Derleme
BibTex RIS Kaynak Göster

Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti

Yıl 2023, Cilt: 3 Sayı: 2, 9 - 23, 21.11.2023

Öz

Pestisitler, tarımda böcekleri, zararlıları ve yabani otları yok etmek için yaygın olarak kullanılan kimyasal bileşiklerdir. Pestisitler, günümüzde tarım başta olmak üzere belirli uygulamaların vazgeçilmez bir parçasını oluşturmaktadır. Küresel olarak, ~40 milyar USD bütçe ile her yıl yaklaşık 3 milyar kg pestisit kullanılmaktadır. Tehlikeli pestisitlerin yoğun kullanımı ve toksikolojik etkisi, çeşitli çevresel matrisler ve insanlar üzerinde doğrudan biyolojik birikim yoluyla veya dolaylı olarak gıda zinciri yoluyla olumsuz sonuçlar doğurur. Çevrede birçok tehlikeli pestisitin kullanımını yasaklayan düzenlemeler mevcuttur. Bu nedenle, muhtemelen yeni ve geleneksel yöntemlerin bir kombinasyonu yoluyla, pestisitlerin güçlü tespiti ve tamamen azaltılması için çaba gösterilmelidir. Yüksek derecede tehlikeli pestisitler, enzimatik inhibisyon ve oksidatif stres indüksiyonu yoluyla insan sağlığı ve çevre için bir risk oluştururlar. Bu nedenle, hızlı ve hassas algılama stratejileri geliştirmek, çoklu pestisitleri tespit etmek ve ölçmek ve belirli matriste bulunan pestisitleri zararlı türevler oluşturmadan ortadan kaldırmak için çok önemlidir. Bu derleme, pestisitler, toksikolojik etkileri ve analitik algılama ve tespit yöntemleri hakkında bilgi vermektedir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • [1] D. Pimentel, “Environmental and economic costs of the application of pesticides primarily in the United States,” Environment, Development and Sustainability, (2005), 7, 229–252.
  • [2] R. Cerda, J. Avelino, C. Gary, P. Tixier, E. Lechevallier, C. Allinne, “Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee,” PLoS ONE, (2017), 12(1), e0169133.
  • [3] M. Tudi, H. D Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, D. T. Phung, “Agriculture Development, Pesticide Application and Its Impact on the Environment,” International Journal of Environmental Research and Public Health, (2021), 18(3).
  • [4] E. Morillo, J. Villaverde, “Advanced technologies for the remediation of pesticide contaminated soils,” Science of The Total Environment, (2017), 586, 576–597.
  • [5] F. P. Carvalho, “Pesticides, environment, and food safety,” Food Energy Security, (2017), 6 (2), 48–60.
  • [6] N. Alexandratos, J. Bruinsma, “World Agriculture Towards 2030/2050: The 2012 Revision,” ESA Working paper No. 12-03, Rome, FAO, (2012).
  • [7] T. W. Culliney, “Crop losses to arthropods,” Integrated Pest Management, Springer, Dordrecht, (2014), 201–225.
  • [8] C. A. Damalas, I. G. Eleftherohorinos, “Pesticide exposure, safety issues, and risk assessment indicators,” International Journal of Environmental Research and Public Health, (2011), 8 (5), 1402–1419.
  • [9] G. Lofrano, G. Libralato, S. Meric, V. Vaiano, O. Sacco, V. Venditto, M. Carotenuto, “Occurrence and potential risks of emerging contaminants in water,” Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants, Elsevier, (2020), 1–25.
  • [10] J. Kaushal, M. Khatri, S. K. Arya, “A treatise on organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination,” Ecotoxicology and Environmental Safety, (2021), 207, 111483.
  • [11] L. Liu, M. Bilal, X. Duan, H. M. Iqbal, “Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives,” Science of The Total Environment, (2019), 667, 444–454.
  • [12] A. M. Gonçalves, C. P. Rocha, J. C. Marques, F. J. Gonçalves, “Fatty acids as suitable biomarkers to assess pesticide impacts in freshwater biological scales–a review,” Ecological Indicators, (2021), 122, 107299.
  • [13] V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk, “Pesticides: Formulants, distribution pathways and effects on human health – a review.” Toxicology Reports, (2021), 8, 1179-1192.
  • [14] L. C. Pereira, A. O. de Souza, M. F. F. Bernardes, M. Pazin, M. J., Tasso, P. H., Pereira, D. J. Dorta, “A perspective on the potential risks of emerging contaminants to human and environmental health,” Environmental Science and Pollution Research, (2015), 22(18), 13800–13823.
  • [15] E. Dogac, I. Kandemir, V. Taskın, “Geographical distribution and frequencies of organophosphate-resistant Ace alleles and morphometric variations in olive fruit fy populations,” Pest Management Science, (2015), 71, 1529–1539.
  • [16] A. M. Gonçalves, C. P. Rocha, J. C. Marques, F. J. Gonçalves, “Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure–a review,” Ecological Indicators, (2021), 122, 107303.
  • [17] L. Parra-Arroyo, R. B. González-González, C. Castillo-Zacarías, E. M. Melchor Martínez, J. E. Sosa-Hernández, M. Bilal, H. M. Iqbal, D. Barceló, R. Parra-Saldívar, “Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects,” Science of The Total Environment, (2022), 807, 151879.
  • [18] MacLachlan, D. J., & Hamilton, D. “Estimation methods for Maximum Residue Limits for pesticides. Regulatory,” Toxicology and Pharmacology, (2010), 58(2), 208-218.
  • [19] J. J. Villaverde, B. Sevilla-Morán, C. López-Goti, J. L. Alonso-Prados, P. Sandín-España, “Trends in analysis of pesticide residues to fulfil the European Regulation (EC) No. 1107/2009,” TrAC Trends in Analytical Chemistry, (2016), 80, 568–580.
  • [20] D. Su, H. Li, X. Yan, Y. Lin, G. Lu, “Biosensors based on fluorescence carbon nanomaterials for detection of pesticides,” TrAC Trends in Analytical Chemistry, (2020), 134, 116126.
  • [21] I. A. Saleh, N. Zouari, M. A. Al-Ghouti, “Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches,” Environmental Technology & Innovation, (2020), 19, 101026.
  • [22] G. Pérez-Lucas, M. Aliste, N. Vela, I. Garrido, J. Fenoll, S. Navarro, “Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photoassisted peroxonation,” Process Safety and Environmental Protection, (2020), 137, 358–365.
  • [23] X. Chen, Q. Zhou, F. Liu, Q. Peng, Y. Bian, “Performance and kinetic of pesticide residues removal by microporous starch immobilized laccase in a combined adsorption and biotransformation process,” Environmental Technology & Innovation, (2021), 21, 101235.
  • [24] M. Bilal, H. M. Iqbal, D. Barceló, “Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems,” Science of The Total Environment, (2019), 695, 133896.
  • [25] G. Chauhan, R. B. González-González, H. M. Iqbal, “Bioremediation and decontamination potentials of metallic nanoparticles loaded nanohybrid matrices – a review,” Environmental Research, (2021), 112407.
  • [26] R. B. González-González, L. Parra-Arroyo, R. Parra-Saldívar, R. A. Ramirez-Mendoza, H. M. Iqbal, “Nanomaterial-based catalysts for the degradation of endocrine-disrupting chemicals – a way forward to environmental remediation,” Materials Letters, (2021), 131217.
  • [27] R. B. González-González, A. Sharma, R. Parra-Saldívar, R. A. Ramirez-Mendoza, M. Bilal, H. M. Iqbal, “Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials,” Journal of Hazardous Materials, (2022), 423, 127145.
  • [28] N. Hussain, M. Bilal, H.M. Iqbal, “Carbon-based nanomaterials withmultipurpose attributes for water treatment: greening the 21st-century nanostructure materials deployment,” Biomaterials and Polymers Horizon, (2022), 1, 48–58.
  • [29] A. Reyes-Calderón, S. Pérez-Uribe, A. G. Ramos-Delgado, S. Ramalingam, G. Oza, R. Parra- Saldívar, R. A. Ramirez-Mendoza, H. M. Iqbal, A. Sharma, “Analytical and regulatory considerations to mitigate highly hazardous toxins from environmental matrices,” Journal of Hazardous Materials, (2022), 423, 127031.
  • [30] Jayaraj, R., Megha, P. and Sreedev, P. "Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment," Interdisciplinary Toxicology, (2016), 9, 90-100.
  • [31] E. B. Radcliffe, W.D. Hutchison, R.E. Cancelado, “Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies,” Cambridge University Press, (2009).
  • [32] S. S. Saeedi, Saravi, A. R. Dehpour, “Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A revie,” Life Sciences, (2016), 145, 255-264.
  • [33] EFSA, “Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the toxicity of endosulfan in fish,” EFSA Journal, (2011), 9(4), 2131.
  • [34] S. Gautam, N.K. Sood, K. Gupta, C. Joshi, K.K. Gill, R. Kaur, I. Chauhan, “Bioaccumulation of pesticide contaminants in tissue matrices of dogs suffering from malignant canine mammary tumors in Punjab, India,” Heliyon, (2020), 6 (10), e05274.
  • [35] L. Lim, H. M. Bolstad, “Organophosphate Insecticides: Neurodevelopmental Effects,” Encyclopedia of Environmental Health (Second Edition), (2019), 785-791.
  • [36] T. Khedr, A. A. Hammad, A. M. Elmarsafy, E. Halawa, M. Soliman, “Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation,” Journal of Hazardous Materials, (2019), 373, 23–28.
  • [37] M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S.S. Martinez, “Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis,” Process Safety and Environmental Protection, (2020), 134, 292–307.
  • [38] R. D. Horsak, P. B. Bedient, M. C. Hamilton, F. B. Thomas, “Pesticides,” Environmental Forensics, (1964), 143-165.
  • [39] B. Hu, L. Jiang, Q. Zheng, C. Luo, D. Zhang, S. Wang, Y. Xie, G. Zhang, “Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper,” Environment International, (2021), 155,106591.
  • [40] J. R. Garbarino, E. Snyder-Conn, T.J. Leiker, G.L. Hoffman, “Contaminants in Arctic snow collected over northwest Alaskan sea ice,” Water Air and Soil Pollution, (2002), 139(1), 183–214.
  • [41] M. Jokanović, “Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review,” Toxicology, (2018), 410, 125–131.
  • [42] F. R. Chowdhury, G. Dewan, V. R. Verma, D. W. Knipe, I. T. Isha, M. A. Faiz, M. Eddleston, “Bans of WHO class I pesticides in Bangladesh—suicide prevention without hampering agricultural output,” International Journal of Epidemiology, (2018), 47 (1), 175–184.
  • [43] R. Gupta, “Carbamate Pesticides,” Encyclopedia of Toxicology (Third Edition), (2014), 661-664.
  • [44] P. Zhang, H. Sun, L. Yu, T. Sun, “Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars,” Journal of Hazardous Materials, (2013), 244, 217–224.
  • [45] N. Haddaji, “Environmental contaminants and antibiotic resistance as a One Health threat,” One Health, (2022), 231-252.
  • [46] L. A. Murphy, R. Kagan, “Poisoning,” Veterinary Forensic Pathology, Springer, Cham, 75–87, (2018).
  • [47] F. Gallocchio, A. Moressa, R. Stella, R. Rosin, L. Basilicata, L. Bille, G. Binato, “Fast and simultaneous analysis of carbamate pesticides and anticoagulant rodenticides used in suspected cases of animal poisoning,” Forensic Science International, (2021), 323, 110810.
  • [48] K. Matsuda, M. Ihara, D. B. Sattelle, “Neonicotinoid Insecticides: Molecular Targets,” Resistance and Toxicity, (2020), 6;60, 241-255.
  • [49] S. M. Ensley, “Neonicotinoids. Veterinary Toxicology (Third Edition),” (2018), 521-524.
  • [50] M. A. Manavi, M. H. F. Nasab, S. M. Daghighi, M. Baeeri, “Neonicotinoids,” Reference Module in Biomedical Sciences, (2023), https://doi.org/10.1016/B978-0-12-824315-2.00899-X
  • [51] J. Wang, W. Wang, J. Xiong, L. Li, B. Zhao, I. Sohail, Z. He, “A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida,” Journal of Environmental Management, (2021), 280, 111794.
  • [52] L. A. Teixeira, J. T. Andaloro, “Diamide insecticides: Global efforts to address insect resistance stewardship challenges,” Pesticide Biochemistry and Physiology, (2013), 106(3), 76-78.
  • [53] S. K. Das, “Mode of action of pesticides and the novel trends – A critical review,” International Research Journal of Agricultural Science and Soil Science, (2013), 3(11), 393-401.
  • [54] Ö. Cezmi, “Tarımsal Zararlılarla Savaş Yöntemleri ve İlaçları,” Adnan Menderes Üniversitesi Yayınları, No:19, (2004).
  • [55] M.A. Beketov, B. J. Kefford, R.B. Schäfer, M. Liess, “Pesticides reduce regional biodiversity of stream invertebrates,” Proceeding of the National. Academy of sciences, (2013), 110, 11039–11043.
  • [56] J.C. Habel, M. J. Samways, T. Schmitt, “Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy,” Biodiversity and Conservation, (2019), 28, 1343–1360.
  • [57] F. Sánchez-Bayo, “Indirect Effect of Pesticides on Insects and Other Arthropods,” Toxics, (2021), 9(8):177.
  • [58] A. Sharma, P. Jha, G.V.P. Reddy, “Multidimensional relationships of herbicides with insect-crop food webs,” Sciences of The Total Environment, (2018), 643, 1522–1532.
  • [59] N.W. Sotherton, “The distribution and abundance of predatory arthropods overwintering on farmland,” Annals of Applied Biology, (1984), 105, 423–429.
  • [60] S. A. Cameron, J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F. Solter, T. L. Griswold, “Patterns of widespread decline in North American bumble bees,” Proceeding of the National. Academy of sciences, (2011), 108, 662–667.
  • [61] E. E. Zattara, M. A. Aizen, “Worldwide occurrence records suggest a global decline in bee species richness,” One Earth (2021), 4, 114–123.
  • [62] S. A. Rands, H. M. Whitney, “Field margins, foraging distances and their impacts on nesting pollinator success,” PLoS ONE (2011), 6, e25971.
  • [63] M. Majdinasab, M. Daneshi, J. L. Marty, “Recent developments in non-enzymatic (bio) sensors for detection of pesticide residues: focusing on antibody, aptamer and molecularly imprinted polymer,” Talanta (2021), 122397.
  • [64] B. Jiang, P. Dong, J. Zheng, “A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides,” Talanta, (2018), 183, 114–121.
  • [65] X. Huang, Y. Zhu, E. Kianfar, “Nano biosensors: properties, applications,” Journal of Materials Research and Technology, (2021), 12, 1649–1672.
  • [66] D. Su, H. Li, X. Yan, Y. Lin, G. Lu, “Biosensors based on fluorescence carbon nanomaterials for detection of pesticides.” TrAC Trends in Analytical Chemistry, (2021), 134, 116126.
  • [67] S. N. Prasad, V. Bansal, R. Ramanathan, “Detection of pesticides using nanozymes: trends, challenges and outlook.” TrAC Trends in Analytical Chemistry, (2021), 144, 116429.
  • [68] K. H. Kim, E. Kabir, S. A. Jahan, “Exposure to pesticides and the associated human health effects,” Science of The Total Environment, (2017), 575, 525–535.
  • [69] Ö. Akdeniz, “Asetilkolinesteraz ve butirilkolinesteraz enzimleri üzerinde bazı pestisitlerin etkilerinin incelenmesi,” Yüksek Lisans Tezi, Ağrı üniversitesi, Kimya Anabilim Dalı, Ağrı, (2019).
  • [70] J.L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, I. Silman, “Atomic Structure of Acetylcholinesterasefrom Torpedo Californica: A Prototypic Asetylcholine-Binding Protein.” Science, (1991), 253(5022), 872-879.
  • [71] J. R. Voorhees, D. S. Rohlman, P. J. Lein, A. A. Pieper, “Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds,” Frontiers in Neuroscience, (2017), 10, 590.
  • [72] R. D. Burke, S. W. Todd, E. Lumsden, R. J. Mullins, J. Mamczarz, W. P. Fawcett, E. X. “Albuquerque, Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms,” Journal of Neurochemistry, (2017), 142, 162–177.
  • [73] M. R. Narra, K. Rajender, R. R. Reddy, U. S. Murty, G. Begum, “Insecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damage,” Chemosphere, (2017), 168, 350–357.
  • [74] Z. J. Chen, H. L. Wu, Z. L. Xiao, H. J. Fu, Y. D. Shen, L. Luo, Z. L. Xu, “Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immuno chromatographic assays for simultaneous pesticide screening,” Journal of Hazardous Materials, (2021), 412, 125241.
  • [75] X. Yan, H. Li, X. Su, “Review of optical sensors for pesticides,”. Trends in Analytical Chemistry, (2018), 103, 1–20.
  • [76] J. Wei, Y. Yang, J. Dong, S. Wang, P. Li, “Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots,” Microchimica Acta, (2019), 186 (2), 1–9.
  • [77] B. Ingrid, A. Scherrine, H. Tria, Akhtar, M. Jean-Louis, “New biorecognition molecules in biosensors for the detection of toxins,” Biosensors and Bioelectronics, (2017), 87, 285-298.
  • [78] E. C. Reynoso, E. Torres, F. Bettazzi, I. Palchetti, “Trends and perspectives in immunosensors for determination of currently-used pesticides: the case of glyphosate, organophosphates, and neonicotinoids,” Biosensors, (2019), 9(1), 20.
  • [79] D. Abhijeet, K. Priya, B. Vipul, B. G. John, Tarun Kumar Sharma, “Aptamer-based point-of-care diagnostic platforms,” Sensors and Actuators B: Chemical, (2017), 246, 535-553.
  • [80] F. Saqib, W. Haiyan, N. Jiyun, A. Shakeel, M. Ihsan, Z. Muhammad, K. Rayyan, A. Muhammad, “Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection,” Science of The Total Environment, (2022), 804, 150293.
  • [81] J. Pan, W. Chen, Y. Ma, & G. Pan, “Molecularly imprinted polymers as receptor mimics for selective cell recognition,” Chemical society reviews, (2018), 47(15), 5574-5587.
  • [82] M. Gast, H. Sobek, &, B. Mizaikoff, “Advances in imprinting strategies for selective virus recognition a review,” TrAC Trends in Analytical Chemistry, (2019), 114, 218-232.
  • [83] A. Sharma, A. Shukla, K. Attri, M. Kumar, P. Kumar, A. Suttee, G. Singh, R. P. Barnwal, N. Singla, “Global trends in pesticides: A looming threat and viable alternatives,” Ecotoxicology and Environmental Safety, (2020), 201, 110812.
  • [84] R. Chow, R. Scheidegger, T. Doppler, A. Dietzel, F. Fenicia, C. Stamm, “A review of long-term pesticide monitoring studies to assess surface water quality trends,” Water Research X, (2020), 100064.
  • [85] M. I. Abou Zeid, A. M. Jammoul, K.C. Melki, Y. Abou Jawdah, M. K. Awad, “Suggested policy and legislation reforms to reduce deleterious effect of pesticides in Lebanon,” Heliyon, (2020), 6 (12), e05524.
  • [86] W. Wang, X. Wang, N. Cheng, Y. Luo, Y. Lin, We. Xu, D. Du, “Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection,” Trends in Analytical Chemistry, (2020), 132, 116041.
  • [87] T. J. Centner, “Cancelling pesticide registrations and revoking toerances: the case of chlorpyrifos,” Environmental Toxicology and Pharmacology, (2018), 57, 53–61.
Yıl 2023, Cilt: 3 Sayı: 2, 9 - 23, 21.11.2023

Öz

Proje Numarası

-

Kaynakça

  • [1] D. Pimentel, “Environmental and economic costs of the application of pesticides primarily in the United States,” Environment, Development and Sustainability, (2005), 7, 229–252.
  • [2] R. Cerda, J. Avelino, C. Gary, P. Tixier, E. Lechevallier, C. Allinne, “Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee,” PLoS ONE, (2017), 12(1), e0169133.
  • [3] M. Tudi, H. D Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, D. T. Phung, “Agriculture Development, Pesticide Application and Its Impact on the Environment,” International Journal of Environmental Research and Public Health, (2021), 18(3).
  • [4] E. Morillo, J. Villaverde, “Advanced technologies for the remediation of pesticide contaminated soils,” Science of The Total Environment, (2017), 586, 576–597.
  • [5] F. P. Carvalho, “Pesticides, environment, and food safety,” Food Energy Security, (2017), 6 (2), 48–60.
  • [6] N. Alexandratos, J. Bruinsma, “World Agriculture Towards 2030/2050: The 2012 Revision,” ESA Working paper No. 12-03, Rome, FAO, (2012).
  • [7] T. W. Culliney, “Crop losses to arthropods,” Integrated Pest Management, Springer, Dordrecht, (2014), 201–225.
  • [8] C. A. Damalas, I. G. Eleftherohorinos, “Pesticide exposure, safety issues, and risk assessment indicators,” International Journal of Environmental Research and Public Health, (2011), 8 (5), 1402–1419.
  • [9] G. Lofrano, G. Libralato, S. Meric, V. Vaiano, O. Sacco, V. Venditto, M. Carotenuto, “Occurrence and potential risks of emerging contaminants in water,” Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants, Elsevier, (2020), 1–25.
  • [10] J. Kaushal, M. Khatri, S. K. Arya, “A treatise on organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination,” Ecotoxicology and Environmental Safety, (2021), 207, 111483.
  • [11] L. Liu, M. Bilal, X. Duan, H. M. Iqbal, “Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives,” Science of The Total Environment, (2019), 667, 444–454.
  • [12] A. M. Gonçalves, C. P. Rocha, J. C. Marques, F. J. Gonçalves, “Fatty acids as suitable biomarkers to assess pesticide impacts in freshwater biological scales–a review,” Ecological Indicators, (2021), 122, 107299.
  • [13] V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk, “Pesticides: Formulants, distribution pathways and effects on human health – a review.” Toxicology Reports, (2021), 8, 1179-1192.
  • [14] L. C. Pereira, A. O. de Souza, M. F. F. Bernardes, M. Pazin, M. J., Tasso, P. H., Pereira, D. J. Dorta, “A perspective on the potential risks of emerging contaminants to human and environmental health,” Environmental Science and Pollution Research, (2015), 22(18), 13800–13823.
  • [15] E. Dogac, I. Kandemir, V. Taskın, “Geographical distribution and frequencies of organophosphate-resistant Ace alleles and morphometric variations in olive fruit fy populations,” Pest Management Science, (2015), 71, 1529–1539.
  • [16] A. M. Gonçalves, C. P. Rocha, J. C. Marques, F. J. Gonçalves, “Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure–a review,” Ecological Indicators, (2021), 122, 107303.
  • [17] L. Parra-Arroyo, R. B. González-González, C. Castillo-Zacarías, E. M. Melchor Martínez, J. E. Sosa-Hernández, M. Bilal, H. M. Iqbal, D. Barceló, R. Parra-Saldívar, “Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects,” Science of The Total Environment, (2022), 807, 151879.
  • [18] MacLachlan, D. J., & Hamilton, D. “Estimation methods for Maximum Residue Limits for pesticides. Regulatory,” Toxicology and Pharmacology, (2010), 58(2), 208-218.
  • [19] J. J. Villaverde, B. Sevilla-Morán, C. López-Goti, J. L. Alonso-Prados, P. Sandín-España, “Trends in analysis of pesticide residues to fulfil the European Regulation (EC) No. 1107/2009,” TrAC Trends in Analytical Chemistry, (2016), 80, 568–580.
  • [20] D. Su, H. Li, X. Yan, Y. Lin, G. Lu, “Biosensors based on fluorescence carbon nanomaterials for detection of pesticides,” TrAC Trends in Analytical Chemistry, (2020), 134, 116126.
  • [21] I. A. Saleh, N. Zouari, M. A. Al-Ghouti, “Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches,” Environmental Technology & Innovation, (2020), 19, 101026.
  • [22] G. Pérez-Lucas, M. Aliste, N. Vela, I. Garrido, J. Fenoll, S. Navarro, “Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photoassisted peroxonation,” Process Safety and Environmental Protection, (2020), 137, 358–365.
  • [23] X. Chen, Q. Zhou, F. Liu, Q. Peng, Y. Bian, “Performance and kinetic of pesticide residues removal by microporous starch immobilized laccase in a combined adsorption and biotransformation process,” Environmental Technology & Innovation, (2021), 21, 101235.
  • [24] M. Bilal, H. M. Iqbal, D. Barceló, “Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems,” Science of The Total Environment, (2019), 695, 133896.
  • [25] G. Chauhan, R. B. González-González, H. M. Iqbal, “Bioremediation and decontamination potentials of metallic nanoparticles loaded nanohybrid matrices – a review,” Environmental Research, (2021), 112407.
  • [26] R. B. González-González, L. Parra-Arroyo, R. Parra-Saldívar, R. A. Ramirez-Mendoza, H. M. Iqbal, “Nanomaterial-based catalysts for the degradation of endocrine-disrupting chemicals – a way forward to environmental remediation,” Materials Letters, (2021), 131217.
  • [27] R. B. González-González, A. Sharma, R. Parra-Saldívar, R. A. Ramirez-Mendoza, M. Bilal, H. M. Iqbal, “Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials,” Journal of Hazardous Materials, (2022), 423, 127145.
  • [28] N. Hussain, M. Bilal, H.M. Iqbal, “Carbon-based nanomaterials withmultipurpose attributes for water treatment: greening the 21st-century nanostructure materials deployment,” Biomaterials and Polymers Horizon, (2022), 1, 48–58.
  • [29] A. Reyes-Calderón, S. Pérez-Uribe, A. G. Ramos-Delgado, S. Ramalingam, G. Oza, R. Parra- Saldívar, R. A. Ramirez-Mendoza, H. M. Iqbal, A. Sharma, “Analytical and regulatory considerations to mitigate highly hazardous toxins from environmental matrices,” Journal of Hazardous Materials, (2022), 423, 127031.
  • [30] Jayaraj, R., Megha, P. and Sreedev, P. "Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment," Interdisciplinary Toxicology, (2016), 9, 90-100.
  • [31] E. B. Radcliffe, W.D. Hutchison, R.E. Cancelado, “Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies,” Cambridge University Press, (2009).
  • [32] S. S. Saeedi, Saravi, A. R. Dehpour, “Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A revie,” Life Sciences, (2016), 145, 255-264.
  • [33] EFSA, “Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the toxicity of endosulfan in fish,” EFSA Journal, (2011), 9(4), 2131.
  • [34] S. Gautam, N.K. Sood, K. Gupta, C. Joshi, K.K. Gill, R. Kaur, I. Chauhan, “Bioaccumulation of pesticide contaminants in tissue matrices of dogs suffering from malignant canine mammary tumors in Punjab, India,” Heliyon, (2020), 6 (10), e05274.
  • [35] L. Lim, H. M. Bolstad, “Organophosphate Insecticides: Neurodevelopmental Effects,” Encyclopedia of Environmental Health (Second Edition), (2019), 785-791.
  • [36] T. Khedr, A. A. Hammad, A. M. Elmarsafy, E. Halawa, M. Soliman, “Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation,” Journal of Hazardous Materials, (2019), 373, 23–28.
  • [37] M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S.S. Martinez, “Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis,” Process Safety and Environmental Protection, (2020), 134, 292–307.
  • [38] R. D. Horsak, P. B. Bedient, M. C. Hamilton, F. B. Thomas, “Pesticides,” Environmental Forensics, (1964), 143-165.
  • [39] B. Hu, L. Jiang, Q. Zheng, C. Luo, D. Zhang, S. Wang, Y. Xie, G. Zhang, “Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper,” Environment International, (2021), 155,106591.
  • [40] J. R. Garbarino, E. Snyder-Conn, T.J. Leiker, G.L. Hoffman, “Contaminants in Arctic snow collected over northwest Alaskan sea ice,” Water Air and Soil Pollution, (2002), 139(1), 183–214.
  • [41] M. Jokanović, “Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review,” Toxicology, (2018), 410, 125–131.
  • [42] F. R. Chowdhury, G. Dewan, V. R. Verma, D. W. Knipe, I. T. Isha, M. A. Faiz, M. Eddleston, “Bans of WHO class I pesticides in Bangladesh—suicide prevention without hampering agricultural output,” International Journal of Epidemiology, (2018), 47 (1), 175–184.
  • [43] R. Gupta, “Carbamate Pesticides,” Encyclopedia of Toxicology (Third Edition), (2014), 661-664.
  • [44] P. Zhang, H. Sun, L. Yu, T. Sun, “Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars,” Journal of Hazardous Materials, (2013), 244, 217–224.
  • [45] N. Haddaji, “Environmental contaminants and antibiotic resistance as a One Health threat,” One Health, (2022), 231-252.
  • [46] L. A. Murphy, R. Kagan, “Poisoning,” Veterinary Forensic Pathology, Springer, Cham, 75–87, (2018).
  • [47] F. Gallocchio, A. Moressa, R. Stella, R. Rosin, L. Basilicata, L. Bille, G. Binato, “Fast and simultaneous analysis of carbamate pesticides and anticoagulant rodenticides used in suspected cases of animal poisoning,” Forensic Science International, (2021), 323, 110810.
  • [48] K. Matsuda, M. Ihara, D. B. Sattelle, “Neonicotinoid Insecticides: Molecular Targets,” Resistance and Toxicity, (2020), 6;60, 241-255.
  • [49] S. M. Ensley, “Neonicotinoids. Veterinary Toxicology (Third Edition),” (2018), 521-524.
  • [50] M. A. Manavi, M. H. F. Nasab, S. M. Daghighi, M. Baeeri, “Neonicotinoids,” Reference Module in Biomedical Sciences, (2023), https://doi.org/10.1016/B978-0-12-824315-2.00899-X
  • [51] J. Wang, W. Wang, J. Xiong, L. Li, B. Zhao, I. Sohail, Z. He, “A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida,” Journal of Environmental Management, (2021), 280, 111794.
  • [52] L. A. Teixeira, J. T. Andaloro, “Diamide insecticides: Global efforts to address insect resistance stewardship challenges,” Pesticide Biochemistry and Physiology, (2013), 106(3), 76-78.
  • [53] S. K. Das, “Mode of action of pesticides and the novel trends – A critical review,” International Research Journal of Agricultural Science and Soil Science, (2013), 3(11), 393-401.
  • [54] Ö. Cezmi, “Tarımsal Zararlılarla Savaş Yöntemleri ve İlaçları,” Adnan Menderes Üniversitesi Yayınları, No:19, (2004).
  • [55] M.A. Beketov, B. J. Kefford, R.B. Schäfer, M. Liess, “Pesticides reduce regional biodiversity of stream invertebrates,” Proceeding of the National. Academy of sciences, (2013), 110, 11039–11043.
  • [56] J.C. Habel, M. J. Samways, T. Schmitt, “Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy,” Biodiversity and Conservation, (2019), 28, 1343–1360.
  • [57] F. Sánchez-Bayo, “Indirect Effect of Pesticides on Insects and Other Arthropods,” Toxics, (2021), 9(8):177.
  • [58] A. Sharma, P. Jha, G.V.P. Reddy, “Multidimensional relationships of herbicides with insect-crop food webs,” Sciences of The Total Environment, (2018), 643, 1522–1532.
  • [59] N.W. Sotherton, “The distribution and abundance of predatory arthropods overwintering on farmland,” Annals of Applied Biology, (1984), 105, 423–429.
  • [60] S. A. Cameron, J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F. Solter, T. L. Griswold, “Patterns of widespread decline in North American bumble bees,” Proceeding of the National. Academy of sciences, (2011), 108, 662–667.
  • [61] E. E. Zattara, M. A. Aizen, “Worldwide occurrence records suggest a global decline in bee species richness,” One Earth (2021), 4, 114–123.
  • [62] S. A. Rands, H. M. Whitney, “Field margins, foraging distances and their impacts on nesting pollinator success,” PLoS ONE (2011), 6, e25971.
  • [63] M. Majdinasab, M. Daneshi, J. L. Marty, “Recent developments in non-enzymatic (bio) sensors for detection of pesticide residues: focusing on antibody, aptamer and molecularly imprinted polymer,” Talanta (2021), 122397.
  • [64] B. Jiang, P. Dong, J. Zheng, “A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides,” Talanta, (2018), 183, 114–121.
  • [65] X. Huang, Y. Zhu, E. Kianfar, “Nano biosensors: properties, applications,” Journal of Materials Research and Technology, (2021), 12, 1649–1672.
  • [66] D. Su, H. Li, X. Yan, Y. Lin, G. Lu, “Biosensors based on fluorescence carbon nanomaterials for detection of pesticides.” TrAC Trends in Analytical Chemistry, (2021), 134, 116126.
  • [67] S. N. Prasad, V. Bansal, R. Ramanathan, “Detection of pesticides using nanozymes: trends, challenges and outlook.” TrAC Trends in Analytical Chemistry, (2021), 144, 116429.
  • [68] K. H. Kim, E. Kabir, S. A. Jahan, “Exposure to pesticides and the associated human health effects,” Science of The Total Environment, (2017), 575, 525–535.
  • [69] Ö. Akdeniz, “Asetilkolinesteraz ve butirilkolinesteraz enzimleri üzerinde bazı pestisitlerin etkilerinin incelenmesi,” Yüksek Lisans Tezi, Ağrı üniversitesi, Kimya Anabilim Dalı, Ağrı, (2019).
  • [70] J.L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, I. Silman, “Atomic Structure of Acetylcholinesterasefrom Torpedo Californica: A Prototypic Asetylcholine-Binding Protein.” Science, (1991), 253(5022), 872-879.
  • [71] J. R. Voorhees, D. S. Rohlman, P. J. Lein, A. A. Pieper, “Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds,” Frontiers in Neuroscience, (2017), 10, 590.
  • [72] R. D. Burke, S. W. Todd, E. Lumsden, R. J. Mullins, J. Mamczarz, W. P. Fawcett, E. X. “Albuquerque, Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms,” Journal of Neurochemistry, (2017), 142, 162–177.
  • [73] M. R. Narra, K. Rajender, R. R. Reddy, U. S. Murty, G. Begum, “Insecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damage,” Chemosphere, (2017), 168, 350–357.
  • [74] Z. J. Chen, H. L. Wu, Z. L. Xiao, H. J. Fu, Y. D. Shen, L. Luo, Z. L. Xu, “Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immuno chromatographic assays for simultaneous pesticide screening,” Journal of Hazardous Materials, (2021), 412, 125241.
  • [75] X. Yan, H. Li, X. Su, “Review of optical sensors for pesticides,”. Trends in Analytical Chemistry, (2018), 103, 1–20.
  • [76] J. Wei, Y. Yang, J. Dong, S. Wang, P. Li, “Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots,” Microchimica Acta, (2019), 186 (2), 1–9.
  • [77] B. Ingrid, A. Scherrine, H. Tria, Akhtar, M. Jean-Louis, “New biorecognition molecules in biosensors for the detection of toxins,” Biosensors and Bioelectronics, (2017), 87, 285-298.
  • [78] E. C. Reynoso, E. Torres, F. Bettazzi, I. Palchetti, “Trends and perspectives in immunosensors for determination of currently-used pesticides: the case of glyphosate, organophosphates, and neonicotinoids,” Biosensors, (2019), 9(1), 20.
  • [79] D. Abhijeet, K. Priya, B. Vipul, B. G. John, Tarun Kumar Sharma, “Aptamer-based point-of-care diagnostic platforms,” Sensors and Actuators B: Chemical, (2017), 246, 535-553.
  • [80] F. Saqib, W. Haiyan, N. Jiyun, A. Shakeel, M. Ihsan, Z. Muhammad, K. Rayyan, A. Muhammad, “Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection,” Science of The Total Environment, (2022), 804, 150293.
  • [81] J. Pan, W. Chen, Y. Ma, & G. Pan, “Molecularly imprinted polymers as receptor mimics for selective cell recognition,” Chemical society reviews, (2018), 47(15), 5574-5587.
  • [82] M. Gast, H. Sobek, &, B. Mizaikoff, “Advances in imprinting strategies for selective virus recognition a review,” TrAC Trends in Analytical Chemistry, (2019), 114, 218-232.
  • [83] A. Sharma, A. Shukla, K. Attri, M. Kumar, P. Kumar, A. Suttee, G. Singh, R. P. Barnwal, N. Singla, “Global trends in pesticides: A looming threat and viable alternatives,” Ecotoxicology and Environmental Safety, (2020), 201, 110812.
  • [84] R. Chow, R. Scheidegger, T. Doppler, A. Dietzel, F. Fenicia, C. Stamm, “A review of long-term pesticide monitoring studies to assess surface water quality trends,” Water Research X, (2020), 100064.
  • [85] M. I. Abou Zeid, A. M. Jammoul, K.C. Melki, Y. Abou Jawdah, M. K. Awad, “Suggested policy and legislation reforms to reduce deleterious effect of pesticides in Lebanon,” Heliyon, (2020), 6 (12), e05524.
  • [86] W. Wang, X. Wang, N. Cheng, Y. Luo, Y. Lin, We. Xu, D. Du, “Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection,” Trends in Analytical Chemistry, (2020), 132, 116041.
  • [87] T. J. Centner, “Cancelling pesticide registrations and revoking toerances: the case of chlorpyrifos,” Environmental Toxicology and Pharmacology, (2018), 57, 53–61.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derlemeler
Yazarlar

Rumeysa Yeşim Manap 0000-0003-4975-7234

Evin Günenç 0000-0001-6201-1256

Ersin Doğaç 0000-0003-4426-2187

Proje Numarası -
Yayımlanma Tarihi 21 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 2

Kaynak Göster

APA Manap, R. Y., Günenç, E., & Doğaç, E. (2023). Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti. Ata-Kimya Dergisi, 3(2), 9-23.
AMA Manap RY, Günenç E, Doğaç E. Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti. J Ata-Chem. Kasım 2023;3(2):9-23.
Chicago Manap, Rumeysa Yeşim, Evin Günenç, ve Ersin Doğaç. “Pestisitler: Sınıflandırmaları, Toksikolojik Etkileri Ve Tespiti”. Ata-Kimya Dergisi 3, sy. 2 (Kasım 2023): 9-23.
EndNote Manap RY, Günenç E, Doğaç E (01 Kasım 2023) Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti. Ata-Kimya Dergisi 3 2 9–23.
IEEE R. Y. Manap, E. Günenç, ve E. Doğaç, “Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti”, J Ata-Chem, c. 3, sy. 2, ss. 9–23, 2023.
ISNAD Manap, Rumeysa Yeşim vd. “Pestisitler: Sınıflandırmaları, Toksikolojik Etkileri Ve Tespiti”. Ata-Kimya Dergisi 3/2 (Kasım 2023), 9-23.
JAMA Manap RY, Günenç E, Doğaç E. Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti. J Ata-Chem. 2023;3:9–23.
MLA Manap, Rumeysa Yeşim vd. “Pestisitler: Sınıflandırmaları, Toksikolojik Etkileri Ve Tespiti”. Ata-Kimya Dergisi, c. 3, sy. 2, 2023, ss. 9-23.
Vancouver Manap RY, Günenç E, Doğaç E. Pestisitler: Sınıflandırmaları, Toksikolojik etkileri ve Tespiti. J Ata-Chem. 2023;3(2):9-23.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724