Araştırma Makalesi
BibTex RIS Kaynak Göster

TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ

Yıl 2019, Cilt: 29 Sayı: 1, 80 - 88, 15.01.2019
https://doi.org/10.17567/ataunidfd.522757

Öz

Amaç: Bu çalışmanın amacı, 3 farklı seramik abutment
kullanılarak restore edilen dental implantların termomekanik yaşlandırma
öncesinde ve sonrasında stabilitelerinin Rezonans Frekans Analizi yöntemi ile
değerlendirilmesidir.



Gereç ve
Yöntem:
Bu çalışmada, Lityum disilikat
abutment, Prefabrike zirkonya abutment
ve Zirkonya abutment olmak üzere
üç çalışma grubu (n=5) oluşturuldu. Lityum disilikat ve
zirkonya abutment gruplarında, deney örneklerinin elde edilmesi amacıyla, model
üzerinde üst sağ birinci kesici diş boşluğuna yerleştirilen implantın, komşu
dişlerin ve kapanış ilişkisinin dijital ölçüsü alındı. Sanal modeller üzerinde
abutment ve lityum disilikat kron restorasyonları tasarlandı ve üretildi.
Prefabrike zirkonya abutment grubunda ise, firma tarafından üretilen hazır
zirkonya abutment üzerine lityum disilikat kron restorasyonları tasarlanarak
üretildi. Abutment-implant bağlantısı sağlanan tüm örnekler, sıcaklığı 50C–550C
olan suda 1000 kez ısı döngüsüne ve 50 N’luk kuvvet ile 200000 mekanik siklusa
maruz bırakıldı. Yaşlandırma sonra- sında, abutment ve kronlar çıkarıldı.
İmplantların üzerine üretici firmaya ait Smartpeg’ler yerleştirildi. İmplant
stabilite katsayısı (ISQ) değerleri, yaşlandırma öncesi ve sonrasında dört
farklı bölgeden (bukkal, palatal, mezial ve distal) ölçüle- rek kaydedildi. ISQ
değerlerinin karşılaştırılması için iki-faktör- lü tekrarlanan ölçümlü varyans
analizi kullanıldı. Hesaplama ve yorumlamalarda % 5’lik önem düzeyi dikkate
alındı.



Bulgular: Varyans analizi sonucunda materyalxtermo- mekanik
yaşlandırma interaksiyonunun istatistiksel olarak önemli olmadığı (P>.05),  materyal ve termomekanik yaşlandırma
faktörlerinin ise istatistiksel olarak önemli olduğu bulundu (P<.05). ISQ değerleri termomekanik
yükleme sonrası önemli derecede azaldı (P<.05).
Bonferroni testi so- nuçları incelendiğinde; Prefabrike zirkonya abutment gru-
bunun Lityum disilikat abutment grubundan anlamlı derecede yüksek ISQ
ortalamasına sahip olduğu görüldü (P<.05).



Sonuç: İmplantların yükleme sonrasında stabilitelerindeki değişimi
gösteren ISQ değerlerinin azalması, implant ve kemik ara yüzünün sağlamlığında
azalmaya işaret olabilir. Ancak bu çalışmada elde edilen sonuçlar
yorumlanırken, implantı çevreleyen akrilik rezin materyalinin canlı kemik
dokudan farklı özellikler gösterdiği göz önüne alınmalıdır.



Anahtar
Kelimeler:
Dental implant, Seramikler, Dental implant-kaide tasarımı




EFFECT OF THERMOMECHANICAL AGING ON THE STABILITY OF IMPLANTS WITH DIFFERENT
CERAMIC ABUTMENTS



Aim: The purpose of the present study was to evaluate the
stability of the dental implants with different ceramic abutments before and
after thermomechanical aging by Resonance Frequency Analysis.



Material and
Methods:
In the present study, three experimental
groups
(n=5) were
generated as: Lithium disilicate abutment, Prefabricated zirconia abutment, and
Zirconia abutment. For producing the lithium disilicate abutments and Zirconia
abutments, digital impressions were taken from the implants which were inserted
on the model into the missing area of the upper right central tooth, adjacent
and opposite teeth, and buccal side. Abutments and lithium disilicate crown
restorations were designed and milled. In the Prefabricated zirconia abutment
group, zirconia abutments which were prefabricated by the manufacturer were
used. All specimens which the implant-abutment connection was done were
subjected to 1000 thermal cycles at 5-55 centigrade degrees water and 200000
mechanical cycles with 50 N load. The abutments and crowns were removed after
aging. Manufacturer’s Smartpegs were inserted onto the implants. Implant
stability quotient (ISQ) values were measured from the four different sections
(buccal, palatal, mesial, and distal) before and after the thermomechanical
aging and recorded. Two-way Analysis of Variance with repeated measures was
used to compare the ISQ values. The alpha level was set at 5%.



Results: Variance analysis showed that materialx thermomechanical
aging interaction was not significant (P>.05);
however, the effects of the material and thermomechanical aging factors were
found to be significant (P<.05).
ISQ values were significantly decreased after the thermomechanical aging (P<.05). According to the Bonferroni
results, Prefabricated zirconia abutment group showed significant higher ISQ
mean values than Lithium disilicate abutment group (P<.05).



Conclusion: Decrease on the ISQ values after aging may be a sign of
the decrease on the durableness of implant-bone interface. However, it must be
under consideration to evaluate the results of the present study that acrylic
resin has different properties than living bone tissue.
Key
Words:
Dental implant,
Ceramics, Dental
Implant-Abutment Design

 


Kaynakça

  • 1. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  • 2. Albrektsson TO, Johansson CB, Sennerby L. Biological aspects of implant dentistry: osseointegration. Periodontol 2000 1994;2:58-73.
  • 3. Mellado-Valero A, Ferrer-García JC, Calvo-Catalá J, Labaig- Rueda C. Implant treatment in patients with osteoporosis. Med Oral Patol Oral Cir Bucal 2010;15:e52-7.
  • 4. Lachmann S, Laval JY, Jäger B, Axmann D, Gomez-Roman G, Groten M, Weber H. Resonance frequency analysis and damping capacity assessment. Part 2: peri-implant bone loss follow-up. An in vitro study with the Periotest and Osstell instruments. Clin Oral Implants Res 2006;17:80-4.
  • 5. Tözüm TF, Türkyilmaz I, Yamalik N, Tümer C, Kilinç A, Kilinç K, Karabulut E, Eratalay K. Analysis of the possible impact of inflammation severity and early and delayed loading on nitric oxide metabolism around dental implants. Int J Oral Maxillofac Implants 2005;20:547-56.
  • 6. Türkyilmaz I, Tözüm TF, Tumer C, Ozbek EN. Assessment of correlation between computerized tomography values of the bone, and maximum torque and resonance frequency values at dental implant placement. J Oral Rehabil 2006;33:881-8.
  • 7. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 1996;7:261-7.
  • 8. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  • 9. Meredith N. A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants. Crit Rev Biomed Eng 1998;26:275-91.
  • 10. Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J. Implant stability measurement of delayed and immediately loaded implants during healing. Clin Oral Implants Res 2004;15:529-39.
  • 11. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000 2008;47:51-66.
  • 12. Barewal RM, Oates TW, Meredith N, Cochran DL. Resonance frequency measurement of implant stability in vivoon implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 2003:18:641-51.
  • 13. Fischer K, Stenberg T, Hedin M, Sennerby L. Five-year results from a randomized, controlled trial on early and delayed loading of implants supporting full-arch prosthesis in the edentulous maxilla. Clin Oral Implants Res 2008;19:433-41.
  • 14. Sjöström M, Lundgren S, Nilson H, Sennerby L. Monitoring of implant stability in grafted bone using resonance frequency analysis. A clinical study from implant placement to 6 months of loading. Int J Oral Maxillofac Surg 2005;34:45-51.
  • 15. Huang HL, Chang YY, Lin DJ, Li YF, Chen KT, Hsu JT. Initial stability and bone strain evaluation of the immediately loaded dental implant: an in vitro model study. Clin Oral Implants Res 2011;22:691-8.
  • 16. Ohta K, Takechi M, Minami M, Shigeishi H, Hiraoka M, Nishimura M, Kamata N. Influence of factors related to implant stability detected by wireless resonance frequency analysis device. J Oral Rehabil 2010;37:131-7.
  • 17. Degidi M, Daprile G, Piattelli A. Influence of underpreparation on primary stability of implants inserted in poor quality bone sites: an in vitro study. J Oral Maxillofac Surg 2015;73:1084-8.
  • 18. Gehrke SA, Guirado JL, Bettach R, Fabbro MD, Martínez CP, Shibli JA. Evaluation of the insertion torque, implant stability quotient and drilled hole quality for different drill design: an in vitro investigation. Clin Oral Implants Res 2018;29:656-62.
  • 19. Gehrke P, Johannson D, Fischer C, Stawarczyk B, Beuer F. In vitro fatigue and fracture resistance of one- and two-piece CAD/CAM zirconia implant abutments. Int J Oral Maxillofac Implants 2015;30:546-54.
  • 20. Lops D, Bressan E, Chiapasco M, Rossi A, Romeo E. Zirconia and titanium implant abutments for single-tooth implant prostheses after 5 years of function in posterior regions. Int J Oral Maxillofac Implants 2013;28:281-7.
  • 21. Alqahtani F, Flinton R. Postfatigue fracture resistance of modified prefabricated zirconia implant abutments. J Prosthet Dent 2014;112:299-305.
  • 22. Guilherme NM, Chung KH, Flinn BD, Zheng C, Raigrodski AJ. Assessment of reliability of CAD-CAM tooth-colored implant custom abutments J Prosthet Dent 2016;116:206-13.
  • 23. Kim JS, Raigrodski AJ, Flinn BD, Rubenstein JE, Chung KH, Mancl LA. In vitroassessment of three types of zirconia implant abutments under static load. J Prosthet Dent 2013;109:255-63.
  • 24. Stimmelmayr M, Edelhoff D, Güth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater 2012;28:1215-20.
  • 25. Sugiura T, Yamamoto K, Kawakami M, Horita S, Murakami K, Kirita T. Influence of bone parameters on peri-implant bone strain distribution in the posterior mandible. Med Oral Patol Oral Cir Bucal 2015;20:e66-73.
  • 26. Hansson S.The implant neck: smooth or provided with retention elements. A biomechanical approach.Clin Oral Implants Res 1999;10:394-405.
  • 27. Roberts WE. Bone tissue interface. J Dent Educ 1988;52:804-9.
  • 28. Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod 2004;74:3-15.
  • 29. Cassetta M, Ricci L, Iezzi G, Dell'Aquila D, Piattelli A, Perrotti V. Resonance frequency analysis of implants inserted with a simultaneous grafting procedure: a 5-year follow-up study in man. Int J Periodontics Restorative Dent 2012;32:581-9.
  • 30. Pieri F, Aldini NN, Fini M, Marchetti C, Corinaldesi G. Preliminary 2-year report on treatment outcomes for 6-mm-long implants in posterior atrophic mandibles. Int J Prosthodont 2012;25:279-89.
  • 31. Ho DS, Yeung SC, Zee KY, Curtis B, Hell P, Tumuluri V. Clinical and radiographic evaluation of NobelActive (TM) dental implants. Clin Oral Implants Res 2013;24:297-304.
  • 32. Ostman PO, Hellman M, Sennerby L. Immediate occlusal loading of implants in the partially edentate mandible: a prospective 1-year radiographic and 4-year clinical study. Int J Oral Maxillofac Implants 2008;23:315-22.
  • 33. Zhang Y, Sailer I, Lawn BR. Fatigue of dental ceramics. J Dent 2013;41:1135-47.
  • 34. Korioth TW, Waldron TW, Versluis A, Schulte JK. Forces and moments generated at the dental incisors during forceful biting in humans. J Biomech 1997;30:631-3.
  • 35. Rosentritt M, Hagemann A, Hahnel S, Behr M, Preis V. In vitro performance of zirconia and titanium implant/abutment systems for anterior application. J Dent 2014;42:1019-26.
  • 36. Özdemir H, Bayındır F. İmplant stabilitesinin değerlendirilmesi: “rezonans frekans analizi”. Atatürk Üniv Diş Fak Derg 2012;Suppl 5;98-104.
  • 37. Tözüm TF, Turkyilmaz I, Bal BT. Initial stability of two dental implant systems: influence of buccolingual width and probe orientation on resonance frequency measurements. Clin Implant Dent Relat Res 2010;12:194-201.
  • 38. Karl M, Irastorza-Landa A. Does implant design affect primary stability in extraction sites? Quintessence Int 2017;48:219-24.
  • 39. Huang HL, Chang YY, Lin DJ, Li YF, Chen KT, Hsu JT. Initial stability and bone strain evaluation of the immediately loaded dental implant: an in vitro model study. Clin Oral Impl Res 2011; 22:691-8.
  • 40. Ohta K, Takechi M, Minami M, Shigeishi H, Hiraoka M, Nishimura M, Kamata N. Influence of factors related to implant stability detected by wireless resonance frequency analysis device. J Oral Rehabil 2010;37:131-7.
  • 41. Kheur MG, Sandhu R, Kheur S, Le B, Lakha T. Reliability of resonance frequency analysis as an ındicator of ımplant micromotion: an ın vitro study. Implant Dent 2016;25:783-8.
  • 42. Falisi G, Severino M, Rastelli C, Bernardi S, Caruso S, Galli M, Lamazza L, Di Paolo C. The effects of surgical preparation techniques and implant macro-geometry on primary stability: An in vitro study. Med Oral Patol Oral Cir Bucal 2017;22:e201-6.
  • 43. Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil 2006;33:75-8.
  • 44. Leutert CR, Stawarczyk B, Truninger TC, Hämmerle CH, Sailer I. Bending moments and types of failure of zirconia and titanium abutments with internal implant-abutment connections: a laboratory study. Int J Oral Maxillofac Implants 2012;27:505-12.
  • 45. Chun HJ, Yeo IS, Lee JH, Kim SK, Heo SJ, Koak JY, Han JS, Lee SJ. Fracture strength study of internally connected zirconia abutments reinforced with titanium inserts. Int J Oral Maxillofac Implants 2015;30:346-50.
  • 46. Nakamura K, Kanno T, Milleding P, Ortengren U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont 2010;23:299-309.
  • 47. Sailer I, Zembic A, Jung RE, Siegenthaler D, Holderegger C, Hämmerle CH. Randomized controlled clinical trial of customized zirconia and titanium implant abutments for canine and posterior single-tooth implant reconstructions: preliminary results at 1 year of function. Clin Oral Implants Res 2009;20:219-25.
  • 48. Gehrke P, Alius J, Fischer C, Erdelt KJ, Beuer F. Retentive strength of two-piece CAD/CAM zirconia implant abutments. Clin Implant Dent Relat Res 2014;16:920-5.
  • 49. Truninger TC, Stawarczyk B, Leutert CR, Sailer TR, Hämmerle CH, Sailer I. Bending moments of zirconia and titanium abutments with internal and external implant-abutment connections after aging and chewing simulation. Clin Oral Implants Res 2012;23:12-8.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Merve Bankoğlu Güngör 0000-0002-4002-6390

Seçil Karakoca Nemli Bu kişi benim 0000-0003-4918-5504

Meral Bağkur Bu kişi benim 0000-0001-6487-3984

Mustafa Kocacıklı Bu kişi benim 0000-0003-2790-3982

Yayımlanma Tarihi 15 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 29 Sayı: 1

Kaynak Göster

APA Bankoğlu Güngör, M., Karakoca Nemli, S., Bağkur, M., Kocacıklı, M. (2019). TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 29(1), 80-88. https://doi.org/10.17567/ataunidfd.522757
AMA Bankoğlu Güngör M, Karakoca Nemli S, Bağkur M, Kocacıklı M. TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ. Ata Diş Hek Fak Derg. Ocak 2019;29(1):80-88. doi:10.17567/ataunidfd.522757
Chicago Bankoğlu Güngör, Merve, Seçil Karakoca Nemli, Meral Bağkur, ve Mustafa Kocacıklı. “TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29, sy. 1 (Ocak 2019): 80-88. https://doi.org/10.17567/ataunidfd.522757.
EndNote Bankoğlu Güngör M, Karakoca Nemli S, Bağkur M, Kocacıklı M (01 Ocak 2019) TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29 1 80–88.
IEEE M. Bankoğlu Güngör, S. Karakoca Nemli, M. Bağkur, ve M. Kocacıklı, “TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ”, Ata Diş Hek Fak Derg, c. 29, sy. 1, ss. 80–88, 2019, doi: 10.17567/ataunidfd.522757.
ISNAD Bankoğlu Güngör, Merve vd. “TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29/1 (Ocak 2019), 80-88. https://doi.org/10.17567/ataunidfd.522757.
JAMA Bankoğlu Güngör M, Karakoca Nemli S, Bağkur M, Kocacıklı M. TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ. Ata Diş Hek Fak Derg. 2019;29:80–88.
MLA Bankoğlu Güngör, Merve vd. “TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 29, sy. 1, 2019, ss. 80-88, doi:10.17567/ataunidfd.522757.
Vancouver Bankoğlu Güngör M, Karakoca Nemli S, Bağkur M, Kocacıklı M. TERMOMEKANİK YAŞLANDIRMANIN FARKLI SERAMİK ABUTMENTLARA SAHİP İMPLANTLARIN STABİLİTESİNE ETKİSİ. Ata Diş Hek Fak Derg. 2019;29(1):80-8.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.