Derleme
BibTex RIS Kaynak Göster

DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER

Yıl 2021, Cilt: 31 Sayı: 4, 639 - 651, 14.10.2021
https://doi.org/10.17567/ataunidfd.806849

Öz

Her geçen yıl diş eksikliklerinde dental implantların kullanımı artmaktadır. Bu ilginin artmasındaki en temel neden implant tedavisinin yüksek başarıya sahip olmasıdır. Bilimsel çalışmalarda dental implant başarısını ortaya koymak amacıyla belirlenmiş ortak kriterler bulunmamaktadır. Farklı araştrımacıların değerlendirdiği parametrelere bakıldığında dental implantlar çevresinde ilk yılda meydana gelen marjinal kemik kaybının en sık kullanılan kriterlerden biri olduğu göze çarpmaktadır.
İmplant fonksiyona girdikten sonra ilk yılda meydana gelen kemik kaybı beklenen bir durumdur. Literatür, dental implantların fonksiyona girdiği ilk yılda marjinal kemik seviyesinde meydana gelen 1,5 - 2 mm' lik değişimin normal olduğunu bildirmektedir. Dental implantlar çevresinde ilk yılda meydana gelen kemik kaybı üzerine etkili faktörleri bilmek, ilk yılda meydana gelebilecek kemik kaybını kontrol altında tutmak adına önemlidir. Bununla birlikte gelişen bilim ve teknoloji ile ilk yılda kaybedilen kemik miktarının daha da azaltmak mümkün olabilir.
Bu derlemenin amacı, erken dönemde implantlar etrafında meydana gelen kemik kayıplarında etkili olan faktörlerin değerlendirilmesidir. İmplant, dayanak ve restorasyona ait faktörlerin yanı sıra okluzal travma ve supra krestal yumuşak doku miktarı gibi etkenler de incelenmiştir.
Anahtar Kelimeler: Diş İmplantları, Alveoler Kemik Kaybı, Kemik-İmplant Arayüzü
ABSTRACT
Factors Affecting Early Marginal Bone Resorption Around Dental Implants
Engin Özgür, Emine Elif Alaaddinoğlu
Deparment of Periodontology, Baskent University, Ankara, Turkey
Each year, the preference for replacement of lost teeth with dental implants increases. The main reason of this interest is the high success rates of this treatment. Scientific studies, could not agree on standardized criteria to define the success of dental implant treatment. Considering the parameters evaluated by different researchers, marginal bone loss occurring the first year around dental implants is one of the most frequently used criteria.
Marginal bone loss observed after the first year of function has been considered to be normal. The literature reports that in the first year after placement a change in marginal bone level ranging 1,5 mm to 2 mm is expected. In order to control this bone loss, it's important to know factors affecting this process. Advances in science and technology could further reduce the early bone loss.
The aim of this review is to evaluate the factors that are effective in bone loss occurring around the implants in the early period. In addition to the factors related to the implant, abutment and restoration, factors such as occlusal trauma and amount of supracrestal soft tissue were also examined.
Keywords: Dental Implants, Alveolar Bone Loss, Bone-Implant Interface

Kaynakça

  • 1. Bouchard P, Renouard F, Bourgeois D, Fromentin O, Jeanneret MH, Beresniak A. Cost-effectiveness modeling of dental implant vs. bridge. Clin Oral Implants Res 2009;20(6):583-7.
  • 2. Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000 2017;73(1):7-21.
  • 3. De Bruyn H, Raes S, Matthys C, Cosyn J. The current use of patient-centered/reported outcomes in implant dentistry: a systematic review. Clin Oral Implants Res 2015;26 Suppl 11:45-56.
  • 4. Straumann. How will dentistry look in 2020. 2012. https://www.straumann.com/content/dam/internet/straumann_com/resources/investor-relations/publications-and-reports/capital-markets-day-2012/how%20will%20dentistry%20in%202020%20look_straumann%20cmd2012_achermann.pdf (Erişim tarihi 30.03.2020).
  • 5. İMPLANTDER. Dental İmplant Sektör Raporu. http://www.implantder.org/sektor-analizi/ (Erişim tarihi 30.03.2020).
  • 6. Anitua E, Pinas L, Begona L, Orive G. Long-term retrospective evaluation of short implants in the posterior areas: clinical results after 10-12 years. J Clin Periodontol 2014;41(4):404-11.
  • 7. Becker ST, Beck-Broichsitter BE, Rossmann CM, Behrens E, Jochens A, Wiltfang J. Long-term Survival of Straumann Dental Implants with TPS Surfaces: A Retrospective Study with a Follow-up of 12 to 23 Years. Clin Implant Dent Relat Res 2016;18(3):480-8.
  • 8. Cassetta M. Immediate loading of implants inserted in edentulous arches using multiple mucosa-supported stereolithographic surgical templates: a 10-year prospective cohort study. Int J Oral Maxillofac Surg 2016;45(4):526-34.
  • 9. Degidi M, Nardi D, Piattelli A. 10-year prospective cohort follow-up of immediately restored XiVE implants. Clin Oral Implants Res 2016;27(6):694-700.
  • 10. Francetti L, Cavalli N, Taschieri S, Corbella S. Ten years follow-up retrospective study on implant survival rates and prevalence of peri-implantitis in implant-supported full-arch rehabilitations. Clin Oral Implants Res 2019;30(3):252-60.
  • 11. Jemt T. Implant Survival in the Posterior Partially Edentulous Arch-30 Years of Experience. Part IV: A Retro-Prospective Multivariable Regression Analysis on Implant Failures Related to Arch and Implant Surface. Int J Prosthodont 2019;32(2):143-52.
  • 12. Karoussis IK, Bragger U, Salvi GE, Burgin W, Lang NP. Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res 2004;15(1):8-17.
  • 13. Simion M, Nevins M, Rasperini G, Tironi F. A 13- to 32-Year Retrospective Study of Bone Stability for Machined Dental Implants. Int J Periodontics Restorative Dent 2018;38(4):489-93.
  • 14. van Velzen FJ, Ofec R, Schulten EA, Ten Bruggenkate CM. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clin Oral Implants Res 2015;26(10):1121-8.
  • 15. Misch CE, Perel ML, Wang HL, et al. Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent 2008;17(1):5-15.
  • 16. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1(1):11-25.
  • 17. Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res 1990;1(1):33-40.
  • 18. Roos J, Sennerby L, Lekholm U, Jemt T, Grondahl K, Albrektsson T. A qualitative and quantitative method for evaluating implant success: a 5-year retrospective analysis of the Branemark implant. Int J Oral Maxillofac Implants 1997;12(4):504-14.
  • 19. Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res 2010;21(7):772-7.
  • 20. Albrektsson T, Isidor F. Consensus report of session IV. In: Lang NP, Karring T, eds. Proceedings of the first European Workshop on Periodontology. New Malden, United Kingdom: Quintessence Publishing; 1994: 365-9.
  • 21. Moraschini V, Poubel LA, Ferreira VF, Barboza Edos S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg 2015;44(3):377-88.
  • 22. Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO. Success criteria in implant dentistry: a systematic review. J Dent Res 2012;91(3):242-8.
  • 23. Mombelli A, Lang NP. Clinical parameters for the evaluation of dental implants. Periodontol 2000 1994;4:81-6.
  • 24. Ong CT, Ivanovski S, Needleman IG, et al. Systematic review of implant outcomes in treated periodontitis subjects. J Clin Periodontol 2008;35(5):438-62.
  • 25. Astrand P, Ahlqvist J, Gunne J, Nilson H. Implant treatment of patients with edentulous jaws: a 20-year follow-up. Clin Implant Dent Relat Res 2008;10(4):207-17.
  • 26. Jacobs R, Pittayapat P, van Steenberghe D, et al. A split-mouth comparative study up to 16 years of two screw-shaped titanium implant systems. J Clin Periodontol 2010;37(12):1119-27.
  • 27. Van de Velde T, Collaert B, Sennerby L, De Bruyn H. Effect of implant design on preservation of marginal bone in the mandible. Clin Implant Dent Relat Res 2010;12(2):134-41.
  • 28. Suarez-Lopez Del Amo F, Lin GH, Monje A, Galindo-Moreno P, Wang HL. Influence of Soft Tissue Thickness on Peri-Implant Marginal Bone Loss: A Systematic Review and Meta-Analysis. J Periodontol 2016;87(6):690-9.
  • 29. Hermann JS, Buser D, Schenk RK, Higginbottom FL, Cochran DL. Biologic width around titanium implants. A physiologically formed and stable dimension over time. Clin Oral Implants Res 2000;11(1):1-11.
  • 30. Jung YC, Han CH, Lee KW. A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 1996;11(6):811-8.
  • 31. Hammerle CH, Bragger U, Burgin W, Lang NP. The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin Oral Implants Res 1996;7(2):111-9.
  • 32. Schwarz F, Alcoforado G, Nelson K, et al. Impact of implant-abutment connection, positioning of the machined collar/microgap, and platform switching on crestal bone level changes. Camlog Foundation Consensus Report. Clin Oral Implants Res 2014;25(11):1301-3.
  • 33. De Bruyn H, Christiaens V, Doornewaard R, et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol 2000 2017;73(1):218-27.
  • 34. Doornewaard R, Christiaens V, De Bruyn H, et al. Long-Term Effect of Surface Roughness and Patients' Factors on Crestal Bone Loss at Dental Implants. A Systematic Review and Meta-Analysis. Clin Implant Dent Relat Res 2017;19(2):372-99.
  • 35. Renvert S, Lindahl C, Rutger Persson G. The incidence of peri-implantitis for two different implant systems over a period of thirteen years. J Clin Periodontol 2012;39(12):1191-7.
  • 36. Rakic M, Galindo-Moreno P, Monje A, et al. How frequent does peri-implantitis occur? A systematic review and meta-analysis. Clin Oral Investig 2018;22(4):1805-16.
  • 37. Quirynen M, Abarca M, Van Assche N, Nevins M, van Steenberghe D. Impact of supportive periodontal therapy and implant surface roughness on implant outcome in patients with a history of periodontitis. J Clin Periodontol 2007;34(9):805-15.
  • 38. Fu J-H, Wang H-L. Breaking the wave of peri-implantitis. Periodontology 2000 2020;84(1):145-60.
  • 39. Becker J, Ferrari D, Mihatovic I, Sahm N, Schaer A, Schwarz F. Stability of crestal bone level at platform-switched non-submerged titanium implants: a histomorphometrical study in dogs. Journal of Clinical Periodontology 2009;36(6):532-9.
  • 40. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26(1):9-17.
  • 41. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74(3):346-52.
  • 42. Schwarz F, Hegewald A, Becker J. Impact of implant–abutment connection and positioning of the machined collar/microgap on crestal bone level changes: a systematic review. Clinical Oral Implants Research 2014;25(4):417-25.
  • 43. Gatti C, Gatti F, Silvestri M, et al. A Prospective Multicenter Study on Radiographic Crestal Bone Changes Around Dental Implants Placed at Crestal or Subcrestal Level: One-Year Findings. Int J Oral Maxillofac Implants 2018;33(4):913-8.
  • 44. van Eekeren P, Tahmaseb A, Wismeijer D. Crestal bone changes in macrogeometrically similar implants with the implant–abutment connection at the crestal bone level or 2.5 mm above: a prospective randomized clinical trial. Clinical Oral Implants Research 2016;27(12):1479-84.
  • 45. Schwarz F, Mihatovic I, Golubovich V, Schar A, Sager M, Becker J. Impact of abutment microstructure and insertion depth on crestal bone changes at nonsubmerged titanium implants with platform switch. Clin Oral Implants Res 2015;26(3):287-92.
  • 46. Vouros ID, Kalpidis CD, Horvath A, Petrie A, Donos N. Systematic assessment of clinical outcomes in bone-level and tissue-level endosseous dental implants. Int J Oral Maxillofac Implants 2012;27(6):1359-74.
  • 47. Taheri M, Akbari S, Shamshiri AR, Shayesteh YS. Marginal bone loss around bone-level and tissue-level implants: A systematic review and meta-analysis. Ann Anat 2020;231:151525.
  • 48. van Eekeren PJ, Tahmaseb A, Wismeijer D. Crestal Bone Changes Around Implants with Implant-Abutment Connections at Epicrestal Level or Above: Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implants 2016;31(1):119-24.
  • 49. Becker J, Ferrari D, Mihatovic I, Sahm N, Schaer A, Schwarz F. Stability of crestal bone level at platform-switched non-submerged titanium implants: a histomorphometrical study in dogs. J Clin Periodontol 2009;36(6):532-9.
  • 50. Farronato D, Santoro G, Canullo L, Botticelli D, Maiorana C, Lang NP. Establishment of the epithelial attachment and connective tissue adaptation to implants installed under the concept of "platform switching": a histologic study in minipigs. Clin Oral Implants Res 2012;23(1):90-4.
  • 51. Maeda Y, Miura J, Taki I, Sogo M. Biomechanical analysis on platform switching: is there any biomechanical rationale? Clin Oral Implants Res 2007;18(5):581-4.
  • 52. Canullo L, Fedele GR, Iannello G, Jepsen S. Platform switching and marginal bone-level alterations: the results of a randomized-controlled trial. Clin Oral Implants Res 2010;21(1):115-21.
  • 53. Wang YC, Kan JY, Rungcharassaeng K, Roe P, Lozada JL. Marginal bone response of implants with platform switching and non-platform switching abutments in posterior healed sites: a 1-year prospective study. Clin Oral Implants Res 2015;26(2):220-7.
  • 54. Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in peri-implant soft tissues. J Clin Periodontol 1995;22(3):255-61.
  • 55. Jansen VK, Conrads G, Richter EJ. Microbial leakage and marginal fit of the implant-abutment interface. Int J Oral Maxillofac Implants 1997;12(4):527-40.
  • 56. Schmitt CM, Nogueira-Filho G, Tenenbaum HC, et al. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A 2014;102(2):552-74.
  • 57. Koo KT, Lee EJ, Kim JY, et al. The effect of internal versus external abutment connection modes on crestal bone changes around dental implants: a radiographic analysis. J Periodontol 2012;83(9):1104-9.
  • 58. Pieri F, Aldini NN, Marchetti C, Corinaldesi G. Influence of implant-abutment interface design on bone and soft tissue levels around immediately placed and restored single-tooth implants: a randomized controlled clinical trial. Int J Oral Maxillofac Implants 2011;26(1):169-78.
  • 59. Wittneben JG, Joda T, Weber HP, Bragger U. Screw retained vs. cement retained implant-supported fixed dental prosthesis. Periodontol 2000 2017;73(1):141-51.
  • 60. Agar JR, Cameron SM, Hughbanks JC, Parker MH. Cement removal from restorations luted to titanium abutments with simulated subgingival margins. J Prosthet Dent 1997;78(1):43-7.
  • 61. Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res 2013;24(1):71-6.
  • 62. Pauletto N, Lahiffe BJ, Walton JN. Complications associated with excess cement around crowns on osseointegrated implants: a clinical report. Int J Oral Maxillofac Implants 1999;14(6):865-8.
  • 63. Linkevicius T, Puisys A, Vindasiute E, Linkeviciene L, Apse P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res 2013;24(11):1179-84.
  • 64. Wilson TG, Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol 2009;80(9):1388-92.
  • 65. Sancho-Puchades M, Crameri D, Ozcan M, et al. The influence of the emergence profile on the amount of undetected cement excess after delivery of cement-retained implant reconstructions. Clin Oral Implants Res 2017;28(12):1515-22.
  • 66. Staubli N, Walter C, Schmidt JC, Weiger R, Zitzmann NU. Excess cement and the risk of peri-implant disease - a systematic review. Clin Oral Implants Res 2017;28(10):1278-90.
  • 67. Hill EE, Lott J. A clinically focused discussion of luting materials. Aust Dent J 2011;56 Suppl 1:67-76.
  • 68. Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants 2004;19(3):335-49.
  • 69. Gehrke SA, Bettach R, Taschieri S, Boukhris G, Corbella S, Del Fabbro M. Temperature Changes in Cortical Bone after Implant Site Preparation Using a Single Bur versus Multiple Drilling Steps: An In Vitro Investigation. Clin Implant Dent Relat Res 2015;17(4):700-7.
  • 70. Leunig M, Hertel R. Thermal necrosis after tibial reaming for intramedullary nail fixation. A report of three cases. J Bone Joint Surg Br 1996;78(4):584-7.
  • 71. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50(1):101-7.
  • 72. Eriksson RA, Adell R. Temperatures during drilling for the placement of implants using the osseointegration technique. J Oral Maxillofac Surg 1986;44(1):4-7.
  • 73. Rashad A, Kaiser A, Prochnow N, Schmitz I, Hoffmann E, Maurer P. Heat production during different ultrasonic and conventional osteotomy preparations for dental implants. Clin Oral Implants Res 2011;22(12):1361-5.
  • 74. Gomez-Roman G. Influence of flap design on peri-implant interproximal crestal bone loss around single-tooth implants. Int J Oral Maxillofac Implants 2001;16(1):61-7.
  • 75. Sunitha RV, Sapthagiri E. Flapless implant surgery: a 2-year follow-up study of 40 implants. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;116(4):e237-43.
  • 76. Stoupel J, Lee CT, Glick J, Sanz-Miralles E, Chiuzan C, Papapanou PN. Immediate implant placement and provisionalization in the aesthetic zone using a flapless or a flap-involving approach: a randomized controlled trial. J Clin Periodontol 2016;43(12):1171-9.
  • 77. Jeong SM, Choi BH, Li J, et al. Flapless implant surgery: an experimental study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104(1):24-8.
  • 78. Baldi D, Lombardi T, Colombo J, et al. Correlation between Insertion Torque and Implant Stability Quotient in Tapered Implants with Knife-Edge Thread Design. Biomed Res Int 2018;2018:7201093.
  • 79. Bartold PM, Kuliwaba JS, Lee V, Shah S, Marino V, Fazzalari NL. Influence of surface roughness and shape on microdamage of the osseous surface adjacent to titanium dental implants. Clin Oral Implants Res 2011;22(6):613-8.
  • 80. Coelho PG, Marin C, Teixeira HS, et al. Biomechanical evaluation of undersized drilling on implant biomechanical stability at early implantation times. J Oral Maxillofac Surg 2013;71(2):e69-75.
  • 81. Duyck J, Roesems R, Cardoso MV, Ogawa T, De Villa Camargos G, Vandamme K. Effect of insertion torque on titanium implant osseointegration: an animal experimental study. Clin Oral Implants Res 2015;26(2):191-6.
  • 82. Jimbo R, Tovar N, Marin C, et al. The impact of a modified cutting flute implant design on osseointegration. Int J Oral Maxillofac Surg 2014;43(7):883-8.
  • 83. Duyck J, Corpas L, Vermeiren S, et al. Histological, histomorphometrical, and radiological evaluation of an experimental implant design with a high insertion torque. Clin Oral Implants Res 2010;21(8):877-84.
  • 84. Cha JY, Pereira MD, Smith AA, et al. Multiscale analyses of the bone-implant interface. J Dent Res 2015;94(3):482-90.
  • 85. Frisardi G, Barone S, Razionale AV, et al. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis. Head Face Med 2012;8:18.
  • 86. Yadav S, Upadhyay M, Liu S, Roberts E, Neace WP, Nanda R. Microdamage of the cortical bone during mini-implant insertion with self-drilling and self-tapping techniques: a randomized controlled trial. Am J Orthod Dentofacial Orthop 2012;141(5):538-46.
  • 87. Guan H, van Staden RC, Johnson NW, Loo YC. Dynamic modelling and simulation of dental implant insertion process-A finite element study. Finite Elements in Analysis and Design 2011;47(8):886-97.
  • 88. Blanco J, Pico A, Caneiro L, Novoa L, Batalla P, Martin-Lancharro P. Effect of abutment height on interproximal implant bone level in the early healing: A randomized clinical trial. Clin Oral Implants Res 2018;29(1):108-17.
  • 89. Chen Z, Lin CY, Li J, Wang HL, Yu H. Influence of abutment height on peri-implant marginal bone loss: A systematic review and meta-analysis. J Prosthet Dent 2019;122(1):14-21 e2.
  • 90. Spinato S, Stacchi C, Lombardi T, Bernardello F, Messina M, Zaffe D. Biological width establishment around dental implants is influenced by abutment height irrespective of vertical mucosal thickness: A cluster randomized controlled trial. Clin Oral Implants Res 2019;30(7):649-59.
  • 91. Molina A, Sanz-Sanchez I, Martin C, Blanco J, Sanz M. The effect of one-time abutment placement on interproximal bone levels and peri-implant soft tissues: a prospective randomized clinical trial. Clin Oral Implants Res 2017;28(4):443-52.
  • 92. Canullo L, Bignozzi I, Cocchetto R, Cristalli MP, Iannello G. Immediate positioning of a definitive abutment versus repeated abutment replacements in post-extractive implants: 3-year follow-up of a randomised multicentre clinical trial. Eur J Oral Implantol 2010;3(4):285-96.
  • 93. Souza AB, Alshihri A, Kammerer PW, Araujo MG, Gallucci GO. Histological and micro-CT analysis of peri-implant soft and hard tissue healing on implants with different healing abutments configurations. Clin Oral Implants Res 2018;29(10):1007-15.
  • 94. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14(2):108-16.
  • 95. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7(2):143-52.
  • 96. Manz MC. Radiographic assessment of peri-implant vertical bone loss: DICRG Interim Report No. 9. J Oral Maxillofac Surg 1997;55(12 Suppl 5):62-71.
  • 97. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71(4):546-9.
  • 98. Jo DW, Yi YJ, Kwon MJ, Kim YK. Correlation between interimplant distance and crestal bone loss in internal connection implants with platform switching. Int J Oral Maxillofac Implants 2014;29(2):296-302.
  • 99. Vela X, Mendez V, Rodriguez X, Segala M, Tarnow DP. Crestal bone changes on platform-switched implants and adjacent teeth when the tooth-implant distance is less than 1.5 mm. Int J Periodontics Restorative Dent 2012;32(2):149-55.
  • 100. Merheb J, Vercruyssen M, Coucke W, Beckers L, Teughels W, Quirynen M. The fate of buccal bone around dental implants. A 12-month postloading follow-up study. Clinical oral implants research 2017;28(1):103-8.
  • 101. Spray JR, Black CG, Morris HF, Ochi S. The influence of bone thickness on facial marginal bone response: stage 1 placement through stage 2 uncovering. Ann Periodontol 2000;5(1):119-28.
  • 102. Grunder U, Gracis S, Capelli M. Influence of the 3-D bone-to-implant relationship on esthetics. Int J Periodontics Restorative Dent 2005;25(2):113-9.
  • 103. Schmidt JC, Sahrmann P, Weiger R, Schmidlin PR, Walter C. Biologic width dimensions--a systematic review. J Clin Periodontol 2013;40(5):493-504.
  • 104. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68(2):186-98.
  • 105. Berglundh T, Abrahamsson I, Welander M, Lang NP, Lindhe J. Morphogenesis of the peri-implant mucosa: an experimental study in dogs. Clin Oral Implants Res 2007;18(1):1-8.
  • 106. Sukekava F, Pannuti CM, Lima LA, Tormena M, Araujo MG. Dynamics of soft tissue healing at implants and teeth: a study in a dog model. Clin Oral Implants Res 2016;27(5):545-52.
  • 107. Tomasi C, Tessarolo F, Caola I, Wennstrom J, Nollo G, Berglundh T. Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin Oral Implants Res 2014;25(9):997-1003.
  • 108. Araujo MG, Lindhe J. Peri-implant health. J Clin Periodontol 2018;45 Suppl 20:S230-S6.
  • 109. Linkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: a 1-year prospective controlled clinical trial. Int J Oral Maxillofac Implants 2009;24(4):712-9.
  • 110. Diaz-Sanchez M, Soto-Penaloza D, Penarrocha-Oltra D, Penarrocha-Diago M. Influence of supracrestal tissue attachment thickness on radiographic bone level around dental implants: A systematic review and meta-analysis. J Periodontal Res 2019;54(6):573-88.
  • 111. Peker E, Karaca İ. İmplant tedavisinin prognozunu etkileyen lokal risk faktörleri. Atatürk Üniversitesi Dişhekimliği Fakültesi Dergisi 2015;25:105-11. 112. Avila-Ortiz G, Gonzalez-Martin O, Couso-Queiruga E, Wang HL. The peri-implant phenotype. J Periodontol 2020.
Toplam 111 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Derleme
Yazarlar

Engin Özgür Bu kişi benim 0000-0002-7911-198X

Emine Elif Alaaddinoğlu 0000-0001-6718-3882

Yayımlanma Tarihi 14 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 31 Sayı: 4

Kaynak Göster

APA Özgür, E., & Alaaddinoğlu, E. E. (2021). DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 31(4), 639-651. https://doi.org/10.17567/ataunidfd.806849
AMA Özgür E, Alaaddinoğlu EE. DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER. Ata Diş Hek Fak Derg. Ekim 2021;31(4):639-651. doi:10.17567/ataunidfd.806849
Chicago Özgür, Engin, ve Emine Elif Alaaddinoğlu. “DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31, sy. 4 (Ekim 2021): 639-51. https://doi.org/10.17567/ataunidfd.806849.
EndNote Özgür E, Alaaddinoğlu EE (01 Ekim 2021) DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31 4 639–651.
IEEE E. Özgür ve E. E. Alaaddinoğlu, “DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER”, Ata Diş Hek Fak Derg, c. 31, sy. 4, ss. 639–651, 2021, doi: 10.17567/ataunidfd.806849.
ISNAD Özgür, Engin - Alaaddinoğlu, Emine Elif. “DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31/4 (Ekim 2021), 639-651. https://doi.org/10.17567/ataunidfd.806849.
JAMA Özgür E, Alaaddinoğlu EE. DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER. Ata Diş Hek Fak Derg. 2021;31:639–651.
MLA Özgür, Engin ve Emine Elif Alaaddinoğlu. “DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 31, sy. 4, 2021, ss. 639-51, doi:10.17567/ataunidfd.806849.
Vancouver Özgür E, Alaaddinoğlu EE. DENTAL İMPLANTLAR ETRAFINDA ERKEN DÖNEM MARJINAL KEMIK REZORPSIYONUNU ETKILEYEN FAKTÖRLER. Ata Diş Hek Fak Derg. 2021;31(4):639-51.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.