Araştırma Makalesi
BibTex RIS Kaynak Göster

p-Nitroanilinin antikolinerjik etkilerinin belirlenmesi

Yıl 2023, Cilt: 3 Sayı: 1, 9 - 15, 15.06.2023

Öz

Kolinesterazlar, doğal olarak oluşan bir nörotransmitter olan, nörotransmitter asetilkolinin (ACh) kolin ve asetik aside parçalanmasını katalize ederek sinir sisteminin düzgün çalışmasına izin verir. İnsan vücudundaki kolinesterazlar iki tiptir: asetilkolinesteraz (AChE; E.C.3.1.1.7) ve butirilkolinesteraz (BChE; E.C.3.1.1.8). Bu çalışmada, p-Nitroanilinin antikolinerjik etkisi deneysel ve teorik olarak araştırılmış ve bir AChE inhibitörü olarak bilinen takrin ile karşılaştırılmıştır. p-Nitroanilin için IC50 değerleri hesaplandı; AChE'ye karşı 17,77 nM, BChE'ye karşı 18,73 nM. Ayrıca Ki değerleri AChE'ye karşı 1,80 ± 0,16 nM, BChE'ye karşı 6,49 ± 1,63 nM olarak bulundu. Docking Score değerleri AChE için -4,631, BChE için -3,779 olarak hesaplandı.

Kaynakça

  • [1] Tugrak, M., Gul, H. İ., & Gulcin, İ. “Acetylcholinesterase inhibitory potencies of new pyrazoline derivatives,” Journal of Research in Pharmacy, (2020) 24(4).
  • [2] Gulcin, İ., Petrova, O. V., Taslimi, P., Malysheva, S. F., Schmidt, E. Y., Sobenina, L. N., ... & Sujayev, A. R. “Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds,” ChemistrySelect, (2022), 7(19), e202200370.
  • [3] Bilginer, S., Gul, H. I., Anil, B., Demir, Y., & Gulcin, I. “Synthesis and in silico studies of triazene‐substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors,” Archiv der Pharmazie, (2021) 354(1), 2000243.
  • [4] Craig, L. A., Hong, N. S., & McDonald, R. J. “Revisiting the cholinergic hypothesis in the development of Alzheimer's disease.” Neuroscience & Biobehavioral Reviews, (2011) 35(6), 1397-1409.
  • [5] Gülçin, İ., Bingöl, Z., Taslimi, P., Gören, A. C., Alwasel, S. H., & Tel, A. Z. “Polyphenol contents, potential antioxidant, anticholinergic and antidiabetic properties of mountain mint (Cyclotrichium leucotrichum).” Chemistry & Biodiversity, (2022) 19(3), e202100775.
  • [6] Burmaoglu, S., Yilmaz, A. O., Polat, M. F., Kaya, R., Gulcin, İ., & Algul, O. “Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitors.” Bioorganic chemistry, (2019) 85, 191-197.
  • [7] Aksu, K., Akıncıoğlu, H., Akıncıoğlu, A., Goksu, S., Tuemer, F., & Gulcin, I. “Synthesis of novel sulfonamides incorporating phenethylamines and determination of their inhibition profiles against some metabolic enzymes.” Archiv der pharmazie, (2018) 351(9), 1800150.
  • [8] [8] Turkan, F., Cetin, A., Taslimi, P., & Gulçin, İ. “Some pyrazole derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzyme inhibitors.” Archiv der pharmazie, (2018) 351(10), 1800200.
  • [9] Vitaku, E., Smith, D. T., & Njardarson, J. T. “Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: mini perspective.” Journal of medicinal chemistry, (2014). 57(24), 10257-10274.
  • [10] Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. “A review of recent advances in nitrogen-containing molecules and their biological applications.” Molecules, (2020) 25(8), 1909.
  • [11] Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M.“A new and rapid colorimetric determination of acetylcholinesterase activity.” Biochemical pharmacology, (1961) 7(2), 88-95.
  • [12] Garibov, E., Taslimi, P., Sujayev, A., Bingol, Z., Cetinkaya, S., Gulcin, İ., ... & Supuran, C. T. “Synthesis of 4, 5-disubstituted-2-thioxo-1, 2, 3, 4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities.” Journal of enzyme inhibition and medicinal chemistry, (2016) 31(sup3), 1-9.
  • [13] Mao, F., Li, J., Wei, H., Huang, L., & Li, X. “Tacrine–propargyl amine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease.” Journal of Enzyme Inhibition and Medicinal Chemistry, (2015) 30(6), 995-1001.
  • [14] Taslimi, P., Erden, Y., Mamedov, S., Zeynalova, L., Ladokhina, N., Tas, R., ... & Gulcin, I. “The biological activities, molecular docking studies, and anticancer effects of 1-arylsuphonylpyrazole derivatives.” Journal of biomolecular structure and dynamics, (2021) 39(9), 3336-3346.
  • [15] Schrödinger Release Glide; Schrödinger, LLC: New York, NY, USA. (2020-3)
  • [16] Nepovimova, E., Uliassi, E., Korabecny, J., Pena-Altamira, L. E., Samez, S., Pesaresi, A., ... & Bolognesi, M. L. “Multitarget drug design strategy: quinone–tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects.” Journal of medicinal chemistry, (2014) 57(20), 8576-8589.
  • [17] Brus, B., Kosak, U., Turk, S., Pislar, A., Coquelle, N., Kos, J., ... & Gobec, S. “Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor.” Journal of medicinal chemistry, (2014) 57(19), 8167-8179.
  • [18] Işık, M. “The binding mechanisms and inhibitory effect of intravenous anesthetics on AChE in vitro and in vivo: kinetic analysis and molecular docking.” Neurochemical research, (2019) 44(9), 2147-2155.
  • [19] Ozgun, D. O., Yamali, C., Gul, H. I., Taslimi, P., Gulcin, I., Yanik, T., & Supuran, C. T. “Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase.” Journal of enzyme inhibition and medicinal chemistry, (2016) 31(6), 1498-1501.
  • [20] Aksu, K., Topal, F., Gulcin, I., Tümer, F., & Göksu, S. “Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines.” Archiv der Pharmazie, (2015) 348(6), 446-455.
  • [21] Ökten, S., Ekiz, M., Koçyiğit, Ü. M., Tutar, A., Çelik, İ., Akkurt, M., ... & Gülçin, İ. “Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors.” Journal of Molecular Structure, (2019) 1175, 906-915.

Determination of anticholinergic effects of p-nitroaniline

Yıl 2023, Cilt: 3 Sayı: 1, 9 - 15, 15.06.2023

Öz

Abstract

Cholinesterases allow the nervous system to function properly by catalyzing the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid. Cholinesterases in the human body are of two types: acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). In this study, the anticholinergic effect of p-Nitroaniline was investigated experimentally and theoretically and compared with tacrine, which is known as an AChE inhibitor. IC50 values were calculated for p-Nitroaniline; 17.77 nM against AChE, 18.73 nM towards BChE. Also, Ki values was found to be 1.80 ± 0.16 nM against AChE and 6.49 ± 1.63 nM on BChE. Docking Score values were calculated as -4.631 for AChE and -3.779 for BChE.

Kaynakça

  • [1] Tugrak, M., Gul, H. İ., & Gulcin, İ. “Acetylcholinesterase inhibitory potencies of new pyrazoline derivatives,” Journal of Research in Pharmacy, (2020) 24(4).
  • [2] Gulcin, İ., Petrova, O. V., Taslimi, P., Malysheva, S. F., Schmidt, E. Y., Sobenina, L. N., ... & Sujayev, A. R. “Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds,” ChemistrySelect, (2022), 7(19), e202200370.
  • [3] Bilginer, S., Gul, H. I., Anil, B., Demir, Y., & Gulcin, I. “Synthesis and in silico studies of triazene‐substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors,” Archiv der Pharmazie, (2021) 354(1), 2000243.
  • [4] Craig, L. A., Hong, N. S., & McDonald, R. J. “Revisiting the cholinergic hypothesis in the development of Alzheimer's disease.” Neuroscience & Biobehavioral Reviews, (2011) 35(6), 1397-1409.
  • [5] Gülçin, İ., Bingöl, Z., Taslimi, P., Gören, A. C., Alwasel, S. H., & Tel, A. Z. “Polyphenol contents, potential antioxidant, anticholinergic and antidiabetic properties of mountain mint (Cyclotrichium leucotrichum).” Chemistry & Biodiversity, (2022) 19(3), e202100775.
  • [6] Burmaoglu, S., Yilmaz, A. O., Polat, M. F., Kaya, R., Gulcin, İ., & Algul, O. “Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitors.” Bioorganic chemistry, (2019) 85, 191-197.
  • [7] Aksu, K., Akıncıoğlu, H., Akıncıoğlu, A., Goksu, S., Tuemer, F., & Gulcin, I. “Synthesis of novel sulfonamides incorporating phenethylamines and determination of their inhibition profiles against some metabolic enzymes.” Archiv der pharmazie, (2018) 351(9), 1800150.
  • [8] [8] Turkan, F., Cetin, A., Taslimi, P., & Gulçin, İ. “Some pyrazole derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzyme inhibitors.” Archiv der pharmazie, (2018) 351(10), 1800200.
  • [9] Vitaku, E., Smith, D. T., & Njardarson, J. T. “Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: mini perspective.” Journal of medicinal chemistry, (2014). 57(24), 10257-10274.
  • [10] Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. “A review of recent advances in nitrogen-containing molecules and their biological applications.” Molecules, (2020) 25(8), 1909.
  • [11] Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M.“A new and rapid colorimetric determination of acetylcholinesterase activity.” Biochemical pharmacology, (1961) 7(2), 88-95.
  • [12] Garibov, E., Taslimi, P., Sujayev, A., Bingol, Z., Cetinkaya, S., Gulcin, İ., ... & Supuran, C. T. “Synthesis of 4, 5-disubstituted-2-thioxo-1, 2, 3, 4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities.” Journal of enzyme inhibition and medicinal chemistry, (2016) 31(sup3), 1-9.
  • [13] Mao, F., Li, J., Wei, H., Huang, L., & Li, X. “Tacrine–propargyl amine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease.” Journal of Enzyme Inhibition and Medicinal Chemistry, (2015) 30(6), 995-1001.
  • [14] Taslimi, P., Erden, Y., Mamedov, S., Zeynalova, L., Ladokhina, N., Tas, R., ... & Gulcin, I. “The biological activities, molecular docking studies, and anticancer effects of 1-arylsuphonylpyrazole derivatives.” Journal of biomolecular structure and dynamics, (2021) 39(9), 3336-3346.
  • [15] Schrödinger Release Glide; Schrödinger, LLC: New York, NY, USA. (2020-3)
  • [16] Nepovimova, E., Uliassi, E., Korabecny, J., Pena-Altamira, L. E., Samez, S., Pesaresi, A., ... & Bolognesi, M. L. “Multitarget drug design strategy: quinone–tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects.” Journal of medicinal chemistry, (2014) 57(20), 8576-8589.
  • [17] Brus, B., Kosak, U., Turk, S., Pislar, A., Coquelle, N., Kos, J., ... & Gobec, S. “Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor.” Journal of medicinal chemistry, (2014) 57(19), 8167-8179.
  • [18] Işık, M. “The binding mechanisms and inhibitory effect of intravenous anesthetics on AChE in vitro and in vivo: kinetic analysis and molecular docking.” Neurochemical research, (2019) 44(9), 2147-2155.
  • [19] Ozgun, D. O., Yamali, C., Gul, H. I., Taslimi, P., Gulcin, I., Yanik, T., & Supuran, C. T. “Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase.” Journal of enzyme inhibition and medicinal chemistry, (2016) 31(6), 1498-1501.
  • [20] Aksu, K., Topal, F., Gulcin, I., Tümer, F., & Göksu, S. “Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines.” Archiv der Pharmazie, (2015) 348(6), 446-455.
  • [21] Ökten, S., Ekiz, M., Koçyiğit, Ü. M., Tutar, A., Çelik, İ., Akkurt, M., ... & Gülçin, İ. “Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors.” Journal of Molecular Structure, (2019) 1175, 906-915.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyolojik Olarak Aktif Moleküller
Bölüm Araştırma Makaleleri
Yazarlar

Adem Ertürk 0000-0002-1750-1966

Yayımlanma Tarihi 15 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 1

Kaynak Göster

APA Ertürk, A. (2023). Determination of anticholinergic effects of p-nitroaniline. Ata-Kimya Dergisi, 3(1), 9-15.
AMA Ertürk A. Determination of anticholinergic effects of p-nitroaniline. J Ata-Chem. Haziran 2023;3(1):9-15.
Chicago Ertürk, Adem. “Determination of Anticholinergic Effects of P-Nitroaniline”. Ata-Kimya Dergisi 3, sy. 1 (Haziran 2023): 9-15.
EndNote Ertürk A (01 Haziran 2023) Determination of anticholinergic effects of p-nitroaniline. Ata-Kimya Dergisi 3 1 9–15.
IEEE A. Ertürk, “Determination of anticholinergic effects of p-nitroaniline”, J Ata-Chem, c. 3, sy. 1, ss. 9–15, 2023.
ISNAD Ertürk, Adem. “Determination of Anticholinergic Effects of P-Nitroaniline”. Ata-Kimya Dergisi 3/1 (Haziran 2023), 9-15.
JAMA Ertürk A. Determination of anticholinergic effects of p-nitroaniline. J Ata-Chem. 2023;3:9–15.
MLA Ertürk, Adem. “Determination of Anticholinergic Effects of P-Nitroaniline”. Ata-Kimya Dergisi, c. 3, sy. 1, 2023, ss. 9-15.
Vancouver Ertürk A. Determination of anticholinergic effects of p-nitroaniline. J Ata-Chem. 2023;3(1):9-15.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724