Degradation of Chrysoidine Y Dye with Sulphite Ion in Aqueous Acidic Phase using Kinetic Method of Analysis
Yıl 2025,
Cilt: 5 Sayı: 1, 10 - 19, 21.05.2025
Patricia Umoru
,
Dr. Ikechukwu Ugbaga Nkole
Öz
Chrysoidine Y dye (CYD) is harmful to aquatic species and human beings, which has the tendency to induce cancer and mutation to living cells. Its degradation is key in creating a healthy environment and curbing pollution. Hence, a stoichiometric method is used to study its degradation with a pool of sulphite ions (SO32-), under a constant ionic strength, [H+], and 449 nm wavelength. The stoichiometry is observed to be 1:1 for CYD: SO32-, which results in the formation of aniline and sulphonic acid as the main products of the degradation. The reaction is first-order with respect to CYD, first-order with respect to SO32-, and a second-order-overall. Increase in the proton concentration impacts positively on the reaction rate of CYD degradation. Negative salt effect is observed as the dilapidation rate of the dye drops. Occurrence of counter ion catalysis is pronounced with large appreciable rate. The participation of a firm intermediate molecule is negative as revealed by the Spectroscopic Scanning Technique (SST) and Michaelis Menten’s Type Plot (MMTP), which cancels the inner-sphere mechanism expectancy. The degradation of the dye was successfully carried out and the reaction points to the outer-sphere mechanism.
Etik Beyan
None as no human/animal materials was used for the study
Destekleyen Kurum
NIGERIAN DEFENCE ACADEMY, KADUNA NIGERIA
Teşekkür
I wish to express my gratitude to the Nigerian Defence Academy Kaduna, Nigeria for their support through out this research.
Kaynakça
-
1. Shammala FA, Chiswell B. Removal of Chrysoidine Y from water by graphene-based nanocomposite derivatives with magnetic chitosan nanocomposite. Intl J Appl Pharm Sci. 2019;4:17-33.
-
2. Hou J, Yun J, Jang W, Kim J, Byun H. Polyacrylonitrile nanofiber membranes incorporated with large reduced graphene oxide content in situ. J Mater Sci. 2021;56:18508-18521.
-
3. Nurchi VM, Crespo-Alonso, Beisuz R, et al. Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads. Arabian J Chem. 2014;7:133-138.
-
4. International Agency for Research on Cancer (IARC). (1975). IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Volume 8: Some Aromatic Azo Compounds, pp. 91–96. Lyon, France: IARC. ISBN 978-92-832-1208-9.
-
5. Hao Y, Wang Z, Gou J, Dong S. Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide Nanocomposite. 2015;http://dx.doi.org/10.1016/j.arabjc.2015.07.013
-
6. Gote YM, Sinhmar PS, Gogate PR. Sonocatalytic degradation of chrysoidine R dye using ultrasonically synthesized NiFe2O4 catalyst. Catalysts. 2023;13:597.
7. Mittal A, Mittal J, Malviya A, Gupta VK. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci. 2010;344:497-507.
-
8. Mariyam A, Mittal J, Sakina F, Baker RT, Sharma A, K. Adsorption behaviour of Chrysoidine R dye on a metal/halide-free variant of ordered mesoporous carbon. Desal Water Treatment. 2021;223:425-433.
-
9. Ashraf MW, Abulibdeh N, Salam A. Adsorption studies of textile dye (chrysoidine) from aqueous solutions using activated sawdust. Intl J Chem Eng. 2019;1-8.
-
10. Beukes JP, Pienaar JJ, Lachmann G, Giesekke EW. The reduction of hexavalent chromium by sulphite in water-waste. Water SA. 1999;25:363-370.
-
11. Hamid AA, Risikat A, Sururah A. Food: its preservations, additives and applications. Intl J Chem Biochem Sci. 2012;1:36-47.
-
12. Vally H, Misso NLA. Adverse reactions to the sulphite additives. Gastroenterol Hepatol Bed Bench. 2012;5:16-23.
-
13. Zhao D, Yang C, Xiao C, et al. Quality evaluation and identification of Houttuynia cordata bleached with sodium metabisulphite based on whole spectrum metabololmics. Food Chem X. 2024;14:101463.
-
14. Wairimu NW, Wairagu P, Chepukosi KW, et al. Sodium metabisulphte-induced hematotoxicity, oxidative stress, and organ damage ameliorated by standardized Ginkgo biloba in mice. J Toxicol. 2023;10:7058016.
-
15. Irwin SV, Fisher P, Graham E, Malek A, Robidoux A. Sulphite inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. Plos One. 2017;12:0186629.
-
16. Nkole IU, Osunkwo CR, Onu AD, Idris SO. Kinetics and mechanism of the reduction of n-(2-hydroxyethyl)ethylenediaminetriacetateiron(III) complex by thioglycol in bicarbonate buffer medium. Intl J Adv Chem. 2018;6:102–107.
17. Idris SO, Tanimu A, Iyun JF, Mohammed Y. Kinetics and mechanism of the reaction of malachite green and dithionite ion. Intl Res J Pure Appl Chem. 2015;5:177–184.
-
18. Arthur DE, Nkole IU, Osunkwo CR. Electron transfer reaction of tris(1,10-phenanthroline)cobalt(III) complex and iodide ion in an aqueous acidic medium. Chem Afr. 2020;4:63–69.
-
19. Umoru PE, Faruruwa MD. Kinetic analysis of the oxidation of nitrate ion by methylthioninium chloride in acid medium. J Appl Sci Environ Manage. 2014;18:460-466.
-
20. Onu AD, Iyun JF, Idris SO. Kinetics and stoichiometry of the reduction of hydrogen peroxide by an aminocarboxlactocobaltate(II) complex in aqueous medium. Open J Inorg Chem. 2015;5:75–82.
21. Sawicki E, Noe JL, Fox FT. Spot test detection and colorimetric dterminations of aniline, naphthylamine, and anthramine derivatives with 4-azobenzenediazonium fluoborate. Talanta. 1961;8:257-264.
-
22. Bruzzoniti MC, De Carlo RM, Sarzanini A. Determination of sulfonic acids and alkylsulfates by ion chromatography in water. Talanta. 2007;75:734-739.
-
23. Nkole IU, Osunkwo CR, Onu AD, Idris SO. Cationic surfactant-based catalysis on the oxidation of glutamic acid by bis-(2-pyridinealdoximato)dioxomolydate(IV) complex. Catal Lett. 2023;153:1-10.
-
24. Shanmugaprabha T, Selvakumar K, Rajasekaran K, Sami P. A kinetic study of the oxidations of 2-mercaptoethanol and 2-mercaptoethylamine by heteropoly 11-tungsto-1-vanadophosphate in aqueous acidic medium. Trans Met Chem. 2016;41:77–85.
-
25. Osunkwo CR, Nkole IU, Onu AD, Idris SO. Electron transfer reaction of tris-(1,10-phenanthroline)cobalt(III) complex [Co(phen)3]3+ and thiosulphate ion (S2O32−) in an aqueous acidic medium. Intl J Adv Chem. 2018;6:121–126.
-
26. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Effect of surfactant micellization on the oxidation of mercaptobenzothiazole by bioinorganic molybdenum complex. Results Chem. 2022;2:100616.
-
27. Myek B, Idris SO, Onu AD, Yakubu MK. Kinetics and mechanism of the redox reaction of orange II with thiosulphate ion in aqueous acid. Sci World J. 2020;15:108-111.
-
28. Ukoha PO, Atiga S, Ujam OT, Asegbeloyin JN, Okpareke OC, Okereke SOE. Kinetics and mechanism of electron transfer reaction of an adipato bridged iron(III)-salen complex with dithionite ion in perchloric acid medium. Croatica Chemica Acta. 2015;88:259-266.
-
29. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. Inorg Chem Comm. 2022;140:109468.
-
30. Umoru PE, Nkole IU, Ezeh TT. Degradation of indigo carmine dye with peroxydisulphate ion in aqueous sulphuric acid phase: kinetic study. Intl J Chem Kinet. 2024;56:1-8.
-
31. Ibrahim I, Idris SO, Abdulkadir I, Onu AD. Premicellar effects on the reduction of n,n’-phenylenebis(salicylideneimianto)iron(III) by thioglycolic acid: kinetic study and mechanism. J Disper Sci Technol. 2023;45:1634-1645.
-
32. Atiga S, Ukoha PO, Ujam OT, Okpareke OC. Kinetics and mechanism of the reduction of µ-adi-di(n,n’-bis-(salicylideneethylenediaminatoiron(III))) complex with dithionate ion. Transit Metal Chem. 2014;39:189-194.
-
33. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Oxidation of aspartic acid with molybdenum-oxime-ligand framework in acidified-aqua and interfacial active media: Menger-Portnoy kinetic model. Inorg Chem Comm. 2024;161:111979.
-
34. Tang JY. On the relationships between the Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics. Geosci Model Dev. 2015;8:3823-3835.
35. Srinivasan B. A guide to the Michaelis-Menten equation: steady state and beyond. FEBS J. 2021;289:6086-6098.
-
36. Nkole IU, Imam M, Arthur DE. Oxidation of glyoxal with the Mo-oxime complex in a benzalkonium chloride interface: Raghavan and Srinivasan kinetic model. Inorg Chem Comm. 2024;170:113524.
-
37. Ekdopayi JN, Iyun JF, Idris SO. Kinetics and mechanism of the electron transfer reaction between sulphite ion and indigo carmine in aqueous acidic medium. World J Chem. 2010;5:62-66.
-
38. Imam M, Idris SO, Onu AD. Kinetics and mechanism of the electron transfer reaction of malachite green with sulphite ion in acidic medium. FUW Trends in Sci Technol J. 2018;3:778-782.
-
39. Ibrahim I, Idris SO, Abdulkadir I, Onu AD. Kinetics and mechanism of the redox reaction of n, n′-phenylenebis-(salicylideneiminato)iron(III) with oxalic acid in mixed aqueous medium. Trans Met Chem. 2019;44:269–273.
-
40. Abdulsalam S, Idris SO, Shallangwa GA, Onu AD. Oxidation of thioglycolic acid by Co(III)salophen in binary mixed DMSO-water and sodium dodecyl sulphate media. Chem Afr. 2024;7:1011-1019.
-
41. Oladunni N, Idris SO, Onu AD, Shallangwa GA. Kinetic and mechanism of oxidation of catechol by oxygenated [Co2(O2)(NH3)10]5+ complex. Sci Front. 2020;2:1-7.
-
42. Chandrawat U, Prakash A, Mehrotra RN. Kinetics and mechanism of the oxidation of the sulphite ion by the Mn(lll)-cydta complex ion Canadian J Chemistry. 2011;73:1531-1537.
-
43. Umoru PE, Babatunde OA. Kinetics and Mechanism of the Oxidation of Sulphite Ion by Di-μ-oxo-tetrakis (2, 2’ bipyridine)-Dimanganese (III, IV) Perchloratein Aqueous Acidic Medium. J Chem Soc. Nigeria. 2019;44:710–717.
Kinetik Analiz Yöntemi Kullanılarak Sulu Asidik Fazda Sülfit İyonlu Krizoidin Y Boyasının Bozunması
Yıl 2025,
Cilt: 5 Sayı: 1, 10 - 19, 21.05.2025
Patricia Umoru
,
Dr. Ikechukwu Ugbaga Nkole
Öz
Krizoidin Y boyası (CYD), kansere ve canlı hücrelerde mutasyona neden olma eğiliminde olan su canlıları ve insanlar için zararlıdır. Bozunumu sağlıklı bir çevre yaratmada ve kirliliği azaltmada anahtar rol oynar. Bu nedenle, sabit iyonik güç [H+] ve 449 nm dalga boyu altında bir sülfit iyonları havuzunda (SO32-) bozunmasını incelemek için stokiyometrik bir yöntem kullanılır. Stokiyometrik oranın CYD: SO32- için 1:1 olduğu gözlemlenir ve bu da bozunmanın ana ürünleri olarak anilin ve sülfonik asit oluşumuyla sonuçlanır. Tepkime CYD açısından birinci dereceden, SO32- açısından birinci dereceden ve genel olarak ikinci derecedendir. Proton konsantrasyonundaki artış, CYD bozunmasının reaksiyon hızını olumlu yönde etkiler. Boyanın bozulma hızı düştükçe negatif tuz etkisi gözlemlenir. Karşı iyon katalizinin oluşumu büyük ve belirgin bir hızla belirgindir. Spektroskopik Tarama Tekniği (SST) ve Michaelis Menten Tip Grafiği (MMTP) tarafından ortaya konulduğu gibi, sağlam bir ara molekülün katılımı negatiftir ve bu da iç küre mekanizması beklentisini iptal eder. Boyanın bozunması başarıyla gerçekleştirildi ve reaksiyon dış küre mekanizmasına işaret etmektedir.
Kaynakça
-
1. Shammala FA, Chiswell B. Removal of Chrysoidine Y from water by graphene-based nanocomposite derivatives with magnetic chitosan nanocomposite. Intl J Appl Pharm Sci. 2019;4:17-33.
-
2. Hou J, Yun J, Jang W, Kim J, Byun H. Polyacrylonitrile nanofiber membranes incorporated with large reduced graphene oxide content in situ. J Mater Sci. 2021;56:18508-18521.
-
3. Nurchi VM, Crespo-Alonso, Beisuz R, et al. Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads. Arabian J Chem. 2014;7:133-138.
-
4. International Agency for Research on Cancer (IARC). (1975). IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Volume 8: Some Aromatic Azo Compounds, pp. 91–96. Lyon, France: IARC. ISBN 978-92-832-1208-9.
-
5. Hao Y, Wang Z, Gou J, Dong S. Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide Nanocomposite. 2015;http://dx.doi.org/10.1016/j.arabjc.2015.07.013
-
6. Gote YM, Sinhmar PS, Gogate PR. Sonocatalytic degradation of chrysoidine R dye using ultrasonically synthesized NiFe2O4 catalyst. Catalysts. 2023;13:597.
7. Mittal A, Mittal J, Malviya A, Gupta VK. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci. 2010;344:497-507.
-
8. Mariyam A, Mittal J, Sakina F, Baker RT, Sharma A, K. Adsorption behaviour of Chrysoidine R dye on a metal/halide-free variant of ordered mesoporous carbon. Desal Water Treatment. 2021;223:425-433.
-
9. Ashraf MW, Abulibdeh N, Salam A. Adsorption studies of textile dye (chrysoidine) from aqueous solutions using activated sawdust. Intl J Chem Eng. 2019;1-8.
-
10. Beukes JP, Pienaar JJ, Lachmann G, Giesekke EW. The reduction of hexavalent chromium by sulphite in water-waste. Water SA. 1999;25:363-370.
-
11. Hamid AA, Risikat A, Sururah A. Food: its preservations, additives and applications. Intl J Chem Biochem Sci. 2012;1:36-47.
-
12. Vally H, Misso NLA. Adverse reactions to the sulphite additives. Gastroenterol Hepatol Bed Bench. 2012;5:16-23.
-
13. Zhao D, Yang C, Xiao C, et al. Quality evaluation and identification of Houttuynia cordata bleached with sodium metabisulphite based on whole spectrum metabololmics. Food Chem X. 2024;14:101463.
-
14. Wairimu NW, Wairagu P, Chepukosi KW, et al. Sodium metabisulphte-induced hematotoxicity, oxidative stress, and organ damage ameliorated by standardized Ginkgo biloba in mice. J Toxicol. 2023;10:7058016.
-
15. Irwin SV, Fisher P, Graham E, Malek A, Robidoux A. Sulphite inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. Plos One. 2017;12:0186629.
-
16. Nkole IU, Osunkwo CR, Onu AD, Idris SO. Kinetics and mechanism of the reduction of n-(2-hydroxyethyl)ethylenediaminetriacetateiron(III) complex by thioglycol in bicarbonate buffer medium. Intl J Adv Chem. 2018;6:102–107.
17. Idris SO, Tanimu A, Iyun JF, Mohammed Y. Kinetics and mechanism of the reaction of malachite green and dithionite ion. Intl Res J Pure Appl Chem. 2015;5:177–184.
-
18. Arthur DE, Nkole IU, Osunkwo CR. Electron transfer reaction of tris(1,10-phenanthroline)cobalt(III) complex and iodide ion in an aqueous acidic medium. Chem Afr. 2020;4:63–69.
-
19. Umoru PE, Faruruwa MD. Kinetic analysis of the oxidation of nitrate ion by methylthioninium chloride in acid medium. J Appl Sci Environ Manage. 2014;18:460-466.
-
20. Onu AD, Iyun JF, Idris SO. Kinetics and stoichiometry of the reduction of hydrogen peroxide by an aminocarboxlactocobaltate(II) complex in aqueous medium. Open J Inorg Chem. 2015;5:75–82.
21. Sawicki E, Noe JL, Fox FT. Spot test detection and colorimetric dterminations of aniline, naphthylamine, and anthramine derivatives with 4-azobenzenediazonium fluoborate. Talanta. 1961;8:257-264.
-
22. Bruzzoniti MC, De Carlo RM, Sarzanini A. Determination of sulfonic acids and alkylsulfates by ion chromatography in water. Talanta. 2007;75:734-739.
-
23. Nkole IU, Osunkwo CR, Onu AD, Idris SO. Cationic surfactant-based catalysis on the oxidation of glutamic acid by bis-(2-pyridinealdoximato)dioxomolydate(IV) complex. Catal Lett. 2023;153:1-10.
-
24. Shanmugaprabha T, Selvakumar K, Rajasekaran K, Sami P. A kinetic study of the oxidations of 2-mercaptoethanol and 2-mercaptoethylamine by heteropoly 11-tungsto-1-vanadophosphate in aqueous acidic medium. Trans Met Chem. 2016;41:77–85.
-
25. Osunkwo CR, Nkole IU, Onu AD, Idris SO. Electron transfer reaction of tris-(1,10-phenanthroline)cobalt(III) complex [Co(phen)3]3+ and thiosulphate ion (S2O32−) in an aqueous acidic medium. Intl J Adv Chem. 2018;6:121–126.
-
26. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Effect of surfactant micellization on the oxidation of mercaptobenzothiazole by bioinorganic molybdenum complex. Results Chem. 2022;2:100616.
-
27. Myek B, Idris SO, Onu AD, Yakubu MK. Kinetics and mechanism of the redox reaction of orange II with thiosulphate ion in aqueous acid. Sci World J. 2020;15:108-111.
-
28. Ukoha PO, Atiga S, Ujam OT, Asegbeloyin JN, Okpareke OC, Okereke SOE. Kinetics and mechanism of electron transfer reaction of an adipato bridged iron(III)-salen complex with dithionite ion in perchloric acid medium. Croatica Chemica Acta. 2015;88:259-266.
-
29. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Redox reaction of bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex with thiosulphate ion in aqueous acidic and surfactant media. Inorg Chem Comm. 2022;140:109468.
-
30. Umoru PE, Nkole IU, Ezeh TT. Degradation of indigo carmine dye with peroxydisulphate ion in aqueous sulphuric acid phase: kinetic study. Intl J Chem Kinet. 2024;56:1-8.
-
31. Ibrahim I, Idris SO, Abdulkadir I, Onu AD. Premicellar effects on the reduction of n,n’-phenylenebis(salicylideneimianto)iron(III) by thioglycolic acid: kinetic study and mechanism. J Disper Sci Technol. 2023;45:1634-1645.
-
32. Atiga S, Ukoha PO, Ujam OT, Okpareke OC. Kinetics and mechanism of the reduction of µ-adi-di(n,n’-bis-(salicylideneethylenediaminatoiron(III))) complex with dithionate ion. Transit Metal Chem. 2014;39:189-194.
-
33. Nkole IU, Idris SO, Abdulkadir I, Onu AD. Oxidation of aspartic acid with molybdenum-oxime-ligand framework in acidified-aqua and interfacial active media: Menger-Portnoy kinetic model. Inorg Chem Comm. 2024;161:111979.
-
34. Tang JY. On the relationships between the Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics. Geosci Model Dev. 2015;8:3823-3835.
35. Srinivasan B. A guide to the Michaelis-Menten equation: steady state and beyond. FEBS J. 2021;289:6086-6098.
-
36. Nkole IU, Imam M, Arthur DE. Oxidation of glyoxal with the Mo-oxime complex in a benzalkonium chloride interface: Raghavan and Srinivasan kinetic model. Inorg Chem Comm. 2024;170:113524.
-
37. Ekdopayi JN, Iyun JF, Idris SO. Kinetics and mechanism of the electron transfer reaction between sulphite ion and indigo carmine in aqueous acidic medium. World J Chem. 2010;5:62-66.
-
38. Imam M, Idris SO, Onu AD. Kinetics and mechanism of the electron transfer reaction of malachite green with sulphite ion in acidic medium. FUW Trends in Sci Technol J. 2018;3:778-782.
-
39. Ibrahim I, Idris SO, Abdulkadir I, Onu AD. Kinetics and mechanism of the redox reaction of n, n′-phenylenebis-(salicylideneiminato)iron(III) with oxalic acid in mixed aqueous medium. Trans Met Chem. 2019;44:269–273.
-
40. Abdulsalam S, Idris SO, Shallangwa GA, Onu AD. Oxidation of thioglycolic acid by Co(III)salophen in binary mixed DMSO-water and sodium dodecyl sulphate media. Chem Afr. 2024;7:1011-1019.
-
41. Oladunni N, Idris SO, Onu AD, Shallangwa GA. Kinetic and mechanism of oxidation of catechol by oxygenated [Co2(O2)(NH3)10]5+ complex. Sci Front. 2020;2:1-7.
-
42. Chandrawat U, Prakash A, Mehrotra RN. Kinetics and mechanism of the oxidation of the sulphite ion by the Mn(lll)-cydta complex ion Canadian J Chemistry. 2011;73:1531-1537.
-
43. Umoru PE, Babatunde OA. Kinetics and Mechanism of the Oxidation of Sulphite Ion by Di-μ-oxo-tetrakis (2, 2’ bipyridine)-Dimanganese (III, IV) Perchloratein Aqueous Acidic Medium. J Chem Soc. Nigeria. 2019;44:710–717.