Isolation, Molecular Identification, and Antimicrobial Properties of Bacillus velezensis from Endemic Allium tuncelianum Soil
Yıl 2025,
Cilt: 26 Sayı: 2, 370 - 377, 15.10.2025
Altuğ Karaman
,
Şükran Kılıç
,
Halit Yücel
,
Ferit Can Yazdıç
,
Fadime Yazdıc
Öz
Antibiotic resistance is a growing global concern that requires the discovery of new antimicrobial agents. Bacillus velezensis, a spore-forming gram-positive bacterium, is known for producing bioactive compounds such as lipopeptides (surfactin, phenjicin, iturin) and polyketides (difficidin, macrolactin). These substances exhibit broad spectrum antimicrobial properties, suppress plant pathogens and promote plant growth. This study investigates the isolation, identification and antimicrobial potential of B. velezensis from soil associated with the endemic Allium tuncelianum in Türkiye. B. velezensis strain ŞK_B3 was identified using 16S rDNA sequencing and tested for antimicrobial activity against gram positive (Staphylococcus aureus, Bacillus subtilis) and gram negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Although it has moderate activity compared to standard antibiotics such as streptomycin and penicillin, its activity against gram-positive bacteria has been found to be particularly remarkable. The results showed that it has moderate inhibitory activity especially against gram-positive bacteria. This highlights its potential as a biocontrol agent and a source of new antibiotics in agriculture. Further studies are needed to elucidate the active compounds and to increase the antimicrobial activity.
Proje Numarası
1919B012220217
Kaynakça
-
Alenezi FN, Slama HB, Bouket AC, Cherif-Silini H, Silini A, Luptakova L …Belbahri L (2021) Bacillus velezensis: a treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. Forests, 12(12):1714. https://doi.org/10.3390/f12121714
-
Allen HK, Levine UY, Looft T, Bandrick M, Casey TA (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol., 21:114–119. http://dx.doi.org/10.1016/j.tim.2012.11.001
-
Alyousif NA (2022) Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas Journal of Biological Diversity, 23(2). https://doi.org/10.13057/biodiv/d230209
-
Bartoš O, Chmel M, Swierczková I (2024) The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification. Scientific Reports, 14(1):9067. https://doi.org/10.1038/s41598-024-59667-3
-
Bektas I, Yazdıç FC, Kusek M (2024) Molecular characterization of apple endophytic bacteria and biological effect on Alternaria rot on apple. Journal of Phytopathology, 172(3):e13323. https://doi.org/10.1111/jph.13323
-
Byun H, Brockett MR, Pu Q, Hrycko AJ, Beld J, Zhu J (2023) An intestinal Bacillus velezensis isolate displays broad-spectrum antibacterial activity and prevents infection of both gram-positive and gram-negative pathogens in vivo. Journal of Bacteriology, 205(6):e00133-23. https://doi.org/10.1128/jb.00133-23
-
Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep., 8: 4360. https://doi.org/10.1038/s41598-018-22782-z
-
Collins CH, Lyne PM (1970) Microbiological methods.
-
Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom. Int. J. Syst. Evol.
Microbiol., 66: 1212–1217. https://doi.org/10.1099/ijsem.0.000858
-
Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiology, 8:22. https://doi.org/10.3389/fmicb.2017.00022
-
Fazle Rabbee M, Baek KH (2020) Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications.Molecules,25(21):4973.https://doi.org/10.3390/molecules25214973
-
Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O (2019) Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiology, 19:1-14. https://doi.org/10.1186/s12866-018-1380-8
-
Guo Y, Zhou J, Tang Y, Ma Q, Zhang J, Ji C (2020) Characterization and genome analysis of a zearalenone-degrading Bacillus velezensis strain ANSB01E. Curr. Microbiol., 77:273–278. https://doi.org/10.1007/s00284-019-01811-8
-
Karaman A, Taşar N, Yazdıç FC, Gedik O (2023) Hypericum L. cinsine ait bazı türlerin uçucu yağlarının antibakteriyel etkisi. Journal of the Institute of Science and Technology, 13(1):73-79. https://doi.org/10.21597/jist.1136935
-
Keshmirshekan A, de Souza Mesquita LM, Ventura SP (2024) Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends in Biotechnology, 42(8):986-1001. https://doi.org/10.1016/j.tibtech.2024.02.003
-
Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. Journal of Microbiology, 59:627-633. https://doi.org/10.1007/s12275-021-1161-1
-
Li S, Hu J, Ning S, Li W, Jiang R, Huang J, Li Y (2024) Bacillus velezensis HY19 as a sustainable preservative in post-harvest citrus (Citrus reticulata Blanco L.) fruit management. Food Control, 155:110068. https://doi.org/10.1016/j.foodcont.2023.110068
-
Liu Y, Teng K, Wang T, Dong E, Zhang M, Tao Y, Zhong J (2020) Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. Journal of Applied Microbiology, 128 (1):242-254. https://doi.org/10.1111/jam.14459
-
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y (2024) Comparative genomic analysis of Bacillus velezensis BRI3 reveals genes potentially associated with efficient antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes, 15(12):1588. https://doi.org/10.3390/genes15121588
-
Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev., 24:718–733. https://doi.org/10.1128/cmr.00002-11
-
Mauti EM, Mauti GO, Ouno GA, Mabeya BM, Kiprono S (2013) Molecular identification of soil bacteria by 16srDNA sequence. J. Natural Sci. Res, 3(14): 51-58.
-
McHugh TA, Compson Z, van Gestel N, Hayer M, Ballard L, Haverty M (2017) Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiology Ecology, 93(10):fix116. https://doi.org/10.1093/femsec/fix116
-
Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, Sabri S (2021) A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms, 9(3):1–18. https://doi.org/10.3390/microorganisms9030614
-
Pereira JQ, Ritter AC, Cibulski S, Brandelli A (2019) Functional genome annotation depicts probiotic properties of Bacillus velezensis FTC01. Gene, 713:143971. https://doi.org/10.1016/j.gene.2019.143971
-
Pournejati R, Gust R, Reza H, Heidari K (2019) An aminoglycoside antibacterial substance, S-137-R, produced by newly isolated Bacillus velezensis strain RP137 from the Persian Gulf. Curr Microbiol, 76(9):1028–37. https://doi.org/10.1007/s00284-019-01715-7
-
Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek K (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules, 24:046. https://doi.org/10.3390/molecules24061046
-
Rabbee MF, Hwang BS, Baek KH (2023) Bacillus velezensis: a beneficial biocontrol agent or facultative phytopathogen for sustainable agriculture. Agronomy, 13(3):840. https://doi.org/10.3390/agronomy13030840
-
Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E (2005) Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, Southern Spain. International Journal of Systematic and Evolutionary Microbiology, 55(1):191-195.https://doi.org/10.1099/ijs.0.63310-0
-
Taghavi S, Montazeri EA, Zekavati R, Saffarian P (2023) Identification of a new compound (4-fluoro-2-trifluoromethyl imidazole) extracted from a new halophilic Bacillus aquimaris strain persiangulf ta2 isolated from the Northern Persian Gulf with broad-spectrum antimicrobial effect. Iranian Journal of
Biotechnology,21(4):e3359.https://doi.org/10.30498/ijb.2023.338788.3359
-
Taşar N, Yazdıç FC, Karaman A, Gedik O (2023) Determining the antimicrobial activities of the essential oils of some taxa used as thyme. International Journal of Agriculture Forestry and Life Sciences, 7(2):52-55.
-
Tu M, Zhu Z, Zhao X, Cai H, Zhang Y, Yan Y (2024) The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum. Journal of Integrative Agriculture, 24(8): 3112–3126. https://doi.org/10.1016/j.jia.2024.09.027
-
Wang C, Zhao D, Qi G, Mao Z, Hu X, Du B, Liu K, Ding Y (2020) Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis rehd. and inhibiting Fusarium verticillioides. Frontiers in Microbiology, 10:2889. https://doi.org/10.3389/fmicb.2019.02889
-
Wang B, Liu C, Yang X, Wang Y, Zhang F, Cheng H, Zhang L, Liu H (2021) Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnology &Biotechnological Equipment, 35(1):895-904. https://doi.org/10.1080/13102818.2021.1934540
-
Yazdıç FC, Karaman A, Yazdıç F (2018) Farklı enerji kaynaklarında geliştirilen bazı bacillus suşları tarafından üretilen sekonder metabolitlerin antimikrobiyal etkisi. Turkish Journal of Agriculture-Food Science and Technology, 6 (10):1437-1443. https://doi.org/10.24925/turjaf.v6i10.1437-1443.2066
-
Yazdıç FC, Karaman A, Torgut G, Ayhan NK (2023) Antibacterial activity of novel synthesized chitosan‐graft‐poly (N‐tertiary butylacrylamide)/neodymium composites for biomedical application. Journal of Basic Microbiology, 63(9):1049-1056. https://doi.org/10.1002/jobm.202300004
-
Zhang D, Gao Y, Ke X, Yi M, Liu Z, Han X, Shi C, Lu M (2019) Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Applied Microbiology and Biotechnology, 103:9023-9035. https://doi.org/10.1007/s00253-019-10176-8
Endemik Tunceli Sarımsağı (Allium tuncelianum) Toprağından Bacillus velezensis İzolasyonu, Moleküler Tanımlanması ve Antimikrobiyal Özellikleri
Yıl 2025,
Cilt: 26 Sayı: 2, 370 - 377, 15.10.2025
Altuğ Karaman
,
Şükran Kılıç
,
Halit Yücel
,
Ferit Can Yazdıç
,
Fadime Yazdıc
Öz
Antibiyotik direnci, yeni antimikrobiyal ajanların keşfini gerektiren, her geçen gün büyüyen küresel bir endişedir. Spor oluşturan gram pozitif bir bakteri olan Bacillus velezensis, lipopeptitler (sürfaktin, fenjisin, iturin) ve poliketidler (difficidin, makrolaktin) gibi biyoaktif bileşikler üretmesiyle bilinmektedir. Bu maddeler geniş spektrumlu antimikrobiyal özellikler göstermekle beraber, bitki patojenlerini baskılar ve bitki büyümesini teşvik eder. Bu çalışmanın amacı, Türkiye'deki endemik Tunceli sarımsağı (Allium tuncelianum (Kollmann) Özhatay, B. Mathew ve Şiraneci) ile ilişkili topraktan B. velezensis'in izolasyonunu, tanımlanmasını ve antimikrobiyal potansiyelini araştırmaktadır. B. velezensis ŞK_B3 suşu, 16S rDNA dizilemesi kullanılarak tanımlandı ve gram pozitif (Staphylococcus aureus, Bacillus subtilis) ve gram negatif (Escherichia coli, Pseudomonas aeruginosa) bakterilere karşı antimikrobiyal aktivite açısından test edildi. Streptomisin ve penisilin gibi standart antibiyotiklere kıyasla orta düzeyde aktivite gösterse de, etkinliği özellikle gram pozitif bakterilere karşı dikkat çekici olduğu tespit edilmiştir. Sonuçlar, özellikle gram pozitif bakterilere karşı orta düzeyde inhibitör aktivitesi olduğunu göstermiştir. Bu da tarımda bir biyokontrol ajanı ve yeni antibiyotik kaynağı olarak potansiyelini vurgulamaktadır. Etkin bileşiklerin aydınlatılması ve antimikrobiyal etkinliğin artırılması için daha ileri çalışmalara ihtiyaç vardır.
Destekleyen Kurum
Bu çalışma, TÜBİTAK 2209/A - Üniversite Öğrencileri Yurt İçi Araştırma Projeleri Destek Programı (Proje No: 1919B012220217) kapsamında desteklenmektedir.
Proje Numarası
1919B012220217
Kaynakça
-
Alenezi FN, Slama HB, Bouket AC, Cherif-Silini H, Silini A, Luptakova L …Belbahri L (2021) Bacillus velezensis: a treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. Forests, 12(12):1714. https://doi.org/10.3390/f12121714
-
Allen HK, Levine UY, Looft T, Bandrick M, Casey TA (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol., 21:114–119. http://dx.doi.org/10.1016/j.tim.2012.11.001
-
Alyousif NA (2022) Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas Journal of Biological Diversity, 23(2). https://doi.org/10.13057/biodiv/d230209
-
Bartoš O, Chmel M, Swierczková I (2024) The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification. Scientific Reports, 14(1):9067. https://doi.org/10.1038/s41598-024-59667-3
-
Bektas I, Yazdıç FC, Kusek M (2024) Molecular characterization of apple endophytic bacteria and biological effect on Alternaria rot on apple. Journal of Phytopathology, 172(3):e13323. https://doi.org/10.1111/jph.13323
-
Byun H, Brockett MR, Pu Q, Hrycko AJ, Beld J, Zhu J (2023) An intestinal Bacillus velezensis isolate displays broad-spectrum antibacterial activity and prevents infection of both gram-positive and gram-negative pathogens in vivo. Journal of Bacteriology, 205(6):e00133-23. https://doi.org/10.1128/jb.00133-23
-
Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep., 8: 4360. https://doi.org/10.1038/s41598-018-22782-z
-
Collins CH, Lyne PM (1970) Microbiological methods.
-
Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom. Int. J. Syst. Evol.
Microbiol., 66: 1212–1217. https://doi.org/10.1099/ijsem.0.000858
-
Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiology, 8:22. https://doi.org/10.3389/fmicb.2017.00022
-
Fazle Rabbee M, Baek KH (2020) Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications.Molecules,25(21):4973.https://doi.org/10.3390/molecules25214973
-
Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O (2019) Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiology, 19:1-14. https://doi.org/10.1186/s12866-018-1380-8
-
Guo Y, Zhou J, Tang Y, Ma Q, Zhang J, Ji C (2020) Characterization and genome analysis of a zearalenone-degrading Bacillus velezensis strain ANSB01E. Curr. Microbiol., 77:273–278. https://doi.org/10.1007/s00284-019-01811-8
-
Karaman A, Taşar N, Yazdıç FC, Gedik O (2023) Hypericum L. cinsine ait bazı türlerin uçucu yağlarının antibakteriyel etkisi. Journal of the Institute of Science and Technology, 13(1):73-79. https://doi.org/10.21597/jist.1136935
-
Keshmirshekan A, de Souza Mesquita LM, Ventura SP (2024) Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends in Biotechnology, 42(8):986-1001. https://doi.org/10.1016/j.tibtech.2024.02.003
-
Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S (2021) Potential of Bacillus velezensis as a probiotic in animal feed: a review. Journal of Microbiology, 59:627-633. https://doi.org/10.1007/s12275-021-1161-1
-
Li S, Hu J, Ning S, Li W, Jiang R, Huang J, Li Y (2024) Bacillus velezensis HY19 as a sustainable preservative in post-harvest citrus (Citrus reticulata Blanco L.) fruit management. Food Control, 155:110068. https://doi.org/10.1016/j.foodcont.2023.110068
-
Liu Y, Teng K, Wang T, Dong E, Zhang M, Tao Y, Zhong J (2020) Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. Journal of Applied Microbiology, 128 (1):242-254. https://doi.org/10.1111/jam.14459
-
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y (2024) Comparative genomic analysis of Bacillus velezensis BRI3 reveals genes potentially associated with efficient antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes, 15(12):1588. https://doi.org/10.3390/genes15121588
-
Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev., 24:718–733. https://doi.org/10.1128/cmr.00002-11
-
Mauti EM, Mauti GO, Ouno GA, Mabeya BM, Kiprono S (2013) Molecular identification of soil bacteria by 16srDNA sequence. J. Natural Sci. Res, 3(14): 51-58.
-
McHugh TA, Compson Z, van Gestel N, Hayer M, Ballard L, Haverty M (2017) Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiology Ecology, 93(10):fix116. https://doi.org/10.1093/femsec/fix116
-
Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, Sabri S (2021) A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms, 9(3):1–18. https://doi.org/10.3390/microorganisms9030614
-
Pereira JQ, Ritter AC, Cibulski S, Brandelli A (2019) Functional genome annotation depicts probiotic properties of Bacillus velezensis FTC01. Gene, 713:143971. https://doi.org/10.1016/j.gene.2019.143971
-
Pournejati R, Gust R, Reza H, Heidari K (2019) An aminoglycoside antibacterial substance, S-137-R, produced by newly isolated Bacillus velezensis strain RP137 from the Persian Gulf. Curr Microbiol, 76(9):1028–37. https://doi.org/10.1007/s00284-019-01715-7
-
Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek K (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules, 24:046. https://doi.org/10.3390/molecules24061046
-
Rabbee MF, Hwang BS, Baek KH (2023) Bacillus velezensis: a beneficial biocontrol agent or facultative phytopathogen for sustainable agriculture. Agronomy, 13(3):840. https://doi.org/10.3390/agronomy13030840
-
Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E (2005) Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, Southern Spain. International Journal of Systematic and Evolutionary Microbiology, 55(1):191-195.https://doi.org/10.1099/ijs.0.63310-0
-
Taghavi S, Montazeri EA, Zekavati R, Saffarian P (2023) Identification of a new compound (4-fluoro-2-trifluoromethyl imidazole) extracted from a new halophilic Bacillus aquimaris strain persiangulf ta2 isolated from the Northern Persian Gulf with broad-spectrum antimicrobial effect. Iranian Journal of
Biotechnology,21(4):e3359.https://doi.org/10.30498/ijb.2023.338788.3359
-
Taşar N, Yazdıç FC, Karaman A, Gedik O (2023) Determining the antimicrobial activities of the essential oils of some taxa used as thyme. International Journal of Agriculture Forestry and Life Sciences, 7(2):52-55.
-
Tu M, Zhu Z, Zhao X, Cai H, Zhang Y, Yan Y (2024) The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum. Journal of Integrative Agriculture, 24(8): 3112–3126. https://doi.org/10.1016/j.jia.2024.09.027
-
Wang C, Zhao D, Qi G, Mao Z, Hu X, Du B, Liu K, Ding Y (2020) Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis rehd. and inhibiting Fusarium verticillioides. Frontiers in Microbiology, 10:2889. https://doi.org/10.3389/fmicb.2019.02889
-
Wang B, Liu C, Yang X, Wang Y, Zhang F, Cheng H, Zhang L, Liu H (2021) Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnology &Biotechnological Equipment, 35(1):895-904. https://doi.org/10.1080/13102818.2021.1934540
-
Yazdıç FC, Karaman A, Yazdıç F (2018) Farklı enerji kaynaklarında geliştirilen bazı bacillus suşları tarafından üretilen sekonder metabolitlerin antimikrobiyal etkisi. Turkish Journal of Agriculture-Food Science and Technology, 6 (10):1437-1443. https://doi.org/10.24925/turjaf.v6i10.1437-1443.2066
-
Yazdıç FC, Karaman A, Torgut G, Ayhan NK (2023) Antibacterial activity of novel synthesized chitosan‐graft‐poly (N‐tertiary butylacrylamide)/neodymium composites for biomedical application. Journal of Basic Microbiology, 63(9):1049-1056. https://doi.org/10.1002/jobm.202300004
-
Zhang D, Gao Y, Ke X, Yi M, Liu Z, Han X, Shi C, Lu M (2019) Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Applied Microbiology and Biotechnology, 103:9023-9035. https://doi.org/10.1007/s00253-019-10176-8