Derleme
BibTex RIS Kaynak Göster

SCAFFOLDS USED IN PERIODONTAL TISSUE ENGINEERING

Yıl 2014, 2014: Supplement 9, 67 - 73, 11.02.2015
https://doi.org/10.17567/dfd.85877

Öz

The main goal of periodontal treatment is to ensure complete regeneration of lost periodontal tissues. In recent years, alternative approaches to the treatment of periodontal tissues in regenerative tissue engineering applications has been seen frequently in the literature. In general, a scaffold that supports the new forming tissues, with stem cells providing tissue regeneration of lost tissues and growth factors contributing the regeneration are used in tissue engineering studies that performed utilizing the basic principles of biology and engineering. Scaffolds used in tissue engineering applications are consist of natural biomaterials such as collagen and chitosan, biodegradable synthetic polymers and inorganic materials along with composites and nanofibrous materials that product by utilizing the characteristics of these different materials. The aim of this review is to assess and analyze the scaffolds and its features which is an important part of regeneration and used in the periodontology field. applications of tissue engineering in

Kaynakça

  • Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Engineering Part B: Reviews 2010;16:219-55.
  • Viola J, Lal B, Grad O. The emergence of tissue engineering as a research field. United States National Science Foundation 2003.
  • Langer R, Vacanti J. Tissue engineering. Science 1993;260:920-6.
  • Osborne H. Non-Iconic Abstraction. British Journal of Aesthetics 1976;16:291-304. 5. Armitage GC. Periodontal diagnoses and classification Periodontology 2000 2004;34:9-21. periodontal diseases.
  • Lee J, Stavropoulos A, Susin C, Wikesjö UME. Periodontal regeneration: focus on growth and differentiation factors. Dental Clinics of North America 2010;54:93-111.
  • Lütfioğlu M. Periodontal rejenerasyon ve büyüme faktörleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2007;17:35-43.
  • Ishikawa I, Iwata T, Washio K, et al. Cell sheet engineering and other novel cell‐based approaches to periodontal regeneration. Periodontology 2000 2009;51:220-38.
  • Lin NH, Gronthos S, Bartold P. Stem cells and periodontal regeneration. Australian dental journal 2008;53:108-21.
  • Rios HF, Lin Z, Oh BN, Park CH, Giannobile WV. Cell-and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine. Journal of periodontology 2011;82:1223-37.
  • Kao RT, Conte G, Nishimine D, Dault S. Tissue engineering for periodontal regeneration. J Calif Dent Assoc. 2005;33:3.
  • Rios HF, Lin Z, Oh BN, Park CH, Giannobile WV. Cell-and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine. Journal of periodontology 2011;82:1223-37.
  • Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet- derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opinion on Biological Therapy 2011;11:375-85. 14. Özcan E, Özcan Atug SS. Periodontal Rejenerasyonda Kök hücrenin yeri. Atatürk Üniv. Dis Hek. Fak. Derg. 2010;20:123-30.
  • Lynch S, Marx R, Nevins M. Tissue Engineering Applications in oral and maxillofacial surgery and periodontics. 2008;Second edition:26-35.
  • Chen F-M, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Engineering Part B: Reviews 2010;16:219-55.
  • Lotfi G, Shokrgozar MA, Mofid R, et al. A Clinical and Histologic Evaluation of Gingival Fibroblasts Seeding on a Chitosan-Based Scaffold and Its Effect on the Width of Keratinized Gingiva in Dogs. Journal of periodontology 2011;82:1367-75.
  • Wolfe PS, Sell SA, Bowlin GL. Natural and Synthetic Scaffolds. Tissue engineering: Springer; 2011. p. 41-67.
  • Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering 2001;7:679- 89.
  • Fisher J, Mikos A, Bronzino J. Tissue Engineering, Polymeric Scaffolds for Tissue Engineering Applications. CRC Press 2007:126-43.
  • Griffith LG, Naughton G. Tissue engineering-- current challenges and expanding opportunities. Science 2002;295:1009-14.
  • Lin Y, Gallucci G, Buser D, et al. Bioengineered periodontal tissue formed on titanium dental implants. Journal of dental research 2011;90:251- 6.
  • Soppimath K, Aminabhavi T, Dave A, Kumbar S, Rudzinski Hydrogels as Novel Drug Delivery Systems*. Drug development 2002;28:957-74. “Smart” and industrial pharmacy
  • Luginbuehl V, Meinel L, Merkle HP, Gander B. Localized delivery of growth factors for bone repair. European journal of pharmaceutics and biopharmaceutics 2004;58:197-208.
  • Blumenthal NM, Koh-Kunst G, Alves MEAF, et al. Effect of surgical implantation of recombinant human bone morphogenetic protein-2 in a bioabsorbable collagen sponge or calcium phosphate putty carrier in intrabony periodontal defects in the baboon. Journal of periodontology 2002;73:1494-506.
  • Wikesjö UM, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM. Periodontal repair in dogs: effect of recombinant protein‐12 (rhBMP‐12) on regeneration of alveolar bone and periodontal attachment. Journal of Clinical Periodontology 2004;31:662-70.
  • Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release 2005;109:256-74.
  • De Cock LJ, De Wever O, Hammad H, et al. Engineered 3D microporous gelatin scaffolds to study cell migration. Chemical Communications 2012;48:3512-4.
  • Takahashi Y, Yamamoto M, Yamada K, Kawakami O, Tabata Y. Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue engineering 2007;13:293-300.
  • Chen FM, Zhao YM, Sun HH, et al. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Journal of controlled release 2007;118:65-77.
  • Chen FM, Shelton RM, Jin Y, Chapple ILC. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. 2009;29:472-513. research reviews
  • Chen F-M, Zhao Y-M, Zhang R, et al. Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. 2007;121:81-90. Controlled Release
  • Chen F-m, Zhao Y-m, Wu H, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran–co-gelatin microspheres. Journal of Controlled Release 2006;114:209-22.
  • Ji QX, Deng J, Xing XM, et al. Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. 2010;82:1153-60. Polymers
  • Thein-Han W, Kitiyanant Y, Misra R. Chitosan as scaffold matrix for tissue engineering. Materials Science and Technology 2008;24:1062-75.
  • Akman AC, Tığlı RS, Gümüşderelioğlu M, Nohutcu RM. bFGF‐loaded HA‐chitosan: A promising scaffold for periodontal tissue engineering. Journal of Biomedical Materials Research Part A 2010;92:953-62.
  • Sowmya S, Kumar S, Chennazhi K, et al. Biocompatible β-chitin Hydrogel/Nanobioactive Glass Ceramic Nanocomposite Scaffolds for Periodontal Bone Regeneration. Trends in Biomaterials & Artificial Organs 2011;25-1.
  • Requicha JF, Viegas CA, Hede S, et al. Design and characterization of a biodegradable double‐layer scaffold aimed at periodontal tissue‐engineering applications. Journal of tissue engineering and regenerative medicine 2013.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co- glycolide)(PLGA) 2000;21:2475-90. Biomaterials
  • Gregor A, Hošek J. 3D Printing Methods of Biological Scaffolds used in Tissue Engineering Proceedings of International Conference On Innovations, Recent Trends And Challenges In Mechatronics, Mechanical Engineering And New High-Tech Products Development. Mecahitech’11 2011;3.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3:1377-97.
  • Nie H, Soh BW, Fu YC, Wang CH. Three‐dimensional fibrous PLGA/HAp composite scaffold for BMP‐2 delivery. Biotechnology and bioengineering 2008;99:223-34.
  • Carlo Reis EC, Borges APB, Araşjo MVF, et al. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials 2011.
  • Feng K, Sun H, Bradley MA, et al. Novel antibacterial nanofibrous PLLA scaffolds. Journal of controlled release 2010;146:363-69.
  • Barinov S, Komlev V. Calcium phosphate bone cements. Inorganic Materials 2011;47:1470-85.
  • Smith I, Liu X, Smith L, Ma P. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2009;1:226-36.
  • Westedt U, Kalinowski M, Wittmar M, et al. Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. Journal of controlled release 2007;119:41-51.
  • Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta biomaterialia 2008;4:1904-15.
  • Guo J, Wang Y, Cao C, et al. Human periodontal ligament cells reaction on a novel hydroxyapatite– collagen 2013;29:103-9. Dental Traumatology periodontal tissue engineering.
  • Zhang Y, Li S, Wu C. The in vitro and in vivo cementogenesis scaffolds. Journal of Biomedical Materials Research Part A 2014;102:105-16. bioceramic
  • Ninan N, Muthiah M, Park I-K, et al. Pectin/carboxymethyl cellulose engineering. Carbohydrate Polymers 2013;98:877- 85.
  • cellulose/microfibrillated scaffolds for composite tissue
  • Sun W, Yan Y, Lin F, Spector M. Biomanufacturing: a US-China national science foundation-sponsored workshop. Tissue engineering 2006;12:1169-81.
  • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 2009;4:66-80.
  • Zhang X, Zhou X, Hu D. Combining 3-dimensional degradable electrostatic spinning scaffold and dental follicle cells to build peri-implant periodontium. Dental Hypotheses 2013;4:118.

PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI

Yıl 2014, 2014: Supplement 9, 67 - 73, 11.02.2015
https://doi.org/10.17567/dfd.85877

Öz

Periodontal tedavinin ana hedefi kaybedilen periodontal dokuların tam rejenerasyonunun sağlanmasıdır. Son yıllarda, periodontal dokuların rejeneratif tedavilerine alternatif yaklaşımlar içerisinde doku mühendisliği uygulamalarının literaturde sıklıkla yer aldığı görülmektedir. Mühendislik ve biyolojinin temel prensiplerinden faydalanılarak gerçekleştirilen doku mühendisliği çalışmalarında genel olarak yeni oluşacak dokuları destekleyen bir iskele yapı ile kaybedilmiş dokuların rejenerasyonunu sağlayacak kök hücreler, rejenerasyona katkıda bulunacak büyüme faktörlerinden faydalanılmaktadır. Doku mühendisliği uygulamalarında kullanılan iskeleler, kollajen, kitosan gibi doğal biyomateryaller, biyobozunabilen sentetik polimerler ve inorganik materyaller ile bu farklı materyallerin özelliklerinden faydalanılarak yapılan kompozit ve nanofibröz yapılardan oluşmaktadır. Bu derlemenin amacı, doku mühendisliğinin periodontoloji alanındaki uygulamalarında kullanılan ve rejenerasyonun önemli bir unsuru olan iskele yapılarının (skafold) özelliklerinin değerlendirilmesidir.

Kaynakça

  • Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Engineering Part B: Reviews 2010;16:219-55.
  • Viola J, Lal B, Grad O. The emergence of tissue engineering as a research field. United States National Science Foundation 2003.
  • Langer R, Vacanti J. Tissue engineering. Science 1993;260:920-6.
  • Osborne H. Non-Iconic Abstraction. British Journal of Aesthetics 1976;16:291-304. 5. Armitage GC. Periodontal diagnoses and classification Periodontology 2000 2004;34:9-21. periodontal diseases.
  • Lee J, Stavropoulos A, Susin C, Wikesjö UME. Periodontal regeneration: focus on growth and differentiation factors. Dental Clinics of North America 2010;54:93-111.
  • Lütfioğlu M. Periodontal rejenerasyon ve büyüme faktörleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2007;17:35-43.
  • Ishikawa I, Iwata T, Washio K, et al. Cell sheet engineering and other novel cell‐based approaches to periodontal regeneration. Periodontology 2000 2009;51:220-38.
  • Lin NH, Gronthos S, Bartold P. Stem cells and periodontal regeneration. Australian dental journal 2008;53:108-21.
  • Rios HF, Lin Z, Oh BN, Park CH, Giannobile WV. Cell-and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine. Journal of periodontology 2011;82:1223-37.
  • Kao RT, Conte G, Nishimine D, Dault S. Tissue engineering for periodontal regeneration. J Calif Dent Assoc. 2005;33:3.
  • Rios HF, Lin Z, Oh BN, Park CH, Giannobile WV. Cell-and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine. Journal of periodontology 2011;82:1223-37.
  • Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet- derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opinion on Biological Therapy 2011;11:375-85. 14. Özcan E, Özcan Atug SS. Periodontal Rejenerasyonda Kök hücrenin yeri. Atatürk Üniv. Dis Hek. Fak. Derg. 2010;20:123-30.
  • Lynch S, Marx R, Nevins M. Tissue Engineering Applications in oral and maxillofacial surgery and periodontics. 2008;Second edition:26-35.
  • Chen F-M, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Engineering Part B: Reviews 2010;16:219-55.
  • Lotfi G, Shokrgozar MA, Mofid R, et al. A Clinical and Histologic Evaluation of Gingival Fibroblasts Seeding on a Chitosan-Based Scaffold and Its Effect on the Width of Keratinized Gingiva in Dogs. Journal of periodontology 2011;82:1367-75.
  • Wolfe PS, Sell SA, Bowlin GL. Natural and Synthetic Scaffolds. Tissue engineering: Springer; 2011. p. 41-67.
  • Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering 2001;7:679- 89.
  • Fisher J, Mikos A, Bronzino J. Tissue Engineering, Polymeric Scaffolds for Tissue Engineering Applications. CRC Press 2007:126-43.
  • Griffith LG, Naughton G. Tissue engineering-- current challenges and expanding opportunities. Science 2002;295:1009-14.
  • Lin Y, Gallucci G, Buser D, et al. Bioengineered periodontal tissue formed on titanium dental implants. Journal of dental research 2011;90:251- 6.
  • Soppimath K, Aminabhavi T, Dave A, Kumbar S, Rudzinski Hydrogels as Novel Drug Delivery Systems*. Drug development 2002;28:957-74. “Smart” and industrial pharmacy
  • Luginbuehl V, Meinel L, Merkle HP, Gander B. Localized delivery of growth factors for bone repair. European journal of pharmaceutics and biopharmaceutics 2004;58:197-208.
  • Blumenthal NM, Koh-Kunst G, Alves MEAF, et al. Effect of surgical implantation of recombinant human bone morphogenetic protein-2 in a bioabsorbable collagen sponge or calcium phosphate putty carrier in intrabony periodontal defects in the baboon. Journal of periodontology 2002;73:1494-506.
  • Wikesjö UM, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM. Periodontal repair in dogs: effect of recombinant protein‐12 (rhBMP‐12) on regeneration of alveolar bone and periodontal attachment. Journal of Clinical Periodontology 2004;31:662-70.
  • Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release 2005;109:256-74.
  • De Cock LJ, De Wever O, Hammad H, et al. Engineered 3D microporous gelatin scaffolds to study cell migration. Chemical Communications 2012;48:3512-4.
  • Takahashi Y, Yamamoto M, Yamada K, Kawakami O, Tabata Y. Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue engineering 2007;13:293-300.
  • Chen FM, Zhao YM, Sun HH, et al. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Journal of controlled release 2007;118:65-77.
  • Chen FM, Shelton RM, Jin Y, Chapple ILC. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. 2009;29:472-513. research reviews
  • Chen F-M, Zhao Y-M, Zhang R, et al. Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. 2007;121:81-90. Controlled Release
  • Chen F-m, Zhao Y-m, Wu H, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran–co-gelatin microspheres. Journal of Controlled Release 2006;114:209-22.
  • Ji QX, Deng J, Xing XM, et al. Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. 2010;82:1153-60. Polymers
  • Thein-Han W, Kitiyanant Y, Misra R. Chitosan as scaffold matrix for tissue engineering. Materials Science and Technology 2008;24:1062-75.
  • Akman AC, Tığlı RS, Gümüşderelioğlu M, Nohutcu RM. bFGF‐loaded HA‐chitosan: A promising scaffold for periodontal tissue engineering. Journal of Biomedical Materials Research Part A 2010;92:953-62.
  • Sowmya S, Kumar S, Chennazhi K, et al. Biocompatible β-chitin Hydrogel/Nanobioactive Glass Ceramic Nanocomposite Scaffolds for Periodontal Bone Regeneration. Trends in Biomaterials & Artificial Organs 2011;25-1.
  • Requicha JF, Viegas CA, Hede S, et al. Design and characterization of a biodegradable double‐layer scaffold aimed at periodontal tissue‐engineering applications. Journal of tissue engineering and regenerative medicine 2013.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co- glycolide)(PLGA) 2000;21:2475-90. Biomaterials
  • Gregor A, Hošek J. 3D Printing Methods of Biological Scaffolds used in Tissue Engineering Proceedings of International Conference On Innovations, Recent Trends And Challenges In Mechatronics, Mechanical Engineering And New High-Tech Products Development. Mecahitech’11 2011;3.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3:1377-97.
  • Nie H, Soh BW, Fu YC, Wang CH. Three‐dimensional fibrous PLGA/HAp composite scaffold for BMP‐2 delivery. Biotechnology and bioengineering 2008;99:223-34.
  • Carlo Reis EC, Borges APB, Araşjo MVF, et al. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials 2011.
  • Feng K, Sun H, Bradley MA, et al. Novel antibacterial nanofibrous PLLA scaffolds. Journal of controlled release 2010;146:363-69.
  • Barinov S, Komlev V. Calcium phosphate bone cements. Inorganic Materials 2011;47:1470-85.
  • Smith I, Liu X, Smith L, Ma P. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2009;1:226-36.
  • Westedt U, Kalinowski M, Wittmar M, et al. Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. Journal of controlled release 2007;119:41-51.
  • Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta biomaterialia 2008;4:1904-15.
  • Guo J, Wang Y, Cao C, et al. Human periodontal ligament cells reaction on a novel hydroxyapatite– collagen 2013;29:103-9. Dental Traumatology periodontal tissue engineering.
  • Zhang Y, Li S, Wu C. The in vitro and in vivo cementogenesis scaffolds. Journal of Biomedical Materials Research Part A 2014;102:105-16. bioceramic
  • Ninan N, Muthiah M, Park I-K, et al. Pectin/carboxymethyl cellulose engineering. Carbohydrate Polymers 2013;98:877- 85.
  • cellulose/microfibrillated scaffolds for composite tissue
  • Sun W, Yan Y, Lin F, Spector M. Biomanufacturing: a US-China national science foundation-sponsored workshop. Tissue engineering 2006;12:1169-81.
  • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 2009;4:66-80.
  • Zhang X, Zhou X, Hu D. Combining 3-dimensional degradable electrostatic spinning scaffold and dental follicle cells to build peri-implant periodontium. Dental Hypotheses 2013;4:118.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Makaleler
Yazarlar

V. Umut Bengi

N. İşık Saygun Bu kişi benim

Yayımlanma Tarihi 11 Şubat 2015
Yayımlandığı Sayı Yıl 2014 2014: Supplement 9

Kaynak Göster

APA Bengi, V. U., & Saygun, N. İ. (2015). PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 24(-3), 67-73. https://doi.org/10.17567/dfd.85877
AMA Bengi VU, Saygun Nİ. PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI. Ata Diş Hek Fak Derg. Şubat 2015;24(-3):67-73. doi:10.17567/dfd.85877
Chicago Bengi, V. Umut, ve N. İşık Saygun. “PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24, sy. -3 (Şubat 2015): 67-73. https://doi.org/10.17567/dfd.85877.
EndNote Bengi VU, Saygun Nİ (01 Şubat 2015) PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24 -3 67–73.
IEEE V. U. Bengi ve N. İ. Saygun, “PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI”, Ata Diş Hek Fak Derg, c. 24, sy. -3, ss. 67–73, 2015, doi: 10.17567/dfd.85877.
ISNAD Bengi, V. Umut - Saygun, N. İşık. “PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24/-3 (Şubat 2015), 67-73. https://doi.org/10.17567/dfd.85877.
JAMA Bengi VU, Saygun Nİ. PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI. Ata Diş Hek Fak Derg. 2015;24:67–73.
MLA Bengi, V. Umut ve N. İşık Saygun. “PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 24, sy. -3, 2015, ss. 67-73, doi:10.17567/dfd.85877.
Vancouver Bengi VU, Saygun Nİ. PERİODONTAL DOKU MÜHENDİSLİĞİNDE KULLANILAN İSKELE YAPILARI. Ata Diş Hek Fak Derg. 2015;24(-3):67-73.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.