[1] K. Ammari, Derichlet boundary stabilization of the wave equation , Asymptot. Anal.30 (2002) 117-130.
[2] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain . J. Math. Pures Appl. 58, 249-273 (1979)
[3] G. Chen, Control and stabilization for the wave equation in a bounded domain . SIAM J. Control Optim. 17, 66-81 (1979).
[4] G. Chen, Control and stabilization for the wave equation, part III: Domain with moving boundary. SIAM J. Control Optim.19, 123-138 (1981).
[5] C. Deng,Y. Liu, W. Jiang, F. Huang, Exponential decay rate for a wave equation with Dirichlet boundary control, Applied Mathematics letters, 20 (2007) 861-865.
[7] I. Lasiecka& R. Trigiani, Uniform exponential energy decay of the wave equation in a bounded region with feedback control in the Dirichlet boundary conditions, J. Differential Equations. 66 (1987) 340-390.
[8] J.L. Lions, Controlabilite exacte perturbation et stabilisation de systemes distribues, Tome 1, Controlabilite exacte. Masson, Paris (1988).
[9] J.L. Lions, Controlabilit´e exacte perturbation et stabilisation de systemes distribues, Tome 2, Perturbation. Masson, Paris (1988).
[10] W. Liu, Stabilization and controllability for the transmission wave equation. IEEE Transcation on Automatic Control 46, 1900-1907 (2001).
[11] W. Liu, E. Zuazua, Decay rates for dissipative wave equations. Ricerche di Matimatica. 48, 61-75 (1999).
[12] W. Liu, E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelastisity with boundary feedback. Quartyely Appl. Math. 59, 269-314 (2001).
[13] M. Nakao, Energy decay for the wave equation with nonlinear weak dissipation. Differential Integral Equation, 8, 681-688 (1995).
[14] J. Rauch& M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. India J. Math. 24, 79-83 (1974)
[15] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Springer Science Business Media, New York, 2004.
[16] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control and optim. 28 (1990) 466-478.
[17] E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping. Commun. in Partial Differential Equations 15, 205-235 (1990)
[1] K. Ammari, Derichlet boundary stabilization of the wave equation , Asymptot. Anal.30 (2002) 117-130.
[2] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain . J. Math. Pures Appl. 58, 249-273 (1979)
[3] G. Chen, Control and stabilization for the wave equation in a bounded domain . SIAM J. Control Optim. 17, 66-81 (1979).
[4] G. Chen, Control and stabilization for the wave equation, part III: Domain with moving boundary. SIAM J. Control Optim.19, 123-138 (1981).
[5] C. Deng,Y. Liu, W. Jiang, F. Huang, Exponential decay rate for a wave equation with Dirichlet boundary control, Applied Mathematics letters, 20 (2007) 861-865.
[7] I. Lasiecka& R. Trigiani, Uniform exponential energy decay of the wave equation in a bounded region with feedback control in the Dirichlet boundary conditions, J. Differential Equations. 66 (1987) 340-390.
[8] J.L. Lions, Controlabilite exacte perturbation et stabilisation de systemes distribues, Tome 1, Controlabilite exacte. Masson, Paris (1988).
[9] J.L. Lions, Controlabilit´e exacte perturbation et stabilisation de systemes distribues, Tome 2, Perturbation. Masson, Paris (1988).
[10] W. Liu, Stabilization and controllability for the transmission wave equation. IEEE Transcation on Automatic Control 46, 1900-1907 (2001).
[11] W. Liu, E. Zuazua, Decay rates for dissipative wave equations. Ricerche di Matimatica. 48, 61-75 (1999).
[12] W. Liu, E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelastisity with boundary feedback. Quartyely Appl. Math. 59, 269-314 (2001).
[13] M. Nakao, Energy decay for the wave equation with nonlinear weak dissipation. Differential Integral Equation, 8, 681-688 (1995).
[14] J. Rauch& M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains. India J. Math. 24, 79-83 (1974)
[15] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Springer Science Business Media, New York, 2004.
[16] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control and optim. 28 (1990) 466-478.
[17] E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping. Commun. in Partial Differential Equations 15, 205-235 (1990)