, M. B., Hafaiedh, I., Ktari, T., Aouni, M., Abdelghani, A. (2010). Surface plasmon resonance immunosensor for bacteria detection. Talanta, 82(2), 810-814.
  • [56] Wang, Y., Knoll, W., Dostalek, J. (2012). Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Analytical Chemistry, 84(19), 8345-8350.
  • [57] Struck, A. W., Axmann, M., Pfefferle, S., Drosten, C., Meyer, B. (2012). A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antiviral Research, 94(3), 288-296.
  • [58] Zidane, F., Zeder-Lutz, G., Altschuh, D., Girardet, J. M., Miclo, L., Corbier, C., Cakir-Kiefer, C. (2013). Surface plasmon resonance analysis of the binding mechanism of pharmacological and peptidic inhibitors to human somatic angiotensin I-converting enzyme. Biochemistry, 52(48), 8722-8731.
  • [59] Choi, Y. H., Lee, G. Y., Ko, H., Chang, Y. W., Kang, M. J., Pyun, J. C. (2014). Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosensors and Bioelectronics, 56, 286-294.
  • [60] Nguyen, V. T., Seo, H. B., Kim, B. C., Kim, S. K., Song, C. S., Gu, M. B. (2016). Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosensors and Bioelectronics, 86, 293-300.
  • [61] Chang, Y. F., Wang, W. H., Hong, Y. W., Yuan, R. Y., Chen, K. H., Huang, Y. W., Lu, P.L., Chen, Y.H., Chen, Y.M.A., Su, L.C., Wang, S. F. (2018). Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Analytical Chemistry, 90(3), 1861- 1869.
  • [62] Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221-224.
  • [63] Brielle, E. S., Schneidman-Duhovny, D., Linial, M. (2020). The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor. Viruses, 12(5), 497.

Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları

Yıl 2021, Cilt: 4 Sayı: 2, 50 - 63, 30.12.2021

Öz

Patojenlerin tespiti ve miktar analizi, özellikle gıda güvenliği ve sağlık uygulamalarında kilit nokta haline
gelmiştir. Bu mikroorganizmaların tespiti ve analizi için kullanılan ELISA ve PCR gibi geleneksel yöntemler
genellikle ileri kültür yöntemleri ve uzun zaman alan çeşitli biyokimyasal analizleri içerdiğinden, geleneksel
yöntemlere alternatif olarak hızlı ve hassas bir şekilde patojenleri tespit edebilen malzemelerin üretilmesi oldukça
önemlidir. İleri sensör teknolojilerinden biri olan yüzey plazmon rezonans (SPR), makromoleküler etkileşimleri
karakterize etmek amacıyla bir sensör yüzeyinde meydana gelen kırılma indisi değişikliklerini ölçmek için
kullanılan optik bir yöntemdir ve mikroorganizmaların etiketsiz tespiti için bu yöntemden her geçen gün daha fazla
yararlanılmaktadır. Oldukça kısa sürede, farklı hedeflerin aynı anda algılanmasına dahi izin veren hassas ve etkili
sonuçlarıyla SPR teknolojisi çeşitli avantajlara sahiptir. Bu derlemede gıda güvenliği ve sağlık uygulamalarında
patojen mikroorganizmaların tespiti için SPR biyosensörlerin kullanımı ve mevcut çalışmalar özetlenmiştir.

Kaynakça

  • [1] Karlsson, R. (2004). SPR for molecular interaction analysis: a review of emerging application areas. Journal of Molecular Recognition, 17(3), 151-161.
  • [2] Miyazaki, C. M., Shimizu, F. M., Mejía-Salazar, J. R., Oliveira Jr, O. N., Ferreira, M. (2017). Surface plasmon resonance biosensor for enzymatic detection of small analytes. Nanotechnology, 28(14), 145501.
  • [3] Dudak, F. C., Boyacı, İ. H. (2007). Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Research International, 40(7), 803-807.
  • [4] Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539.
  • [5] Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108(2), 462-493.
  • [6] Liu, Y., Liu, Q., Chen, S., Cheng, F., Wang, H., Peng, W. (2015). Surface plasmon resonance biosensor based on smart phone platforms. Scientific Reports, 5(1), 1-9.
  • [7] McDonnell, J. M. (2001). Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Current Opinion in Chemical Biology, 5(5), 572-577.
  • [8] Piliarik, M., Vaisocherová, H., Homola, J. (2007). Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B: Chemical, 121(1), 187-193.
  • [9] Ward, L. D., Winzor, D. J. (2000). Relative merits of optical biosensors based on flow-cell and cuvette designs. Analytical Biochemistry, 285(2), 179-193.
  • [10] Dudak, F. C., Boyacı, İ. H. (2009). Rapid and label‐free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnology Journal: Healthcare Nutrition Technology, 4(7), 1003-1011.
  • [11] Waswa, J., Irudayaraj, J., DebRoy, C. (2007). Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Science and Technology, 40(2), 187-192.
  • [12] Oh, B. K., Kim, Y. K., Bae, Y. M., Lee, W. H., Choi, J. W. (2002). Detection of Escherichia coli O157: H7 using immunosensor based on surface plasmon resonance. Journal of Microbiology and Biotechnology, 12(5), 780-786.
  • [13] Subramanian, A., Irudayaraj, J., Ryan, T. (2006). A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157: H7. Biosensors and Bioelectronics, 21(7), 998-1006.
  • [14] Jyoung, J. Y., Hong, S., Lee, W., Choi, J. W. (2006). Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosensors and Bioelectronics, 21(12), 2315-2319.
  • [15] Waswa, J. W., Debroy, C., Irudayaraj, J. (2006). Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. Journal of Food Process Engineering, 29(4), 373-385.
  • [16] Lan, Y. B., Wang, S. Z., Yin, Y. G., Hoffmann, W. C., Zheng, X. Z. (2008). Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass. Journal of Bionic Engineering, 5(3), 239-246.
  • [17] Oh, B. K., Kim, Y. K., Park, K. W., Lee, W. H., Choi, J. W. (2004). Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics, 19(11), 1497-1504.
  • [18] Oh, B. K., Lee, W., Kim, Y. K., Lee, W. H., Choi, J. W. (2004). Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology, 111(1), 1-8.
  • [19] Oh, B. K., Lee, W., Chun, B. S., Bae, Y. M., Lee, W. H., Choi, J. W. (2005). Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 257, 369-374.
  • [20] Subramanian, A., Irudayaraj, J., Ryan, T. (2006). Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sensors and Actuators B: Chemical, 114(1), 192-198.
  • [21] Leonard, P., Hearty, S., Quinn, J., O’Kennedy, R. (2004). A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosensors and Bioelectronics, 19(10), 1331-1335.
  • [22]Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z., Yang, D. (2018). Engineering nanomaterials-based biosensors for food safety detection. Biosensors and Bioelectronics, 106, 122-128.
  • [23] Narsaiah, K., Jha, S. N., Bhardwaj, R., Sharma, R., & Kumar, R. (2012). Optical biosensors for food quality and safety assurance—a review. Journal of Food Science and Technology, 49(4), 383-406.
  • [24] Balbinot, S., Srivastav, A. M., Vidic, J., Abdulhalim, I., Manzano, M. (2021). Plasmonic biosensors for food control. Trends in Food Science & Technology.
  • [25] Wu, M. Y. C., Hsu, M. Y., Chen, S. J., Hwang, D. K., Yen, T. H., Cheng, C. M. (2017). Point-of-care detection devices for food safety monitoring: proactive disease prevention. Trends in Biotechnology, 35(4), 288-300.
  • [26] Thakur, M. S., Ragavan, K. V. (2013). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641.
  • [27] Kim, S. H., Lee, J., Lee, B. H., Song, C. S., Gu, M. B. (2019). Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosensors and Bioelectronics, 134, 123-129.
  • [28] Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529.
  • [29] Arya, S. K., Singh, A., Naidoo, R., Wu, P., McDermott, M. T., Evoy, S. (2011). Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst, 136(3), 486-492.
  • [30] European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA Journal, 16(12), e05500.
  • [31] Lachenmeier, D. W., Löbell-Behrends, S., Böse, W., Marx, G. (2013). Does European Union food policy privilege the internet market? Suggestions for a specialized regulatory framework. Food Control, 30(2), 705-713.
  • [32] Sharma, H., Mutharasan, R. (2013). Review of biosensors for foodborne pathogens and toxins. Sensors and Actuators B: Chemical, 183, 535-549.
  • [33] Burnham, P. M., Hendrixson, D. R. (2018). Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nature Reviews Microbiology, 16(9), 551-565.
  • [34] Shen, Y., Xu, L., Li, Y. (2021). Biosensors for rapid detection of Salmonella in food: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 149-197.
  • [35] Anonim 2021a, https://www.cdc.gov/foodsafety/foodborne-germs.html (21.12.2021)
  • [36] Anonim 2021b, https://www.cdc.gov/salmonella/ (21.12.2021)
  • [37] Soni, D. K., Ahmad, R., Dubey, S. K. (2018). Biosensor for the detection of Listeria monocytogenes: emerging trends. Critical Reviews in Microbiology, 44(5), 590-608.
  • [38]Anonim 2021c, http://www.bccdc.ca/health-info/diseases-conditions/bacillus-cereus#:~:text=Definition,ingestion%20of%20the%20contaminated%20food (21.12.2021)
  • [39] Harris, A. (2016). Clostridium botulinum. Encyclopedia of Food and Health, 141–145.
  • [40] Lund, B. M., Peck, M. W. (2013). Clostridium botulinum. Guide to Foodborne Pathogens, 91–111.
  • [41] Kadariya, J., Smith, T. C., Thapaliya, D. (2014). Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International, 2014.
  • [42] Hennekinne, J. A., De Buyser, M. L., Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4), 815-836.
  • [43] Fetsch, A., Johler, S. (2018). Staphylococcus aureus as a foodborne pathogen. Current Clinical Microbiology Reports, 5(2), 88-96.
  • [44] Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28(2), 232-254.
  • [45] Wei, D., Oyarzabal, O. A., Huang, T. S., Balasubramanian, S., Sista, S., Simonian, A. L. (2007). Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. Journal of Microbiological Methods, 69(1), 78-85.
  • [46] Zhang, X., Kitaoka, H., Tsuji, S., Tamai, M., Kobayashi, H., Honjoh, K. I., Miyamoto, T. (2014). Development of a simultaneous detection method for foodborne pathogens using surface plasmon resonance biosensors. Food Science and Technology Research, 20(2), 317-325.
  • [47] Farka, Z., Juřík, T., Pastucha, M., Skládal, P. (2016). Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk. Analytical Chemistry, 88(23), 11830-11836.
  • [48] Vaisocherová-Lísalová, H., Víšová, I., Ermini, M. L., Špringer, T., Song, X. C., Mrázek, J., Lamačováa, J., Lynn Jr., N.S., Šedivák, P., Homola, J. (2016). Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics, 80, 84-90.
  • [49] Khateb, H., Klös, G., Meyer, R. L., Sutherland, D. S. (2020). Development of a label-free LSPR-apta sensor for Staphylococcus aureus detection. ACS Applied Bio Materials, 3(5), 3066-3077.
  • [50] Erickson, D., Mandal, S., Yang, A. H., Cordovez, B. (2008). Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluidics and Nanofluidics, 4(1-2), 33-52.
  • [51] Altintas, Z., Uludag, Y., Gurbuz, Y., Tothill, I. E. (2011). Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen. Talanta, 86, 377-383.
  • [52] Puiu, M., Bala, C. (2016). SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors, 16(6), 870.
  • [53] Shi, L., Sun, Q., He, J. A., Xu, H., Liu, C., Zhao, C., Xu, Y.,Wu, C., Xiang, J.,Gu, D., Long, J., Lan, H. (2015). Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomedical Materials and Engineering, 26(1), 2207-2216.
  • [54] Wang, D. B., Bi, L. J., Zhang, Z. P., Chen, Y. Y., Yang, R. F., Wei, H. P., Zhou, Y.F., Zhang, X. E. (2009). Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst, 134(4), 738-742.
  • [55] Baccar, H., Mejri, M. B., Hafaiedh, I., Ktari, T., Aouni, M., Abdelghani, A. (2010). Surface plasmon resonance immunosensor for bacteria detection. Talanta, 82(2), 810-814.
  • [56] Wang, Y., Knoll, W., Dostalek, J. (2012). Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Analytical Chemistry, 84(19), 8345-8350.
  • [57] Struck, A. W., Axmann, M., Pfefferle, S., Drosten, C., Meyer, B. (2012). A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antiviral Research, 94(3), 288-296.
  • [58] Zidane, F., Zeder-Lutz, G., Altschuh, D., Girardet, J. M., Miclo, L., Corbier, C., Cakir-Kiefer, C. (2013). Surface plasmon resonance analysis of the binding mechanism of pharmacological and peptidic inhibitors to human somatic angiotensin I-converting enzyme. Biochemistry, 52(48), 8722-8731.
  • [59] Choi, Y. H., Lee, G. Y., Ko, H., Chang, Y. W., Kang, M. J., Pyun, J. C. (2014). Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosensors and Bioelectronics, 56, 286-294.
  • [60] Nguyen, V. T., Seo, H. B., Kim, B. C., Kim, S. K., Song, C. S., Gu, M. B. (2016). Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosensors and Bioelectronics, 86, 293-300.
  • [61] Chang, Y. F., Wang, W. H., Hong, Y. W., Yuan, R. Y., Chen, K. H., Huang, Y. W., Lu, P.L., Chen, Y.H., Chen, Y.M.A., Su, L.C., Wang, S. F. (2018). Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Analytical Chemistry, 90(3), 1861- 1869.
  • [62] Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221-224.
  • [63] Brielle, E. S., Schneidman-Duhovny, D., Linial, M. (2020). The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor. Viruses, 12(5), 497.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme
Yazarlar

Kardelen Cemek 0000-0003-2841-2720

Betül Ünal Bu kişi benim 0000-0003-0371-719X

Okan Zenger Bu kişi benim 0000-0002-5669-0325

Gözde Baydemir Peşint 0000-0001-8668-8296

Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Cemek, K., Ünal, B., Zenger, O., Baydemir Peşint, G. (2021). Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 4(2), 50-63.
AMA Cemek K, Ünal B, Zenger O, Baydemir Peşint G. Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. Aralık 2021;4(2):50-63.
Chicago Cemek, Kardelen, Betül Ünal, Okan Zenger, ve Gözde Baydemir Peşint. “Gıda güvenliği Ve sağlık alanında Patojen mikroorganizmaların Tespitine yönelik SPR biyosensör Uygulamaları”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4, sy. 2 (Aralık 2021): 50-63.
EndNote Cemek K, Ünal B, Zenger O, Baydemir Peşint G (01 Aralık 2021) Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 2 50–63.
IEEE K. Cemek, B. Ünal, O. Zenger, ve G. Baydemir Peşint, “Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 2, ss. 50–63, 2021.
ISNAD Cemek, Kardelen vd. “Gıda güvenliği Ve sağlık alanında Patojen mikroorganizmaların Tespitine yönelik SPR biyosensör Uygulamaları”. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4/2 (Aralık 2021), 50-63.
JAMA Cemek K, Ünal B, Zenger O, Baydemir Peşint G. Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2021;4:50–63.
MLA Cemek, Kardelen vd. “Gıda güvenliği Ve sağlık alanında Patojen mikroorganizmaların Tespitine yönelik SPR biyosensör Uygulamaları”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 2, 2021, ss. 50-63.
Vancouver Cemek K, Ünal B, Zenger O, Baydemir Peşint G. Gıda güvenliği ve sağlık alanında patojen mikroorganizmaların tespitine yönelik SPR biyosensör uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2021;4(2):50-63.