Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 3 Sayı: 2, 1 - 8, 21.11.2023

Öz

Kaynakça

  • [1] K. Şirin, F. Doğan, M. Çanlı, M. Yavuz, “Mechanical properties of polypropylene (PP)+ high‐density polyethylene (HDPE) binary blends: Non‐isothermal degradation kinetics of PP+ HDPE (80/20) Blends”, Polymers for Advanced Technologies, (2013), 24, 8, 715.
  • [2] A. Rudin, “The Elements of Polymer Science and Engineering”, 55-100, Academic Press, New York (2012).
  • [3] K. Şirin, Ö. Çengel, M. Çanlı, “Thermal and mechanical properties of LDPE by the effects of organic peroxides”, Polymers for Advanced Technologies, (2017), 28, 7, 876-885.
  • [4] R. Kumar, R. Singh, V. Kumar, P. Kumar, C. Prakesh, S. Singh, “Characterization of in-House-Developed Mn-ZnO-Reinforced Polyethylene: A Sustainable Approach for Developing Fused Filament Fabrication-Based Filament”, Journal of Materials Engineering and Performance, (2021), 1-15.
  • [5] G. Zhang, R. Cheng, J. Yan, Y. Xiao, C. Zang, Y. Zhang, “Photodegradation property and antimicrobial activity of zinc oxide nanorod-coated polypropylene nonwoven fabric”, Polymer Testing, (2021), 107235.
  • [6] T. Mazerolles, M.C. Heuzey, M. Soliman, H. Martens, R. Kleppinger, M.A. Huneault, “Development of multilayer barrier films of thermoplastic starch and low-density polyethylene”, Journal of Polymer Research, (2020), 27, 2, 1-15.
  • [7] I.M. Alwaan, A. Hassan, M.A.M. Piah, “Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications”, Iranian Polymer Journal, (2015), 24, 4, 279-288.
  • [8] B. Yıldız, M.O. Seydibeyoglu, F.S. Guner, “Polyurethane–zinc borate composites with high oxidative stability and flame retardancy”, Polymer Degradation and Stability, (2009), 94, 1072-1075.
  • [9] L.N. Silva, E.G.R. dos Anjos, G.F. de Melo Morgado, J. Marini, E.H. Backes, L.S. Montagna, F.R. Passador, “Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites”, Polymer Bulletin, (2020), 77, 7, 3389-3409.
  • [10] Z. Alsayed, R. Awad, M.S. Badawi, “Thermo-mechanical properties of high-density polyethylene with zinc oxide as a filler”, Iranian Polymer Journal, (2020), 29, 4, 309-320.
  • [11] M. Favakeh, S. Bazgir, M. Karbasi, “Dynamically vulcanized thermoplastic elastomer nanocomposites based on linear low-density polyethylene/styrene-butadiene rubber/nanoclay/bitumen: morphology and rheological behavior”, Iranian Polymer Journal, (2020), 29, 3, 209-217.
  • [12] [12] J. Liu, H. Liang, “Heterogeneous nucleation and self-nucleation of isotactic polypropylene with addition of nano-ZnO”, Journal of Thermal Analysis and Calorimetry, (2021), 1-12.
  • [13] M. Dogan, S.D. Dogan, L.A. Savas, G. Ozcelik, U. Tayfun, “Flame retardant effect of boron compounds in polymeric materials”, Composites Part B: Engineering, (2021), 109088.
  • [14] Y. Fang, Q. Wang, C. Guo, Y. Song, P.A. Cooper, “Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites”, Journal of Analytical and Applied Pyrolysis, (2013), 100, 230-236.
  • [15] R. Galli, M.C. Hall, E.R. Breitenbach, G.L. Colpani, M. Zanetti, J.M.M. de Mello, L.L. Silva, M.A. Fiori, “Antibacterial polyethylene-ethylene vinyl acetate polymeric blend by incorporation of zinc oxide nanoparticles”, Polymer Testing, (2020), 89, 106554.
  • [16] B. Baltaci, G.Ö. Çakal, G. Bayram, I. Eroglu, S. Özkar, “Surfactant modified zinc borate synthesis and its effect on the properties of PET”, Powder Technology, (2013), 244, 38-44.
  • [17] D. M. Schubert, “Hydrated zinc borates and their industrial use”, Molecules, (2019), 24, 13, 2419.
  • [18] S. Givi, H. Ebadi-Dehaghani, “Design of Experiments for the Effect of pH, Storage Time and Zinc Oxide Content on the Antibacterial Properties of Low-Density Polyethylene (LDPE)/Zinc Oxide Nanocomposites”, Journal of Macromolecular Science Part B, (2020), 1-15.
  • [19] N.A. Al-Tayyar, A.M. Youssef, R.R. Al-Hindi, “Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products”, Food Pack Shelf Life, (2020), 25, 100523.
  • [20] T. Chen, J.C. Deng, L.S. Wang, G. Feng, “Preparation and characterization of nano-zinc borate by a new method”, Journal of Materials Processing Technology, (2009), 209, 8, 4076-4079.
  • [21] H. Rokbani, F. Daigle, A. Ajji, “Long-and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging”, Journal of Plastic Film and Sheeting, (2019), 35, 2, 117-134.
  • [22] Q.F. Gillani, F. Ahmad, M.I. Abdul Mutalib, P.S.M. Megat-Yusoff, S. Ullah, P.J. Messet, M. Zia-ul-Mustafa, “Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings”, Progress in Organic Coatings, (2018), 123, 82–98.
  • [23] H.E. Eltepe, D. Balköse, S. Ülkü, “Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium”, Industrial and Engineering Chemistry Research, (2007), 46, 8, 2367-2371.
  • [24] L. Guo, F. Zhang, J.C. Lu, R.C. Zeng, S.Q. Li, L. Song, J.M. Zeng, “A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys”, Frontiers of Materials Science, (2018), 12, 2, 198-206.
  • [25] E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, “Corrosion inhibitor release from Zn-Al-[PO43-]-[CO32-] layered double hydroxide nanoparticles”, Progress in Color, Colorants and Coatings, (2016), 9, 4, 233-248.
  • [26] A.H. Navarchian, M. Jalalian, M. Pirooz, “Characterization of starch/poly (vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application”, Journal of Plastic Film and Sheeting, (2015), 31, 3, 309-336.
  • [27] E.H. Immergut, E.A. Grulke, J. Brandrup, “Polymer Handbook, Pocket edn”, Wiley, New York, (2008).
  • [28] K. Şirin, M. Yavuz, M. Çanlı, “Influence of Dilauroyl Peroxide on Mechanical and Thermal Properties of Different Polypropylene Matrices”, Polymer-Korea, (2015), 39, 2, 200-209.
  • [29] K. Abderrazek, A. Uheida, M. Seffen, M. Muhammed, N.F. Srasra, E. Srasra, “Photocatalytic degradation of indigo carmine using [Zn-Al] LDH supported on PAN nanofibers”, Clay Minerals, (2015), 50, 2, 185-197.
  • [30] S. Köytepe, S. Vural, T. Seckin, “Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials”, Materials Research Bulletin, (2009), 44, 2, 369-376.
  • [31] R.L. Dhiman, V.S. Kundu, A.S. Maan, D.R. Goyal, “Characterization of aluminum doped zinc borate glasses”, Journal of Optoelectronics Advanced Materials, (2009), 11, 7, 1002.
  • [32] P. Liang, Z. Tuoheti, Z.H. Liu, “Controlling the structure andmorphology of zinc borate by adjusting the reaction temperature and pH value: formation mechanisms and luminescent properties”, RSC Advances, (2017), 7, 7, 3695-3703.
  • [33] S. Kaviya, E. Prasad, “Eco-friendly synthesis of ZnOnanopencis in aqueous medium: a study of photocatalyticdegradation of methylene blue under direct sunlight”, RSC Advances, (2016), 6, 40, 33821-33827.
  • [34] İ. Pekgözlü, S. Çakar, “Effect of Temperature and Boric Acid on the Photoluminescence Properties of SrIn2O4:Dy3+ Material”, Journal of Bartın University Engineering and Technological Sciences, (2015), 3, 2, 61-66

Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi

Yıl 2023, Cilt: 3 Sayı: 2, 1 - 8, 21.11.2023

Öz

Bu çalışmada, ambalaj, tel ve kablo endüstrileri için düşük yoğunluklu polietilen ile alüminyum-çinko borat karışımlarının geliştirilmesi incelenmiştir. Alüminyum-çinko borat, farklı moleküler ağırlık ve mekanik ve fiziksel özelliklere sahip düşük yoğunluklu polietilende katkı maddesi olarak kullanılmıştır. Örneklerin eriyik akış hızları alüminyum-çinko borat miktarına bağlı olarak azalmıştır. Alüminyum-çinko borat oranları ağırlıkça %0-1 olduğunda çekme dayanımı değerlerinde artış, alüminyum-çinko borat oranları ağırlıkça %5-10 olduğunda ise azalma gözlenmiştir. Numunelerin çekme dayanımı değerleri ağırlıkça %0 alüminyum-çinko boratlı numunede 12.28MPa, ağırlıkça %10 alüminyum-çinko boratlı numunede 5.91MPa olarak ölçülmüştür. Filmin kopma uzaması ağırlıkça %0 alüminyum-çinko borat ile yüzde 507,3 iken, filmin ağırlıkça %10 alüminyum-çinko borat ile uzama değeri yüzde 285,5 oldu. Termogravimetrik analiz sonuçlarına göre, alüminyum-çinko borat ilavesiyle polimerlerin ısıl kararlılığının değiştiği gözlenmiştir. Sıcaklık değerleri açısından kütle kayıplarına bakıldığında F2-21T numunesi en yüksek ısıl dayanıklılığa ulaşmıştır. F5-21T'nin termal kararlılığı önemli ölçüde artarken, I22-19T'nin termal kararlılığı da arttı. Sonuçlar, tüm kompozitlerin paketleme, tel ve kablo uygulamalarında daha fazla kullanım için uygun olduğunu gösterdi.

Kaynakça

  • [1] K. Şirin, F. Doğan, M. Çanlı, M. Yavuz, “Mechanical properties of polypropylene (PP)+ high‐density polyethylene (HDPE) binary blends: Non‐isothermal degradation kinetics of PP+ HDPE (80/20) Blends”, Polymers for Advanced Technologies, (2013), 24, 8, 715.
  • [2] A. Rudin, “The Elements of Polymer Science and Engineering”, 55-100, Academic Press, New York (2012).
  • [3] K. Şirin, Ö. Çengel, M. Çanlı, “Thermal and mechanical properties of LDPE by the effects of organic peroxides”, Polymers for Advanced Technologies, (2017), 28, 7, 876-885.
  • [4] R. Kumar, R. Singh, V. Kumar, P. Kumar, C. Prakesh, S. Singh, “Characterization of in-House-Developed Mn-ZnO-Reinforced Polyethylene: A Sustainable Approach for Developing Fused Filament Fabrication-Based Filament”, Journal of Materials Engineering and Performance, (2021), 1-15.
  • [5] G. Zhang, R. Cheng, J. Yan, Y. Xiao, C. Zang, Y. Zhang, “Photodegradation property and antimicrobial activity of zinc oxide nanorod-coated polypropylene nonwoven fabric”, Polymer Testing, (2021), 107235.
  • [6] T. Mazerolles, M.C. Heuzey, M. Soliman, H. Martens, R. Kleppinger, M.A. Huneault, “Development of multilayer barrier films of thermoplastic starch and low-density polyethylene”, Journal of Polymer Research, (2020), 27, 2, 1-15.
  • [7] I.M. Alwaan, A. Hassan, M.A.M. Piah, “Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications”, Iranian Polymer Journal, (2015), 24, 4, 279-288.
  • [8] B. Yıldız, M.O. Seydibeyoglu, F.S. Guner, “Polyurethane–zinc borate composites with high oxidative stability and flame retardancy”, Polymer Degradation and Stability, (2009), 94, 1072-1075.
  • [9] L.N. Silva, E.G.R. dos Anjos, G.F. de Melo Morgado, J. Marini, E.H. Backes, L.S. Montagna, F.R. Passador, “Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites”, Polymer Bulletin, (2020), 77, 7, 3389-3409.
  • [10] Z. Alsayed, R. Awad, M.S. Badawi, “Thermo-mechanical properties of high-density polyethylene with zinc oxide as a filler”, Iranian Polymer Journal, (2020), 29, 4, 309-320.
  • [11] M. Favakeh, S. Bazgir, M. Karbasi, “Dynamically vulcanized thermoplastic elastomer nanocomposites based on linear low-density polyethylene/styrene-butadiene rubber/nanoclay/bitumen: morphology and rheological behavior”, Iranian Polymer Journal, (2020), 29, 3, 209-217.
  • [12] [12] J. Liu, H. Liang, “Heterogeneous nucleation and self-nucleation of isotactic polypropylene with addition of nano-ZnO”, Journal of Thermal Analysis and Calorimetry, (2021), 1-12.
  • [13] M. Dogan, S.D. Dogan, L.A. Savas, G. Ozcelik, U. Tayfun, “Flame retardant effect of boron compounds in polymeric materials”, Composites Part B: Engineering, (2021), 109088.
  • [14] Y. Fang, Q. Wang, C. Guo, Y. Song, P.A. Cooper, “Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites”, Journal of Analytical and Applied Pyrolysis, (2013), 100, 230-236.
  • [15] R. Galli, M.C. Hall, E.R. Breitenbach, G.L. Colpani, M. Zanetti, J.M.M. de Mello, L.L. Silva, M.A. Fiori, “Antibacterial polyethylene-ethylene vinyl acetate polymeric blend by incorporation of zinc oxide nanoparticles”, Polymer Testing, (2020), 89, 106554.
  • [16] B. Baltaci, G.Ö. Çakal, G. Bayram, I. Eroglu, S. Özkar, “Surfactant modified zinc borate synthesis and its effect on the properties of PET”, Powder Technology, (2013), 244, 38-44.
  • [17] D. M. Schubert, “Hydrated zinc borates and their industrial use”, Molecules, (2019), 24, 13, 2419.
  • [18] S. Givi, H. Ebadi-Dehaghani, “Design of Experiments for the Effect of pH, Storage Time and Zinc Oxide Content on the Antibacterial Properties of Low-Density Polyethylene (LDPE)/Zinc Oxide Nanocomposites”, Journal of Macromolecular Science Part B, (2020), 1-15.
  • [19] N.A. Al-Tayyar, A.M. Youssef, R.R. Al-Hindi, “Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products”, Food Pack Shelf Life, (2020), 25, 100523.
  • [20] T. Chen, J.C. Deng, L.S. Wang, G. Feng, “Preparation and characterization of nano-zinc borate by a new method”, Journal of Materials Processing Technology, (2009), 209, 8, 4076-4079.
  • [21] H. Rokbani, F. Daigle, A. Ajji, “Long-and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging”, Journal of Plastic Film and Sheeting, (2019), 35, 2, 117-134.
  • [22] Q.F. Gillani, F. Ahmad, M.I. Abdul Mutalib, P.S.M. Megat-Yusoff, S. Ullah, P.J. Messet, M. Zia-ul-Mustafa, “Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings”, Progress in Organic Coatings, (2018), 123, 82–98.
  • [23] H.E. Eltepe, D. Balköse, S. Ülkü, “Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium”, Industrial and Engineering Chemistry Research, (2007), 46, 8, 2367-2371.
  • [24] L. Guo, F. Zhang, J.C. Lu, R.C. Zeng, S.Q. Li, L. Song, J.M. Zeng, “A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys”, Frontiers of Materials Science, (2018), 12, 2, 198-206.
  • [25] E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, “Corrosion inhibitor release from Zn-Al-[PO43-]-[CO32-] layered double hydroxide nanoparticles”, Progress in Color, Colorants and Coatings, (2016), 9, 4, 233-248.
  • [26] A.H. Navarchian, M. Jalalian, M. Pirooz, “Characterization of starch/poly (vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application”, Journal of Plastic Film and Sheeting, (2015), 31, 3, 309-336.
  • [27] E.H. Immergut, E.A. Grulke, J. Brandrup, “Polymer Handbook, Pocket edn”, Wiley, New York, (2008).
  • [28] K. Şirin, M. Yavuz, M. Çanlı, “Influence of Dilauroyl Peroxide on Mechanical and Thermal Properties of Different Polypropylene Matrices”, Polymer-Korea, (2015), 39, 2, 200-209.
  • [29] K. Abderrazek, A. Uheida, M. Seffen, M. Muhammed, N.F. Srasra, E. Srasra, “Photocatalytic degradation of indigo carmine using [Zn-Al] LDH supported on PAN nanofibers”, Clay Minerals, (2015), 50, 2, 185-197.
  • [30] S. Köytepe, S. Vural, T. Seckin, “Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials”, Materials Research Bulletin, (2009), 44, 2, 369-376.
  • [31] R.L. Dhiman, V.S. Kundu, A.S. Maan, D.R. Goyal, “Characterization of aluminum doped zinc borate glasses”, Journal of Optoelectronics Advanced Materials, (2009), 11, 7, 1002.
  • [32] P. Liang, Z. Tuoheti, Z.H. Liu, “Controlling the structure andmorphology of zinc borate by adjusting the reaction temperature and pH value: formation mechanisms and luminescent properties”, RSC Advances, (2017), 7, 7, 3695-3703.
  • [33] S. Kaviya, E. Prasad, “Eco-friendly synthesis of ZnOnanopencis in aqueous medium: a study of photocatalyticdegradation of methylene blue under direct sunlight”, RSC Advances, (2016), 6, 40, 33821-33827.
  • [34] İ. Pekgözlü, S. Çakar, “Effect of Temperature and Boric Acid on the Photoluminescence Properties of SrIn2O4:Dy3+ Material”, Journal of Bartın University Engineering and Technological Sciences, (2015), 3, 2, 61-66
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Burak Hüseyin Demir 0009-0008-8797-7346

Murat Çanlı 0000-0002-5275-861X

Mehtap Şirin Bu kişi benim 0009-0007-9606-041X

Kamil Şirin 0000-0002-0632-5848

Yayımlanma Tarihi 21 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 2

Kaynak Göster

APA Demir, B. H., Çanlı, M., Şirin, M., Şirin, K. (2023). Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi. Ata-Kimya Dergisi, 3(2), 1-8.
AMA Demir BH, Çanlı M, Şirin M, Şirin K. Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi. J Ata-Chem. Kasım 2023;3(2):1-8.
Chicago Demir, Burak Hüseyin, Murat Çanlı, Mehtap Şirin, ve Kamil Şirin. “Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen Ile Al-Zn Borat Karışımlarının Geliştirilmesi”. Ata-Kimya Dergisi 3, sy. 2 (Kasım 2023): 1-8.
EndNote Demir BH, Çanlı M, Şirin M, Şirin K (01 Kasım 2023) Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi. Ata-Kimya Dergisi 3 2 1–8.
IEEE B. H. Demir, M. Çanlı, M. Şirin, ve K. Şirin, “Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi”, J Ata-Chem, c. 3, sy. 2, ss. 1–8, 2023.
ISNAD Demir, Burak Hüseyin vd. “Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen Ile Al-Zn Borat Karışımlarının Geliştirilmesi”. Ata-Kimya Dergisi 3/2 (Kasım 2023), 1-8.
JAMA Demir BH, Çanlı M, Şirin M, Şirin K. Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi. J Ata-Chem. 2023;3:1–8.
MLA Demir, Burak Hüseyin vd. “Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen Ile Al-Zn Borat Karışımlarının Geliştirilmesi”. Ata-Kimya Dergisi, c. 3, sy. 2, 2023, ss. 1-8.
Vancouver Demir BH, Çanlı M, Şirin M, Şirin K. Endüstriyel Amaçlı Düşük Yoğunluklu Polietilen ile Al-Zn Borat Karışımlarının Geliştirilmesi. J Ata-Chem. 2023;3(2):1-8.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724