Derleme
BibTex RIS Kaynak Göster

ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR

Yıl 2021, Cilt: 31 Sayı: 3, 459 - 470, 14.07.2021
https://doi.org/10.17567/ataunidfd.804342

Öz

Diş hekimliğinde, diğer birçok alanda olduğu gibi, dental materyallerin üretimi de dijitalleşmekte, bilgisayar destekli tasarım ve üretim giderek yaygınlaşmaktadır. Bilgisayar destekli üretim yöntemlerinden biri olan eklemeli üretimin diş hekimliğinde kullanım alanları, tasarım özgürlüğü, hızlı ve hatasız üretim, malzeme ve iş gücü tasarrufu gibi avantajlarıyla son yıllarda artmıştır. Dijital ortodonti, cerrahi kılavuzlar, üç boyutlu modeller, dental implantlar ve protetik restorasyonlar olmak üzere çok geniş bir alanda kullanılan üç boyutlu yazıcıların, gelecekte diş hekimliğinde dijital üretim için ana yöntem haline geleceği öngörülmektedir. Bu derlemenin amacı mevcut eklemeli üretim teknolojisinin ana süreçlerini, malzemelerini ve uygulamalarını gözden geçirmek, son yıllarda avantajları ve dezavantajlarıyla üç boyutlu yazıcıların dental kullanımını ve protetik gelişmeleri değerlendirmektir.
Anahtar kelimeler: Eklemeli üretim; üç boyutlu yazıcılar; hızlı prototipleme

Current Approaches in The Dental Use of Three Dimensional Printers
Abstract
In dentistry, as in many other fields, the production of dental materials is digitized, computer-aided design and production is becoming more common. The usage areas in dentistry have increased in recent years with the advantages of additive manufacturing, which is one of the computer-aided production methods, with design freedom, fast and faultless production, material and labor savings. It is predicted that 3D printers, which are used in a wide range of fields including digital orthodontics, surgical guides, three-dimensional models, dental implants and prosthetic restorations, will become the main method for digital production in dentistry in the future. In this review, it is aimed to define the main processes, materials and applications of current additive manufacturing technology, and to evaluate the dental use and prosthetic developments of three-dimensional printers with their advantages and disadvantages in recent years.
Key words: Additive manufacturing; three dimensional printer; rapid prototyping

Kaynakça

  • 1. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Compos B Eng 2018; 143: 172-96.
  • 2. Van Noort R. The future of dental devices is digital. Dent Mater J 2012; 28: 3-12.
  • 3. Monzón M, Ortega Z, Martínez A, Ortega F. Standardization in additive manufacturing: Activities carried out by international organizations and projects. Int J Adv Manuf Tech 2015; 76: 1111-21.
  • 4. Guo N, Leu MC. Additive manufacturing: Technology, applications and research needs. Front Mech Eng-Prc 2013; 8: 215-43.
  • 5. Campbell I, Bourell D, Gibson I. Additive manufacturing: Rapid prototyping comes of age. Rapid Prototyping J 2012; 18: 255-58.
  • 6. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design 2015; 69: 65-89.
  • 7. Mohd Javaid AH. Current status and applications of additive manufacturing in dentistry: A t literature-based review. J Oral Bio Craniofac Res 2019; 8: 179-85.
  • 8. Cebeci NÖ, Tokmakçıpğlu HH. Protetik diş tedavisinde ekleme yöntemi ile üretim. SAK 2018; 3: 66-86.
  • 9. Berman B. 3-d printing: The new industrial revolution. Bus horiz 2012; 55: 155-62.
  • 10. Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mat Today 2018; 21: 22-37.
  • 11. Braian M, Jimbo R, Wennerberg A. Production tolerance of additive manufactured polymeric objects for clinical applications. Dent Mater J 2016; 32: 853-61.
  • 12. Bhushan B, Caspers M. An overview of additive manufacturing (3d printing) for microfabrication. Microsyst Technol 2017; 23: 1117-24.
  • 13. Prakash KS, Nancharaih T, Rao VS. Additive manufacturing techniques in manufacturing-an overview. Mater Today 2018; 5: 3873-82.
  • 14. Jockusch J, Özcan M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J 2020; 39: 345-54.
  • 15. Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Bio Craniofac Rec 2019; 9(3): 179-85.
  • 16. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv Manuf 2015; 3: 42-53.
  • 17. Chohan JS, Singh R, Boparai KS, Penna R, Fraternali F. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos Part B-Eng 2017; 117: 138-49.
  • 18. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Kadri NA, et al. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3d printing. Sci Adv Mater Technol 2015; 16: 033502.
  • 19. Mazzoli A, Ferretti C, Gigante A, Salvolini E, Mattioli-Belmonte M. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering. Rapid Prototyping J 2015; 21: 386-92.
  • 20. Taylor AC, Beirne S, Alici G, Wallace GG. System and process development for coaxial extrusion in fused deposition modelling. Rapid Prototyping J 2017; 23: 543-50.
  • 21. Yıldırım MP, Bayındır F. Protetik diş tedavisinde hızlı prototip üretim teknolojileri. Atatürk Üniv Diş Hek Fakül Derg 2013; 23: 430-35.
  • 22. Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019; 35: 825-846.
  • 23. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert‐Demut I, Schlier L, et al. Additive manufacturing of ceramic‐based materials. Adv Eng Mater 2014; 16: 729-54.
  • 24. Khoshnevis B. Automated construction by contour crafting related robotics and information technologies. Automat Constr 2004; 13: 5-19.
  • 25. Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3d printing based on stereolithography. Ceram Int 2016; 42: 17290-94.
  • 26. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010; 31: 6121-30.
  • 27. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3d printing of polymer matrix composites: A review and prospective. Compos Part B-Eng 2017; 110: 442-58.
  • 28. Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. 2 ed. London, UK; Springer: 2015. p. 245-68
  • 29. Edgar J, Tint S. Additive manufacturing technologies: 3d printing, rapid prototyping, and direct digital manufacturing. Johnson Matthey Technol Rev 2015; 59: 193-98.
  • 30. Geschke R. Ceramic gap‐fills for ceramic restoration. The conservator 2004; 28: 74-83.
  • 31. Stansbury JW, Idacavage MJ. 3d printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016; 32: 54-64.
  • 32. Horn T J, Harrysson O L.Overview of current additive manufacturing technologies and selected applications. Sci Prog 2012; 95: 255-282.
  • 33. Jin Lee HJ, Song JG, Ahn DG. Investigation into the influence of feeding parameters on the formation of the fed-powder layer in a powder bed fusion (PBF) system. Int J Precis Eng Manuf 2017; 18: 613-21.
  • 34. Chen Y, Mao J, Wu J. Microwave transparent crosslinked polystyrene nanocomposites with enhanced high voltage resistance via 3d printing bulk polymerization method. Compos Sci Technol 2018; 157: 160-67.
  • 35. Nguyen Q, Ngo T, Tran P, Mendis P, Zobec M, Aye L. Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr Build Mater 2016; 129: 204-15.
  • 36. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci 2018; 93: 45-111.
  • 37. Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, et al. 3d bioprinting for tissue and organ fabrication. Ann Biomedical Eng 2017; 45: 148-63.
  • 38. Blakely AM, Manning KL, Tripathi A, Morgan JR. Bio-pick, place, and perfuse: A new instrument for three-dimensional tissue engineering. Tissue Eng Part C: Methods 2015; 21: 737-46.
  • 39. Chia HN, Wu BM. Recent advances in 3d printing of biomaterials. J Bio Eng 2015; 9: 4.
  • 40. Giannatsis J, Dedoussis V. Additive fabrication technologies applied to medicine and health care: A review. Int J Adv Manuf Tech 2009; 40: 116-27.
  • 41. Sachlos E, Czernuszka J. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003; 5: 39-40.
  • 42.Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3d bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 2018; 3: 144-56.
  • 43. Jheon A, Oberoi S, Solem R, Kapila S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod Craniofac Res 2017; 20: 106-13.
  • 44. Evans J, Desai P. Applications for three-dimensional printing in dentistry. Decisions in Dent 2016; 1: 28-30.
  • 45. Krey K-F, Darkazanly N, Kühnert R, Ruge S. 3d-printed orthodontic brackets-proof of concept. Int J Comput Dent 2016; 19: 351-62.
  • 46. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3d printing—encompassing the facets of dentistry. Front Bioeng biotechnoL 2018; 6: 172.
  • 47. Papadimitriou A, Mousoules S, Gkantidis N, Kloukos D. Clinical effectiveness of invisalign orhodontic treatment: a systematic review. Prog Orthod 2018; 19: 37.
  • 48. Hazeveld A, Slater JJH, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac 2014; 145: 108-15.
  • 49. Liu Y, Song F, Wu S, He S, Meng M, Lv C, et al. Protein and mrna expressions of il-6 and its key signaling factors under orthodontic forces in mice: An in-vivo study. Am J Orthod Dentofac 2017; 152: 654-62.
  • 50. Pugalendhi A, Ranganathan R, Chandrasekaran M. Novel fabrication method for clear and hard tooth aligner through additive manufacturing technology: A pilot study. Mater Today 2020; 28: 551-55.
  • 51. Salmi M, Paloheimo K-S, Tuomi J, Ingman T, Mäkitie A. A digital process for additive manufacturing of occlusal splints: A clinical pilot study. J R Soc Interface 2013; 10: 20130203.
  • 52. Al Mortadi N, Eggbeer D, Lewis J, Williams RJ. Cad/cam/am applications in the manufacture of dental appliances. Am J Orthod Dentofac 2012; 142: 727-33.
  • 53. Ramasamy M, Giri RR, Subramonian K, Narendrakumar R. Implant surgical guides: From the past to the present. J Pharm Bioallied Sci 2013; 5: 98.
  • 54. Dawood A, Tanner S, Hutchison I. Computer guided surgery for implant placement and dental rehabilitation in a patient undergoing sub-total mandibulectomy and microvascular free flap reconstruction. J Oral Implantol 2013; 39: 497-502.
  • 55. Erickson DM, Chance D, Schmitt S, Mathts J. An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg 1999; 57: 1040-43.
  • 56. Xia J, Ip HH, Samman N, Wang D, Kot CS, Yeung RW, et al. Computer-assisted three-dimensional surgical planning and simulation: 3d virtual osteotomy. Int J Oral Max Surg 2000; 29: 11-17.
  • 57. Van Steenberghe D, Glauser R, Blombäck U, Andersson M, Schutyser F, Pettersson A, et al. A computed tomographic scan–derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: A prospective multicenter study. Clin Implant Dent Relat Res 2005; 7: 111-20.
  • 58. Eufinger H, Wehmöller M, Machtens E, Heuser L, Harders A, Kruse D. Reconstruction of craniofacial bone defects with individual alloplastic implants based on cad/cam-manipulated ct-data. J Cranio Maxill Surg 1995; 23: 175-81.
  • 59. Revilla‐León M, Gonzalez‐Martín Ó, Pérez López J, Sánchez‐Rubio JL, Özcan M. Position accuracy of implant analogs on 3d printed polymer versus conventional dental stone casts measured using a coordinate measuring machine. J Prosthodont 2018; 27: 560-67.
  • 60. Werz S, Zeichner S, Berg BI, Zeilhofer HF, Thieringer F. 3d printed surgical simulation models as educational tool by maxillofacial surgeons. Eur J Dent Educ 2018; 22: 500-05.
  • 61. Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 2014; 112: 1088-95.
  • 62. Xiong Y, Qian C, Sun J. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent Mater J 2012; 31: 815-20.
  • 63. Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3d printing/additive manufacturing single titanium dental implants: A prospective multicenter study with 3 years of follow-up. Int J Dent 2016; 2016: 1-9.
  • 64. Bağış N, Altıntop Y, Adımcı P, Bağış B. Kİşİye özgü dental İmplantlar: Derleme. Atatürk Üniv Diş Hek Fak Derg 2016; 26: 187-92.
  • 65. Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using ct scan and cad/cam: Selective laser melting technology. Inter J Oral Max Surg 2012; 41: 858-62.
  • 66. Mangano F, Mangano C, Piattelli A, Iezzi G. Histological evidence of the osseointegration of fractured direct metal laser sintering implants retrieved after 5 years of function. BioMed Res Int 2017; 2017: 1-7.
  • 67. Peng W, Xu L, You J, Fang L, Zhang Q. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model. Biomed Eng online 2016; 15: 85.
  • 68. Shaoki A, Xu J-y, Sun H, Chen X-s, Ouyang J, Zhuang X-m, et al. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting. Biofabrication 2016; 8: 045014.
  • 69. Ramakrishnaiah R, Mohammad A, Divakar DD, Kotha SB, Celur SL, Hashem MI, et al. Preliminary fabrication and characterization of electron beam melted ti–6al–4v customized dental implant. Saudi J Biol Sc 2017; 24: 787-96.
  • 70. Hyzy SL, Cheng A, Cohen DJ, Yatzkaier G, Whitehead AJ, Clohessy RM, et al. Novel hydrophilic nanostructured microtexture on direct metal laser sintered ti–6al–4v surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. J Biomed Mater Res Part A 2016; 104: 2086-98.
  • 71. Osman RB, van der Veen AJ, Huiberts D, Wismeijer D, Alharbi N. 3d-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J Mech Behav Biomed 2017; 75: 521-28.
  • 72. Wang Y, Müller W-D, Rumjahn A, Schwitalla A. Parameters influencing the outcome of additive manufacturing of tiny medical devices based on peek. Materials 2020; 13: 466.
  • 73. Oliveira TT, Reis AC. Fabrication of dental implants by the additive manufacturing method: A systematic review. J Prosthet Dent 2019; 122: 270-74.
  • 74. Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3d printing in dentistry. Br Dent J 2015; 219: 521.
  • 75. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. Int J Dent 2014; 2014: 783948.
  • 76. Miyazaki T, Hotta Y. Cad/cam systems available for the fabrication of crown and bridge restorations. Aust Dent J 2011; 56: 97-106.
  • 77. Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent 2015; 16: 1.
  • 78. Kasparova M, Grafova L, Dvorak P, Dostalova T, Prochazka A, Eliasova H, et al. Possibility of reconstruction of dental plaster cast from 3d digital study models. Biomed Eng online 2013; 12: 49.
  • 79. Jeong Y-G, Lee W-S, Lee K-B. Accuracy evaluation of dental models manufactured by cad/cam milling method and 3d printing method. Journal of Adv Prosthodont 2018; 10: 245-51.
  • 80. Park M-E, Shin S-Y. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3d printers. J Prosthet Dent 2018; 119: 861 e1-e7.
  • 81. Revilla‐León M, Özcan M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J Prosthodont 2019; 28: 146-58.
  • 82. Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer‐aided design and rapid prototyping. Rapid Prototyp J 2012; 18: 318-23.
  • 83. Fathi HM, Al-Masoody AH, El-Ghezawi N, Johnson A. The accuracy of fit of crowns made from wax patterns produced conventionally (hand formed) and via cad/cam technology. Eur J Prosthodont Restor Dent 2016; 24: 10-17.
  • 84. Homsy FR, Özcan M, Khoury M, Majzoub ZA. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3d printing, and conventional technologies. J Prosthet Dent 2018; 119: 783-90.
  • 85. Revilla‐León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restot Dent 2019; 31: 51-7.
  • 86. Lin C-H, Lin Y-M, Lai Y-L, Lee S-Y. Mechanical properties, accuracy, and cytotoxicity of uv-polymerized 3d printing resins composed of bisema, udma, and tegdma. J Prosthet DentB2019; 123: 349-54.
  • 87. Digholkar S, Madhav V, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc 2016; 16: 328.
  • 88. Lin W-S, Harris BT, Pellerito J, Morton D. Fabrication of an interim complete removable dental prosthesis with an in-office digital light processing three-dimensional printer: A proof-of-concept technique. J Prosthet Dent 2018; 120: 331-34.
  • 89. Alharbi N, Alharbi S, Cuijpers VM, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3d-printed interim restorations fabricated on different finish line designs. J Prosthodont Res 2018; 62: 218-26.
  • 90. Lee W-S, Lee D-H, Lee K-B. Evaluation of internal fit of interim crown fabricated with cad/cam milling and 3d printing system. J Adv Prosthodont 2017; 9: 265-70.
  • 91. Choi J-W. Marginal and internal discrepancy of 3-unit fixed dental prostheses fabricated by subtractive and additive manufacturing. J Korean Acad Prosthodont 2020; 58: 7-13.
  • 92. Peng CC, Chung KH, Ramos Jr V. Assessment of the adaptation of interim crowns using different measurement techniques. J Prosthodont 2020; 29: 87-93.
  • 93. Mai H-N, Lee K-B, Lee D-H. Fit of interim crowns fabricated using photopolymer-jetting 3d printing. J Prosthet Dent 2017; 118: 208-15.
  • 94. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, et al. 3d printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018; 34: 192-200.
  • 95. Sun Y, Lü P, Wang Y. Study on cad&rp for removable complete denture. Comput Meth Prog Bio 2009; 93: 266-72.
  • 96. Bilgin MS, Erdem A, Aglarci OS, Dilber E. Fabricating complete dentures with cad/cam and rp technologies. J Prosthodont 2015; 24: 576-79.
  • 97. Inokoshi M, Kanazawa M, Minakuchi S. Evaluation of a complete denture trial method applying rapid prototyping. Dent Mater J 2012; 31:40-6.
  • 98. inaya Pereyra NM, Marano J, Subramanian G, Quek S, Leff D. Comparison of patient satisfaction in the fabrication of conventional dentures vs. Dentca (cad/cam) dentures: A case report. J N J Dent Assoc 2015; 86: 26-33.
  • 99. Park J-H, Cho I-H, Shin S-Y, Choi Y-S. The treatment of an edentulous patient with dentca™ cad/cam denture. J Korean Acad Prosthodont 2015; 53: 19-23.
  • 100. Koh E-S, Cha H-S, Kim T-H, Ahn J-S, Lee J-H. Color stability of three dimensional-printed denture teeth exposed to various colorants. J Korean Acad Prosthodont 2020; 58: 1-6.
  • 101. Bibb R, Eggbeer D, Williams R. Rapid manufacture of removable partial denture frameworks. Rapid Prototyp J 2006; 12: 95-9.
  • 102. Eggbeer D, Bibb R, Williams R. The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. P I Mech Eng H 2005; 219: 195-202.
  • 103. Kruth J-P, Vandenbroucke B, Van Vaerenbergh J, Naert I. Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of sls/slm. Proc VRAP, Leiria 2005: 139-46.
  • 104. Lima JMC, Anami LC, Araujo RM, Pavanelli CA. Removable partial dentures: Use of rapid prototyping. J Prosthodont 2014; 23: 588-91.
  • 105. Davis BK. The role of technology in facial prosthetics. Curr Opinin Otolaryngol Head Neck Surgery 2010; 18: 332-40.
  • 106. Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y, et al. Computer-assisted technique for the design and manufacture of realistic facial prostheses. Brit J Oral Max Surger 2010; 48: 105-09.
  • 107. Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3d printing of silicone facial prostheses: A preliminary experience in digital workflow. J Prosthet Dent 2018; 120: 303-08.
  • 108. Kim M-S, Lee J-Y, Shin S-W. Fabricating an obturator using rapid prototyping to design the framework: A case report. Int J Prosth 2014; 27: 439-41.
  • 109. Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater 2008; 24: 1400-04.
  • 110. Akçin ET, Güncü MB, Aktaş G, Aslan Y. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J Prosthet Dent 2018; 120: 715-20.
  • 111. Ucar Y, Akova T, Akyil MS, Brantley WA. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered co-cr crowns. J Prosthet Dent 2009; 102: 253-59.
  • 112. Kim D-Y, Kim J-H, Kim H-Y, Kim W-C. Comparison and evaluation of marginal and internal gaps in cobalt–chromium alloy copings fabricated using subtractive and additive manufacturing. J Prosthodont Res. 2018; 62: 56-64.
  • 113. Park J-K, Lee W-S, Kim H-Y, Kim W-C, Kim J-H. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems. J Adv Prosthodont 2015; 7: 122-28.
  • 114. Presotto AGC, Barão VAR, Bhering CLB, Mesquita MF. Dimensional precision of implant-supported frameworks fabricated by 3d printing. J Prosthet Dent 2019; 122: 38-45.
  • 115. Han X, Sawada T, Schille C, Schweizer E, Scheideler L, Geis-Gerstorfer J, et al. Comparative analysis of mechanical properties and metal-ceramic bond strength of co-cr dental alloy fabricated by different manufacturing processes. Materials 2018; 11: 1801.
  • 116. Zocca A, Colombo P, Gomes CM, Günster J. Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J Am Ceram Soc 2015; 98: 1983-2001.
  • 117. Bourell D, Kruth JP, Leu M, Levy G, Rosen D, Beese AM, et al. Materials for additive manufacturing. Cirp Annals 2017; 66: 659-81.
  • 118. Yang L, Miyanaji H. Ceramic additive manufacturing: A review of current status and challenges. Solid Free Fabr 2017 Proc 28th Annu Int 2017: 652-79.
  • 119. Wilkes J, Hagedorn YC, Meiners W, Wissenbach K. Additive manufacturing of zro2‐al2o3 ceramic components by selective laser melting. Rapid prototyp J 2013; 19: 51-57
  • 120. Halloran JW. Ceramic stereolithography: Additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res 2016; 46: 19-40.
  • 121. Xing H, Zou B, Li S, Fu X. Study on surface quality, precision and mechanical properties of 3d printed zro2 ceramic components by laser scanning stereolithography. Ceram Int 2017; 43: 16340-47.
  • 122. Li X, Gao M, Jiang Y. Microstructure and mechanical properties of porous alumina ceramic prepared by a combination of 3–d printing and sintering. Ceram Int 2016; 42: 12531-35.
  • 123. Scheithauer U, Schwarzer E, Richter HJ, Moritz T. Thermoplastic 3d printing—an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol 2015; 12: 26-31.
  • 124. Sun C, Tian X, Wang L, Liu Y, Wirth CM, Günster J, et al. Effect of particle size gradation on the performance of glass-ceramic 3d printing process. Ceram Int 2017; 43: 578-84.
  • 125. Wang W, Yu H, Liu Y, Jiang X, Gao B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent 2019; 121: 285-91.
  • 126. Zandinejad A, Methani MM, Schneiderman ED, Revilla‐León M, BDS DM. Fracture resistance of additively manufactured zirconia crowns when cemented to implant supported zirconia abutments: An in vitro study. J Prosthodont 2019; 28: 893-97.
  • 127. Li R, Chen H, Wang Y, Zhou Y, Shen Z, Sun Y. Three-dimensional trueness and margin quality of monolithic zirconia restorations fabricated by additive 3d gel deposition. J Prosthodont Res 2020; 64: 478-84.
Toplam 127 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Derleme
Yazarlar

Betül Arslan Bu kişi benim 0000-0003-2990-1577

Levent Nalbant Bu kişi benim 0000-0003-0727-5739

A. Dilek Nalbant Bu kişi benim 0000-0002-0554-5208

Matlab Nadirov Bu kişi benim 0000-0003-4238-5212

Yayımlanma Tarihi 14 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 31 Sayı: 3

Kaynak Göster

APA Arslan, B., Nalbant, L., Nalbant, A. D., Nadirov, M. (2021). ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 31(3), 459-470. https://doi.org/10.17567/ataunidfd.804342
AMA Arslan B, Nalbant L, Nalbant AD, Nadirov M. ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR. Ata Diş Hek Fak Derg. Temmuz 2021;31(3):459-470. doi:10.17567/ataunidfd.804342
Chicago Arslan, Betül, Levent Nalbant, A. Dilek Nalbant, ve Matlab Nadirov. “ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31, sy. 3 (Temmuz 2021): 459-70. https://doi.org/10.17567/ataunidfd.804342.
EndNote Arslan B, Nalbant L, Nalbant AD, Nadirov M (01 Temmuz 2021) ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31 3 459–470.
IEEE B. Arslan, L. Nalbant, A. D. Nalbant, ve M. Nadirov, “ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR”, Ata Diş Hek Fak Derg, c. 31, sy. 3, ss. 459–470, 2021, doi: 10.17567/ataunidfd.804342.
ISNAD Arslan, Betül vd. “ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31/3 (Temmuz 2021), 459-470. https://doi.org/10.17567/ataunidfd.804342.
JAMA Arslan B, Nalbant L, Nalbant AD, Nadirov M. ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR. Ata Diş Hek Fak Derg. 2021;31:459–470.
MLA Arslan, Betül vd. “ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 31, sy. 3, 2021, ss. 459-70, doi:10.17567/ataunidfd.804342.
Vancouver Arslan B, Nalbant L, Nalbant AD, Nadirov M. ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR. Ata Diş Hek Fak Derg. 2021;31(3):459-70.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.